Appendix C - Site Investigation Report

31 Daleham Gardens, London, NW3 5BU

Geotechnical Interpretative Report

Report/Project No: 2023-002-SIM-DAL Rep 002

Date: 20/04/2023

Geofirma Ltd Cardinal Point Park Road Rickmansworth Herts WD3 1RE

01923 437840 geofirmaconsultants.co.uk

DOCUMENT CONTROL SHEET

Project	31 Daleham Gardens, London, NW3 5BU	
Document	Geotechnical Interpretative Report	
Project/Report No	2023-002-SIM-DAL/Rep.002	
Client	NW3 CLT	

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	Client Issue	Client Issue	Client Issue	
Date	17/03/2023	20/04/2023		
Prepared by	Ebenezer Adenmosun/Laura Espinosa	Ebenezer Adenmosun		
Signature				
Checked by	Ebenezer Adenmosun	Ebenezer Adenmosun		
Signature				
Authorised by	Ebenezer Adenmosun	Ebenezer Adenmosun		
Signature				
Method of issue	Email			

Name	Role	Qualifications
Ebenezer Adenmosun	Prepared, Checked and Authorised by	BEng(Hons) ACGI MSc DIC CEng MICE FGS RoGEP (Grade - Adviser)
Laura Espinosa	Prepared by	BEng, MSc

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023

PREAMBLE

The work undertaken to provide the basis of this report comprised a study of the available documented information from a variety of sources, together with (where appropriate) meetings and discussions with relevant authorities and other interested parties. The information reviewed should not be considered exhaustive and has been accepted in good faith by Geofirma Ltd as providing a true description of site conditions. However, no liability can be accepted for the detailed accuracy or otherwise of any of the reports or documents prepared by others for the Client or for third parties, or for any associated errors or omissions.

The investigation of the site has been carried out to provide information concerning the ground conditions to allow a reasonable site assessment to be made.

The exploratory holes undertaken during the fieldwork only represent a small volume of the ground in relation to the size of the site and can therefore only provide a general indication of the site conditions. The number of sampling points and the methods of sampling and testing do not preclude the existence of localised variations in the ground condition or 'hot spots' of contamination where elevated levels of contaminants may be significantly higher than those encountered. It should be noted that this ground investigation comprises 2No cable percussion boreholes and 2No machine dug trial pits. A desk study was undertaken by others to assess historical risks, however, no liability for unforeseen geotechnical or contamination hazards can be accepted by Geofirma Ltd.

The comments and recommendations given in this report are based on the ground conditions apparent at the borehole and trial pit locations. It is likely ground conditions elsewhere on the site have not been disclosed by this investigation and have therefore not been included in this report.

The comments made on groundwater conditions are based on observations made at the time that site works were undertaken. It should be noted that groundwater levels can vary owing to seasonal or other effects, and additional groundwater measurements should be conducted immediately prior and during the construction works.

In relation to asbestos, we are unable to accept the associated liability as indemnity covering asbestos related matters is restricted from our policy. This is typically the industry norm. If we do find or suspect the presence of asbestos, we will state in the exploratory logs and notify the client, and it will be their responsibility to engage a specialist contractor to investigate the issue further.

The scope of the investigation was decided in consultation with the Client and the limitations of which were made clear. This report is produced solely for the use of the Client and his/her agent and should not be relied upon in any way by any third party.

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

TABLE OF CONTENTS

1. 1 1	INTRODUCTION 6				
1 2	REPORT CONTEXT				
1.2					
1.3	OBJECTIVES AND METHODOLOGY				
2.	SITE DETAILS				
2.1	SITE LOCATION AND DESCRIPTION				
2.	GEOLOGY				
2.3					
2.7					
3.	GROUND INVESTIGATION				
3.1	FIELDWORK				
3.Z 3.3	GROUNDWATER MONITORING 13				
5.5					
4.	GROUND CONDITIONS				
4.1	INTRODUCTION				
4.Z 4 3	CLAYGATE MEMBER 15				
4.4	LONDON CLAY				
4.5	SUMMARY OF GEOTECHNICAL PARAMETERS				
5.	ENGINEERING CONSIDERATIONS				
5.1	FOUNDATION DESIGN ISSUES				
5.2	RETAINING WALLS FOR UNDERGROUND STRUCTURES				
5.3	EXCAVATIONS				
5.4	PAVEMENT DESIGN				
5.5	CONCRETE SULPHATE RESISTANCE				
5.6	CONTAMINATION ASSESSMENT				
6.	REFERENCES				
APPEI	NDICES				
APPENDIX A – EXPLORATORY HOLE RECORDS					
APPENDIX B – EXPLORATORY HOLE LOCATION PLAN					
APPENDIX C – GEOTECHNICAL LABORATORY TEST RESULTS					
APPENDIX D - INSITU CBR TEST RESULTS					
APPENDIX E – CHEMICAL TEST RESULTS					
APPENDIX F - RELEVANT TO DRAWINGS					
APPENDIX G – SITE PHOTOGRAPHS DURING GROUND INVESTIGATION					
AFFEIN	DIA II - GAJ AND GROUNDWATER MONITURING REJULIJ				

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023

APPENDIX J - DEMOLITION SITE REPORT

31 Daleham Gardens, London, NW3 5BU

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

1. INTRODUCTION

1.1 APPOINTMENT AND BRIEF SITE SUMMARY

Geofirma Ltd has been appointed by NW3 CLT to carry out a ground investigation and undertake the interpretative reporting for the proposed development at 31 Daleham Gardens, NW3 5BU.

The site is located within the Fitzjohns and Netherhall Conservation Area in north Camden, and encloses an area of Hampstead to the north east of Finchley Road. The property was likely built in the 1800's as a single large residential property which was divided into flats later in the 20th century. The main building suffered extensive damage in a fire in 2017, leaving it structurally unsound and hence the building was demolished. The demolition of the building and the clearing up of the site was completed at the end of 2021. At the time of the ground investigation the site was vacant land with no visible buildings present.

The proposed project includes the redevelopment of the site to deliver a multi- storey apartment block, consisting of approximately 14 new units over 5 levels. The site levels fall from the western site boundary to eastern boundary and hence the ground floor of the western part of the building shall cut into the sloping site profile to form a part basement. The ground floor slab will be approximately 3.5 m below existing ground level (approximately 81.5 m OD) at the western extent of the proposed building. At the eastern extent adjacent to the pavement of Daleham Gardens, the ground floor slab and hence the ground floor slab will be close to the existing ground level.

The site is bounded by 31a Daleham Gardens to the south, the pavement of Daleham Gardens to the east, 33a Daleham Gardens to the north. Other residential properties lie to the west of the site.

Of particular note is the presence of the Belsize tunnel which is owned by Network Rail and runs beneath 31a Daleham Gardens.

The national grid reference of the site is 526673 185076 and the site is approximately 0.07 Ha.

1.2 REPORT CONTEXT

The current proposal for the redevelopment is understood to comprise the redevelopment of the above named site to comprise a 5 storey block of flats with the western part of the lower ground floor being formed as a basement due to the sloping profile of the site from the west (approximately 81.5 m OD) to the east (approximately 78 m OD).

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

³¹ Daleham Gardens, London, NW3 5BU

The purpose of this report is to present the findings of the ground investigation and provide geotechnical advice to aid with the design and construction of the building. The main aspects to be addressed in this report shall relate to the proposed building foundations and the formation of the basement structures at the site.

1.3 OBJECTIVES AND METHODOLOGY

The main objectives of this report are to provide assessments on the following areas:

- Geology of the site;
- To record details of the ground investigation works undertaken;
- To discuss site groundwater and ground conditions established from the intrusive works;
- To derive geotechnical parameters to inform the design of a suitable foundations and the proposed basement;
- To determine the sulphate classification of the site concrete selection for buried structures at the site;
- To provide advice on the constructability of the proposed basement and present feasible retaining wall options;
- To present finding on the contamination status of the site;
- Present geotechnical advice on other ground related issues.

³¹ Daleham Gardens, London, NW3 5BU

2. SITE DETAILS

2.1 SITE LOCATION AND DESCRIPTION

The site summary is in Table 1 below:

Table 1: Site Summary

Location	The site is located in the Belsize electoral ward, within the London borough of Camden and the English Parliamentary constituency of Hampstead and Kilburn	
Full Address	31 Daleham Gardens, London NW3 5BU, England	
National Grid Reference	526673 185076	
Area & Shape	The site has a rectangular shape and occupies an area of approximately 0.07 Ha	
Development Proposals	Development of a 5 storey residential building with a part basement comprising 14 units,	

Figure 1. Site Location

31	Daleham	Gardens,	London,	NW3 5BU	
-	2 0.0.0.0	001001001			

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

2.2 GEOLOGY

The published geology based on the British Geological Survey (BGS) map 1:50,000 geological map series, solid and drift Ref. 1, indicates the site is underlain directly by the Claygate Member. It should also be noted that the site lies very close to where the boundary of the Claygate Member and London Clay outcropping boundary (Figure 2).

Figure 2 Site Geology

The published geology (BGS) for the Site consists of the Claygate Member of the London Clay Formation, comprising dark grey clays with sand laminae, passing up into thin alternations of clays, silts and fine-grained sand, with beds of bioturbated silt. The stratum is underlain by the London Clay Formation, comprising silty clay diffusely interbedded with sandy clayey silt; it is commonly glauconitic, with several layers of calcareous concretions.

The Claygate Member is distinguished from the underlying London Clay Formation by the laminated character and the relative abundance of sand and is the most recent layer of the London Clay Formation. The boundary is drawn at the base of the lowest sand bed, conformable on silty clay with common sandy clayey silt interbeds. In practical terms, it is taken at the 'lowest sandy horizon mappable in the field' (Lake et al., 1986).

Underlying the Claygate Member is the London Clay.

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023
NW3 CLT	Page 9 of 40

The geological sequence is summarised in **Table 2** below.

Geological Unit	Description	Composition	BGS Lexicon Description
Superficial	None	-	-
Bedrock	Claygate Member (Parent unit is the London Clay Formation)	Clay, silt and sand	Comprises dark grey clays with sand laminae, passing up into thin alternations of clays, silts and fine-grained sand, with beds of bioturbated silt. Ferruginous concretions and septarian nodules occur in places.
	London Clay Formation	Clay, silt and sand	Comprises dark grey clays with sand laminae, passing up into thin alternations of clays, silts and fine-grained sand, with beds of bioturbated silt. Ferruginous concretions and septarian nodules occur in places.

Table 2: Summary of Published Geology

31 Daleham Gardens, London, NW3 5BU

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

2.3 HYDROGEOLOGY

Due to the moderately permeable nature of the Claygate Member deposits when compared to the London Clay Formation, surface water precipitation tends to flow through them and be stored within the stratum as a local aquifer, with spring lines forming at the ground surface at the junction with the Claygate Member (medium permeability) and at the junction of the Claygate Member with the London Clay Formation (low permeability). The Environment Agency classifies the Claygate Member as a Secondary A Aquifer of medium vulnerability and of mixed permeability.

The aquifer status for the identified strata together with an estimate of vulnerability is given in Table 3, below.

Geological Unit	Strata	Aquifer Designation	Vulnerability
Bedrock	Claygate Member	Secondary A. Permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifer. The stratum is underlain by the London Clay Formation, which is designated as unproductive strata.	Medium

Table 3: Aquifer Designation and Strata Vulnerability

2.4 HYDROLOGY

There are no surface water bodies located within 250 m of the site based on the Groundsure Report which was included in the Phase 1 Desk Study produced by STM Environmental in August 2021. The closest surface water body to the site is Hampstead No 1 pond, which is approximately 1.2 km from the site as dictated by the Hampstead Heath Map (see Figure 13 of the Camden Geological, Hydrogeological and Hydrological Study).

A review of the 'Watercourses' plan from Bartons 'Lost Rivers of London' (see Figure 11 of the Camden Geological, Hydrogeological and Hydrological Study) indicates various historical water courses that were present within the Camden area. The closest historical water body to 31 Daleham Gardens was the lost River Tyburn. The main source of the River Tyburn was Shepherd's Well (shown as Conduit Wells in the 1870-1871 Groundsure Historical Map), which was located at the corner of Fitzjohn's Avenue and Lyndhurst Road which is approximately 150 m to the north of our site. In the late 1870's, when the houses were built on Fitzjohn's Avenue, the water was culverted into a sewer to the west of the property boundary to flow south to Regent's Park and into the Thames.

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk	
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023	
NW3 CLT	Page 11 of 40	

The culvert is likely to be positioned at its closest point approximately 50 m to the west of our site traversing from north to south, towards Regent's Park.

3. GROUND INVESTIGATION

3.1 FIELDWORK

The investigation was carried out on the 31st January to the 3rd February 2023 by Geofirma Ltd and comprised the following:

- 1. The drilling of 2No Cable Percussion boreholes, BH1A and BH2, to depths of 25.45 m and 15.5 m bgl respectively. Borehole BH1 hit an obstruction in the Made Ground at 0.55 m bgl and hence was terminated. Standard Penetration Tests (SPTs) were performed in the borehole together with sampling at varying intervals.
- 2. The excavation of 2No. trial pits, TP1 and TP3, to expose building foundation for the previously demolished building. Both trial pits were taken to a depth of 3.5 m bgl.
- 3. Performance of 6 CBR tests to provide data for road pavement design.

The fieldwork was supervised by Geofirma Ltd with due regard to existing standards and guidelines including BS EN 1997-2 (2005), BS 5930 (2015), BS EN ISO 22476-3 (2011) and TRL PR/INT/277 (2004).

All soil description and sample logging were carried out in accordance with BS 5930:2015 and BS EN ISO 14688-1:2002+A1:2013 and BS EN ISO 14689-1:2003. The exploratory hole records are included in Appendix A, and locations of the exploratory holes are shown on the Exploration Hole Locations Plan, Appendix B.

Disturbed and undisturbed samples were recovered from the exploratory holes as necessary to facilitate sample description and for subsequent laboratory testing.

Observations of groundwater encountered during the fieldwork are included on the relevant exploratory hole records.

Groundwater and gas monitoring visits were undertaken on the 6th February and 9th March 2023 and records are included in appendix H.

3.2 LABORATORY TESTING

Routine geotechnical laboratory testing comprising Moisture Content (MC), Atterberg Limits, Particle Size Distribution Determination (PSD), Quick Undrained Triaxial Testing and sulphate tests were performed on selected samples. WAC tests and chemical tests were also carried out on selected samples to assess potential contamination levels of tested samples. The laboratory testing was carried out in accordance with BS EN ISO 17892-1:2014 and BS 1377-2:1990 at an Independent UKAS accredited laboratory and the results are presented in Appendix C and D; details of the tests and results are discussed in Section 4 and Section 5 of this report. A summary of the geotechnical and chemical laboratory testing is presented in Table 4 below.

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

³¹ Daleham Gardens, London, NW3 5BU

Laboratory Testing	Test Method	No. samples scheduled				
Classification/Compaction						
Moisture Content	BS EN ISO 17892-1:2014	16				
Liquid / plastic limits	BS1377: Part 2: 1990	4				
Particle Size Distribution	BS EN ISO 17892-4:2016	4				
Strength/Consolidation						
Undrained Triaxial Compression Test	BS1377: Part 8: 1990	8				
Concrete						
BRE SD1 Suite – water soluble sulphate, total sulphur and pH		6				
Chemical Tests	Chemical Tests					
WAC		1				
Geofirma Chemical Suite		2				

Table 4: Summary of Geotechnical and Chemical Laboratory Testing

3.3 GROUNDWATER MONITORING

During the ground investigation it appears a fast groundwater inflow was recorded at 1.8 m bgl in borehole BH1A during the first day of drilling. This appears to have been perched water because the flow subsequently stopped during the site works and is not in continuity with the groundwater encountered during the groundwater monitoring (see Table 5).

Table 5: Summary of Groundwater Readings

	Response	esponse Stratum Zone	Date of Groundwater Monitoring and depth m bgl (estimated levels in m OD)			
	Zone		06/02/23	09/03/23		
BH1A	6 to 10	London Clay	3.25 (75.00)	3.20 (75.05)		
BH2	2 to 6	Claygate Member/London	5.49 (74.94)	Dry		

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

4. **GROUND CONDITIONS**

4.1 INTRODUCTION

Full details of the ground conditions encountered are presented on the exploratory hole records included in Appendix A.

Strata	Depth to Top (m bgl)	Thickness (m)
Made Ground	0.00	0.9 (BH2) to 3.6 BH1A)
Claygate Member	0.9 to 3.6	2.5
London Clay	5.5 (BH1A) to 6.5 (BH2)	Not proven

Table 5: Proven Ground Conditions

4.2 MADE GROUND

Made Ground was encountered in all the exploratory holes excavated on site and was variable. Typically, the Made Ground was encountered as a mixture of clayey gravelly SAND and gravelly sandy CLAY with the gravels being fragments of fine to coarse flint, brick, tile and concrete.

Based on the description of the material and inference from BS8002, a unit weight of 18 kN/m^3 is assumed suitable for this material. Based on the descriptions of the material being predominantly granular an angle of friction of 28° is deemed acceptable for design purposes.

5No samples were recovered from BH1A and BH2 from within the Made Ground to determine its moisture contents. The results ranged between 28% to 38%, as shown in Figure 3.

An Atterberg limit test was also performed on a selected sample from BH1A at 2.00 m bgl. The result of the test recorded liquid limit of 50%, plastic limit of 17% with plasticity index of 33. The modified plasticity index is 29 which suggests a medium volume change potential cohesive material.

SPT N values ranging between 4 and 10 were measured in the Made Ground, therefore assuming a correlation E' = 2N MPa, a drained Youngs Modulus of 10 MPa is assumed suitable.

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

4.3 CLAYGATE MEMBER

4.3.1 General Classification

Beneath the Made Ground, a stratum interpreted as Claygate Member was encountered in all the exploratory boreholes. In BH1A this material was found at depths from 3.6 m to 6.5 m bgl, and in BH2 at depths from 0.9 m to 5.5 m bgl. It predominantly comprises firm greyish orange mottled brown gravelly sandy CLAY, however, in BH2 at 2.0 m bgl a medium dense brown orange mottled clayey SAND band is present. The material is described in the logs as being occasionally described as being 'soft' after recovery and this is due to the high granular content which means the sample degrades when retrieved from the drilling shoe and SPT hammer when split. In-situ the SPT N values are greater than 10, hence in the soil is either firm (cohesive), or medium dense (granular).

4.3.2 Moisture Contents

12No. natural moisture contents were measured on samples taken from depths ranging between 1.0 m (BH2) and 6.0 m (BH1A) with values ranging between 15 % and 31 %. The moisture content variation against the estimated relative datum level is plotted in Figure 3.

Figure 3. Moisture content w% vs depth (a) BH1A (b) BH2

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023

4.3.3 Particle Size Distribution (PSD)

Particle Size Distribution (PSD) test was carried out on 2No samples of the Claygate Member recovered from BH1A and BH2.

The results indicate the recovered samples are sandy silty SAND/sandy silty CLAY, with between 30% to 60% granular composition, which is typical of the Claygate Formation. Figure 4 below summarises the PSD result.

Fig 4: Results of the Grading Analysis

4No. Atterberg limit tests were also performed on selected samples within the boreholes at depths of between 3.0 and 6.0 m bgl (BH2). The result of the test recorded liquid limits of 43% to 51%, plastic limits of 16% to 18% with plasticity indices of 29 and 33, indicative of clay of medium plasticity. Typically, particles of all samples tested passed through the 425 μ m sieve and therefore, there is no requirement to modify plasticity indices.

4.3.4 Strength Characteristics

Standard Penetration Testing was carried out and the uncorrected SPT 'N' Values were recorded on the exploratory hole records. The data indicates N-values ranging between 7 and 11.

Undrained triaxial tests have been undertaken on representative sample of the Claygate Member recovered. The 2No tests undertaken in this material indicated strengths of 51 and 59 kPa.

Shear strengths were also derived from SPT 'N' using the empirical formula Cu = 5*N (Stroud and Butler (1975) and CIRIA 143 Ref. [2]).

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023
NW3 CLT	Page 16 of 40

Based on the data the following undrained shear strength has been adopted as shown in Figure 3: $C_u = 50 \text{ kPa}$

Fig 5: Results of the Undrained Shear Strength vs Depth

4.3.5 Frictional Angle

4No Atterberg limit test results have been obtained for samples retrieved within the Claygate Member to determine the index properties of the soil, and hence derive the characteristic critical state effective angles of friction using guidelines from BS8002 (2015). The critical state angles of friction derived based on the plasticity indices yielded values of between 23° and 25°. However, angle of friction of 24° is considered representative for this material. The worst case characteristic critical state effective cohesion c' is assumed to be zero.

4.3.6 Young Modulus/Compressibility

The value of undrained Young's Modulus, E_u , of the Claygate Member can be determined by using SPT 'N' values and CIRIA recommendations in CIRIA 760 for ULS retaining wall design the relationship of $E_u = 500C_u$ is a reasonable estimation. However, for the SLS assessments/Ground Movement Assessment, due to the small strain range of stiffnesses used for the calculation of lateral movements associated with retaining walls an $E_u = 1000C_u$ may be adopted. Since the movements associated with foundations are due to larger strains and

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023

the stiffness of soil is strain dependant a reduced $E_u = 300 C_u$ should be adopted for calculation of foundation settlements.

Therefore, for retaining wall analysis and the GMA assessment an $E_u = 50$ MPa may be adopted. For the ULS design of the retaining wall an $E_u = 25$ MPa maybe be adopted, whilst for settlement calculations a $E_u = 15$ MPa is recommended.

Assuming a Poisson's ratio (ν') of 0.15, an E' (drained Young modulus) of 0.75 * E_u should be adopted. Therefore, for the retaining wall analysis and the GMA assessment an E' = 37.5 MPa may be adopted. For the ULS design of the retaining wall an E' = 18.75 MPa maybe be adopted, whilst for settlement calculations a E' = 12.5 MPa is recommended.

The coefficient of compressibility (m_v) has been estimated for the underlying Claygate Member based on the expressions:

$$m_v = 1/f_2 N m^2/MN$$

Based on the above correlation, a m_{ν} of 0.2 m^2/MN is deemed realistic for the estimation of settlement under loadings.

4.4 LONDON CLAY

4.4.1 General Classification

Beneath the Claygate Member, is the London Clay. The clay was encountered in the BH1A and BH2 at depths of between 5.50 m bgl and 6.50 m bgl respectively. The full thickness of the material was unproven. In the boreholes the stratum was described as generally comprising firm to stiff slightly sandy fissured silty CLAY with micaceous inclusions on the fissured surfaces.

Based on the description on the laboratory test results carried out within this material at 6.60 m bgl, a bulk unit weight of 19 kN/m³ was recorded. Based on the descriptions of the material being predominantly cohesive and well documented data about London Clay Formation, an effective critical state angle of friction of 24° is deemed acceptable for design purposes.

4.4.2 Moisture Contents

6No. natural moisture contents were measured on samples taken from depths ranging between 10.0 m bgl and 22.5 m bgl with values ranging between 28% and 30%.

4.4.3 Particle Size Distribution (PSD)

Particle Size Distribution (PSD) test was carried out on 1No samples of the London Clay taken from borehole BH2.

The results indicate the recovered samples are silty CLAY, which is typical of London Clay. Figure 4 below summarises the PSD result.

31 Daleham	Gardens.	. London,	NW3	5BU

Project/Report/Revision No: 2023-002-SIM-DAL

1No Atterberg limit tests was also performed on a selected sample taken from BH2 at 5 m bgl. The results of the test recorded a liquid limit of 54 %, a plastic limit of 18 % with a plasticity index of 36, indicative of a clay of intermediate plasticity. Typically, all samples passed through the 425 μ m sieve and therefore, there is no requirement to modify plasticity indices.

4.4.4 Strength Characteristics

Standard Penetration Testing was carried out and the uncorrected SPT 'N' Values were recorded on the exploratory hole records. The data indicates a general trend of increasing N-value with depth ranging between 18 and 40.

Undrained triaxial tests have been undertaken on representative sample of the London Clay recovered. The 2No tests undertaken in this material indicated strengths of 110 and 117 kPa.

Shear strengths were also derived from SPT 'N' using the empirical formula Cu = 5*N (Stroud and Butler (1975) and CIRIA 143 Ref. [2]).

Based on the data the following undrained shear strength vs depth relationship has been adopted as shown in Figure 5:

 $C_u = 80 + 5z$ kPa (z is the depth below the surface of the London Clay assume 72 m OD)

4.4.5 Frictional Angle

A significant amount of geotechnical data relating to the London Clay is available from historical archives. Furthermore, 1No Atterberg limit test results have been obtained for samples retrieved within the London Clay to determine the index properties of the soil, and hence derive the characteristic critical state effective angles of friction using guidelines from BS8002 (2015). The critical state angles of friction derived based on the plasticity indices yielded values of between 23°. An angle of friction of 23° is considered representative for this material. The worst case characteristic critical state effective cohesion c' is assumed to be zero, however, for retaining wall designs ranging between 0 kPa to 5 kPa maybe adopted subject to the softening of the clay and its long-term behaviour under loading.

4.4.6 Young Modulus/Compressibility

The value of undrained Young's Modulus, E_u , of the London Clay can be determined by using SPT 'N' values and CIRIA recommendations in CIRIA 760 for ULS retaining wall design the relationship of $E_u = 500C_u$ is a reasonable estimation. However, for the SLS assessments/Ground Movement Assessment, due to the small strain range of stiffnesses used for the calculation of lateral movements associated with retaining walls an $E_u = 1000C_u$ may be adopted. Since the movements associated with foundations are due to larger strains and the stiffness of soil is strain dependant a reduced $E_u = 300 C_u$ should be adopted for calculation of foundation settlements.

www.geofirmaconsultants.co.uk

³¹ Daleham Gardens, London, NW3 5BU

Project/Report/Revision No: 2023-002-SIM-DAL

Therefore for retaining wall analysis and the GMA assessment an $E_u = 80 + 5z$ MPa may be adopted. For the ULS design of the retaining wall an $E_u = 40 + 2.5z$ MPa maybe be adopted, whilst for settlement calculations a $E_u = 24 + 1.5z$ MPa is recommended.

Assuming a Poisson's ratio (ν') of 0.15, an E' (drained Young modulus) of 0.75 * E_u should be adopted. Therefore for the retaining wall analysis and the GMA assessment an E' = 60 + 3.75z MPa may be adopted. For the ULS design of the retaining wall an E' = 30 + 1.875z MPa maybe be adopted, whilst for settlement calculations a E' = 18 + 1.125 MPa is recommended.

The coefficient of compressibility (m_v) has been estimated for the underlying Claygate Member based on the expressions:

 $m_v = 1/f_2 N m^2/MN$

Based on the above correlation, a $m_{\nu}~$ of 0.1 m^2/MN is deemed realistic for the estimation of settlement under loadings.

4.5 SUMMARY OF GEOTECHNICAL PARAMETERS

Based on the ground investigation and laboratory testing, the following design parameters have been derived and presented in Table 6 below. These may be relied upon in the design of geotechnical structures.

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

³¹ Daleham Gardens, London, NW3 5BU

Table 6: Summary of Geotechnical Parameters

Stratum	Typical thickness Range (m)	Bulk Density (kN/m³)	Cu (kN/m²)	Φ΄ _{cv} (°)	mv (m²/MN)	E _{u (ULS) wall} (MN/m ²)	E _{u (SLS) wall} (MN/m ²)	E _{u settlemsnt} (MN/m ²)	E' _{(ULS)wall} (MN/m ²)	E' _{(SLS) wall} (MN/m ²)	E′ _{settlemsnt} (MN/m²)
Made Ground	0.9 to 3.6	18	-	28	-	10	10	-	7.5	7.5	-
Claygate Member	2.5	18	50	24	0.2	25	50	15	18.75	37.5	12.5
London Clay Formation	Not Proven	19	80 + 5z	23	0.1	40 +2.5z	80 + 5z	24 + 5z	30 + 1.875z	60 + 3.75z	18 + 1.125z

(1) z is measured below the surface of the London Clay

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023
NW3 CLT	Page 21 of 40

5. ENGINEERING CONSIDERATIONS

5.1 FOUNDATION DESIGN ISSUES

5.1.1 Introduction

The preliminary estimated loads on the proposed foundations are stated in Sketch No. 1803-XX-SK-01. The drawings indicate the SLS loads applied by typical columns to the foundations could range between 580 kN and 675 kN. Based on the ground investigation, there could be up to 3 m of Made Ground within the previous building footprint, whilst to the rear of the site the Made Ground thickness could be less than 1 m. Hence there is the possibility different foundation options can be adopted for this scheme.

5.1.2 Shallow Foundations

The original 3 to 4 storey building at the site was constructed on shallow foundations founded in the Claygate Member. From this important observation it would be sensible to infer that the natural ground underlying the site is capable of carrying the loading for the new development on shallow foundations.

In areas of the site surrounding the previous footprint of the original site building the Made Ground is less than 1 m thick. If the foundations for the proposed building are constructed outside the zone of the Made Ground, shallow foundations can be used. The Atterberg Limit tests indicate the Claygate Member have medium volume change potential, hence this must be considered in the design of shallow foundations at this site, especially to the rear of the site where trees are present. Taking the above into account, it is important to note that the moisture content values measured in the top 3 to 4 m of BH2 (which is closest to the trees) are typically lower than those measured in BH1A, which is further away from the trees. This may be sign of desiccation in the top 3 to 4 m, or could just be because the Claygate Member is more granular in borehole BH2 (a clayey medium SAND) and hence holds less water in its soil matrix.

If shallow foundations are to be used, an assumed undrained shear strength (C_u) of 50 kPa may be adopted for the Claygate Formation based on the SPT and triaxial test data. This value is assumed to be conservative because the 3 to 4 storey building was previously located at this site, hence the 'actual' undrained shear strength for the building to have performed satisfactorily over the 150 years plus of it is service would exceed this value.

The expression used to determine the allowable bearing capacity of foundations in clay is:

$q_{all} = N_c d_c S_c Cu / FOS + q$

 $N_{\rm c}$ = Bearing capacity factor corrected for depth/breadth ratio and shape factor (see fig.6)

Cu = Undrained shear strength

FOS = Factor of safety = 3

q = Overburden above foundation formation level

Fig.6 Bearing Capacity Factor after Skempton

Figure 8.5 Skempton's values of N_c for $\phi_u = 0$. (Reproduced from A.W. Skempton (1951) Proceedings of the Building Research Congress, Division I, p. 181, by permission of the Building Research Establishment, © Grown copyright.)

Table 7: Summar	y of Assessmer	t of Allowable	Bearing	Capacity
-----------------	----------------	----------------	---------	----------

Depth below ground level (base of footing)	1.0 m bgl	1.5 m bgl	2 m bgl
Est Undrained Shear Strength Cu (kN/m ²)	50	50	50
Allowable Bearing Capacity (kN/m ²) (assuming foundations are a 0.6 m strip and FOS = 3)	125	150	160
Allowable Bearing Capacity (kN/m ²) (assuming foundations are a pad 1.5 x 1.5 m and FOS = 3)	150	160	175
Allowable Bearing Capacity (kN/m ²) (assuming foundations are a pad 2 x 2 m and FOS = 3)	125	150	165

Based on the calculated allowable bearing capacity values in Table 7, 1.5 m and 2.0 m pads can carry a column loads approximately 500 kN and 600 kN respectively. The above bearing capacities have been calculated using the traditional approach with a factor of safety (FOS) = 3.

31 Daleham Gardens, London, NW3 5BU	www.geofirmaconsultants.co.uk
Project/Report/Revision No: 2023-002-SIM-DAL	20/04/2023

Using the Eurocode approach, and assuming the foundations are at a depth of 1.5 m bgl, **the required pad** size to carry the maximum column internal load design action of $1 \times 465 + 1.3 \times 210 = 738 \text{ kN}$, and external column design action of $1 \times 465 + 1.3 \times 115 = 615 \text{ kN}$ is determined assessing the design resistance of ground, R_d.

The design resistance R_d at formation level 1.5 m bgl for an assumed 1.5 m by 1.5 m pad

$$\frac{R_d}{Area} = N_c \frac{Cu}{1.4} + p_o$$

Assuming the N_c for a pad = 7.7 (see Figure 6) and the undrained shear strength is 50 KPa.

$$R_{d} = 1.5 \times 1.5 \times \left(7.7 \times \frac{50}{1.4} + 1.5 \times 18\right)$$
$$R_{d} = 1.5 \times 1.5 \times (302 \ kN/m^{2})$$
$$R_{d} = 680 \ kN > 615 \ kN$$

A 1.5 m x 1.5 m pad founded 1.5 m bgl in the Claygate Formation can carry the external column load.

The design resistance $R_{\rm d}\,at$ formation level 1.5 m bgl for an assumed 1.75 m by 1.75 m pad

$$\frac{R_d}{Area} = N_c \frac{Cu}{1.4} + p_o$$

Assuming the N_c for a pad = 7.4 (see Figure 6) and the undrained shear strength is 50 KPa.

$$R_{d} = 1.75 \times 1.75 \times \left(7.4 \times \frac{50}{1.4} + 1.5 \times 18\right)$$
$$R_{d} = 1.75 \times 1.75 \times (290 \ kN/m^{2})$$
$$R_{d} = 888 \ kN > 738 \ kN$$

A 1.75 m x 1.75 m pad founded 1.5 m bgl in the Claygate Member can carry the internal column load. A quick settlement check has been performed to satisfy the Eurocode requirements and it is anticipated total settlements of up to 25 mm could be achieved for the heavier column loads, although it is recommended the pad sizes are increased to 2 m x 2 m for the larger loads to control the settlement – or a raft used. If total settlements of this level are deemed excessive, piled foundations should be used.

To assess whether shallow foundations may be used on the site, additional trial pitting is necessary to confirm the thickness of the Made Ground in more detail across the site.

5.1.3 Piled Foundations

To mitigate the risk associated with the use of shallow foundations at this site, it may be considered appropriate to use piled foundations. However, if piles are to be used the interaction between the piles and the tunnel beneath 31a Daleham Gardens have to be assessed. In order to undertake the assessment competently the tunnel properties need to be known, with the most important being the location of the tunnel, that is its depth and

alignment. The predicted tunnel alignment and depth is shown in sketch 1803-XX-SK-04b (see appendix F).

The information provided by the sketch indicates the top section of all the pile should be sleeved within the arching zone (assumed to be 45 degrees from the tunnel invert in the sketch) above the Network rail tunnel that underlies 31A Daleham Gardens. The pile Eurocode 7 design resistances are tabulated in Table 9 with the reduced shaft friction attributed to the piles. This approach is deemed to be conservative, therefore it is suggested numerical analysis is undertaken to assess more accurately the interaction of the tunnel and the proposed pile. If this process is undertaken, it is possible that pile capacities more akin with the values in Table 8 maybe adopted with the full skin friction of the pile included in the shaft resistance calculation.

The piling contractor must undertake their own design to satisfy themselves on the validity of design resistances provided in Tables 8 and 9.

Obstructions are potentially present in the Made Ground overlying the site, hence it advisable these are removed in advance of the pile installation.

Table	8:	Summary	of	Design	Action	DA1-2	with	pile	design	length	(measured	below
founda	atio	n level)										

Reduced level (m)	Pile length (m)	Design Action DA1-2 (kN) Ø = 0.3 Ø = 0.35 Ø = 0.45 Ø = 0.6						
76	2	0	0	0	0			
74	4	22	28	41	66			
72	6	43	52	73	109			
70	8	88	107	148	218			
68	10	132	158	215	310			
66	12	180	215	289	411			
64	14	232	277	370	522			
62	16	290	344	458	642			
60	18	352	417	553	771			
58	20	419	496	656	911			
56	22	491	580	765	1059			
54	24	562	664	873	1202			

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

Reduced level (m)	Pile length (m)		۱)		
		Ø = 0.3	Ø = 0.35	Ø = 0.45	Ø = 0.6
76	2	0	0	0	0
74	4	0	0	0	0
72	6	0	0	0	0
70	8	0	0	0	0
68	10	0	0	0	0
66	12	48	60	90	145
64	14	98	120	168	251
62	16	153	184	252	365
60	18	212	254	342	488
58	20	275	328	439	619
56	22	343	407	542	759
54	24	415	491	651	907
52	26	491	580	767	1063
50	28	571	674	888	1228

 Table 9: Summary of Design Action DA1-2 with pile design length (measured below foundation level) following Network Rail's guidance notes for works in the vicinity of tunnels

5.2 RETAINING WALLS FOR UNDERGROUND STRUCTURES

Based on the existing drawings the maximum retained height for the proposed basement will be up to 5m. The retained height shall reduce from west to east across the site.

A sheet pile wall can be used to aid in the formation of the excavation for the dig, and with the benefit of having a smaller footprint dimension width/profile of typically 300 mm to 500 mm would result in more useable space of the development due to the constraints on the site width. However, the likelihood of vibrations being induced during the pile driving must be taken into account. If the adjacent buildings and the party walls surrounding the site are also deemed sensitive, the driving impact of the sheet piling could detrimentally impact these structures. Also, due to the residential nature of the area, the noise which occurs as a result of the driving process may cause disturbance.

A contiguous bored pile retaining wall could also be the used for constructing the basement. Based on the current proposed maximum retaining height, a maximum pile diameter of 450 mm or 600 mm would be deemed acceptable. A contiguous bored pile wall does have gaps between the individual piles, and the ground investigation does indicate there may be perched water trapped in the Claygate Formation, however, it is anticipated the groundwater is below the dig level, so even if encountered can be controlled by using pumping. The site is in a

residential area, hence noise caused by drilling using boring rig would be less in comparison to driving sheet piling into the ground using high impact methods. Also being located next to a party wall, the use of bored piles will cause less vibrations to the neighbouring properties. Since bored pile may also be used to carry the internal column loads, there will be cost and programme savings in using bored pile for both the retaining walls and foundation piles.

Obstructions are potentially present in the Made Ground overlying the site, hence it advisable these are removed in advance of forming the retaining wall.

Also of particular interest there will be sections of the retaining wall installed immediately adjacent to the site boundary party walls. The base of the party wall walls are likely to protrude into 31 Daleham Gardens and hence potential obstruct the line of the piled walls. It is therefore recommended the base of these party walls are exposed in areas to confirm the wall foundation type and projection on to the development footprint.

Suitable geotechnical parameters to use in the design of the basement walls can be obtained from Table 6.

Due to the proximity of the retaining walls to sensitive structures, temporary propping will be necessary to limit lateral movement of the adjacent structures towards the excavation. Coordination will be required between the retaining wall designer and the temporary works designer to ensure movements are with tolerable levels.

5.3 EXCAVATIONS

Open cut excavation techniques may be used to form certain areas of the basement excavation where there is sufficient space to form temporary safe slopes. Based on the description of the material and the results of the correlations used to determine an angle of friction for the Made Ground and Claygate formation safe temporary slope would be 1V:2H, however, these may have to be slackened if the site is subject to sustained rainfall.

As noted on the borehole log for BH1A, a groundwater strike was encountered at 1.8 m bgl in the Made Ground (approx. 76.5 m OD), and on the last groundwater monitoring visit the groundwater was encountered in BH1A at approximately 75 m OD. The difference in the water strike level and the monitored groundwater level would indicate that both water bodies are not necessary in continuity, with the water in the Made Ground almost certainly being perched. Therefore, any localised ingress from the Made Ground should be controllable by sump pumping, if required. Note currently that the monitored groundwater is likely to fluctuate seasonally and possibly in response to rainfall. It is therefore recommended that groundwater monitoring is performed up until the construction phase to enable a decision to be made on whether dewatering is necessary, and if so, the proposed technique and methodology.

Based on our experience during the trial pits, the excavation of the materials encountered during the ground investigation should be easily achieved using conventional digging techniques, however, obstruction maybe encountered since the site did previously have a

building located on it. Records of the site demolition and clear up with photographs are in Appendix J.

Care should be taken to limit the exposure of any excavation surface before the actual placement of the concrete as groundwater or rainwater could result in deterioration of the formation surface. Foundation excavations should be inspected by qualified personnel and any soft or loose materials that are encountered should be removed and replaced with a blinding layer as quickly as possible.

5.4 **PAVEMENT DESIGN**

In situ CBR results indicated test values ranging between 0.81% and 5.4%. The values seem low, however, it should be noted the CBR values measured appear to be highly dependent on the moisture content of the soil.

Based on the data obtained a CBR value of 2% is recommended for the site, however, it would be prudent that the top 500 mm of soil is removed and the exposed surface is proof-rolled before placement of any road or pavement build up is commenced.

5.5 CONCRETE SULPHATE RESISTANCE

4No soil samples were tested for sulphates with the water-soluble sulphate values varying between 70 mg/l and 620 mg/l. Total sulphur tests were also performed, and when converted the total potential sulphate varied between 0.72 % and 1.89 %.

Hence in accordance with BRE Guidance Special Digest 1:2005, and assuming mobile groundwater and brownfield location, a Design Sulphate Class of DS-4 and an Aggressive Chemical Environment for Concrete (ACEC) classification of AC-3s should be used for the design of buried concrete structures at the site.

5.6 CONTAMINATION ASSESSMENT

5.6.1 Human Health Risk Assessment

The site previously housed the original 31 Daleham Gardens, which was damaged by fire and then was demolished. As part of the demolition process it would appear both demolition material and soil were taken of site as part of this process. The quantities of construction waste taken off site and material imported on to site are documented in the 'Demolition Recycling Report' and the logs sheets which were produced by M & M Demolition (see appendix J).

A Tier 1 (generic) quantitative risk assessment has been undertaken by screening measured contaminant concentrations derived from the ground investigation works against reference values for chronic (long term) risk to human health known as Generic Assessment Criteria (GAC).

Project/Report/Revision No: 2023-002-SIM-DAL

In line with the conceptual site model, GAC for the residential without plant uptake exposure scenario have been utilised. The GAC are predominantly based on the LQM / CIEH S4ULs and DEFRA C4SL.

The below contaminants have subsequently been targeted for chemical analysis.

Table 8: Ti	er 1 Generi	ic Risk Assess	ment
-------------	-------------	----------------	------

	Measured Con	centration*	GAC	Number of results
Determinant	Minimum Maximum		(Conservative assumption of 1% Soil Organic Matter)	above GAC (No. of samples tested)
Arsenic	9.6	15	35	0 (2)
Cadmium	<0.2	<0.2	85	0 (2)
Chromium (hexavalent)	<1.2	<1.2	4.3	0 (2)
Chromium III	12	36	630	0 (2)
Copper	12	20	6200	0 (2)
Lead	32	48	313	0 (2)
Mercury	<0.3	<0.3	1.5	0 (2)
Nickel	9.9	11	130	0 (2)
Selenium	<1	<1	430	0 (2)
Zinc	39	82	40,000	0 (2)
Total Phenols	<1	<1	10	0 (2)
Acenaphthene	<0.05	<0.05	210	0 (2)
Acenaphthylene	<0.05	<0.05	170	0 (2)

31 Daleham Gardens, London, NW3 5BU

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

Anthracene	<0.05	<0.05	2,300	0 (2)				
Benzo(a)anthracene	<0.05	0.44	11	0 (2)				
Benzo(a)pyrene	<0.05	0.53	5.3	0 (2)				
Benzo(b)fluoranthene	<0.05	0.99	3.9	0 (2)				
Benzo(ghi)perylene	<0.05	0.37	44	0 (2)				
Benzo(k)fluoranthene	<0.05	0.99	8.5	0 (2)				
Chrysene	<0.05	0.44	6	0 (2)				
Dibenz(a,h)anthracen e	<0.05	<0.05	0.31	0(2)				
Fluoranthene	<0.05	0.59	260	0 (2)				
Fluorene	<0.05	<0.05	160	0 (2)				
Indeno(1,2,3- cd)pyrene	<0.05	0.31	3.2	0 (2)				
Naphthalene	<0.05	<0.05	1.5	0 (2)				
Phenanthrene	<0.05	0.18	92	0 (2)				
Pyrene	<0.05	0.59	560	0 (2)				
All fractions are either below laboratory limit of detection or their respective GAC. Expect for TPH-CWG – Aliphatic with a 12 mg/kg which is low and near to the detection limit.								
Asbestos	None detected i	n the two samples	5.					
*Concentration expressed in mg/kg except where listed								
^x Based on Insert Waste	Landfill Acceptan	ce Criteria						
Notes:								

NULES.

* Source of GAC: 1 = LQM / CIEH (2014) S4UL3785 | 2 = Defra (2014) C4SL

31 Daleham Gardens, London, NW3 5BUwww.geofirmaconsultants.co.ukProject/Report/Revision No: 2023-002-SIM-DAL20/04/2023

L

** For asbestos, the number of detections is shown and does not relate to any GAC

Direct analysis of all the chemical assessment data indicates the contaminants are all below their relevant GAC for all contaminants within both the Made Ground and natural strata.

Although no elevated contaminants were encountered it would be prudent that mitigation measures stated in Table 11 are adhered to. This is especially relevant due to the history of the site, even though the information in appendix J does contain information indicating the site clear up was performed to the satisfaction of Camden Council.

A copy of the laboratory chemical assessment data is presented in Appendix C of this Report.

5.6.2 Ground Gas Risk Assessment

1

2No gas monitoring visits were undertaken on the 6th February and 9th March 2023.

Summary of Maximum Gas Monitoring Results									
Date	Atm Pressure (mB)	Hole Ref.	Flow (l/h)	CH₄ (%)	CO2 (%)	CO (%)	02 (%)	H₂S (ppm)	
06/02/2023	1032	BH1A	0	0	0.1	0	14.2	0	
		BH2	0	0	3.3	0	16.3	0	
09/03/2023	982	BH1A	0	0	0.2	0	18.9	0	
		BH2	0	0	5.4	0	14.5	0	

Table 9: Summary of Maximum Ground Gas Readings

Gas Screening Values (GSV) have been calculated based on the above data. CIRIA (2007b) and NHBC (2007) provide methods for assessment of CO2 and CH4 based upon gas screening values (GSV) utilising flow rates and concentrations measured in appropriate standpipes. To enable calculation of the GSV, the flowrates have been adopted as 0.1 l/hr.

The GSVs within CIRIA (2007b) are based upon all buildings other than standard residential houses. The NHBC (2007) GSV are based upon standard residential houses with precast concrete floors (block and beam). As such, based upon the currently proposed end use of the site the NHBC guidance should be adopted.

Summary Gas Screening Values (GSV)								
Hole Ref.	Assumed Flow (I/h)	CH₄ (%)	CO₂ (%)	CH₄ GSV (l/hr)	NHBC	CO₂ GSV (l/hr)	NHBC	
BH2 (max)	0.1	0	5.4	0	Green/ CS1	0.0054	Green/ CS1	

Since methane was not detected, and with the gas screening value for carbon dioxide being significantly below the thresholds for the NHBC, the site classification is Green and CS1. The absence of other gases during the monitoring events also supports the site being very low risk.

Based on the above, ground gas protection measures are not considered to be required for this site.

5.6.3 Waste Acceptance Criteria (WAC)

WAC testing was carried out on a single sample retrieved from TP3 at a depth of 0.1 m bgl within the Topsoil. A Loss on Ignition (LOI) of 10.1% and a Total Organic Carbon (TOC) of 5% were measured, which exceed the Hazardous Waste for LOI, and stable non-reactive hazard waste in a non-hazardous landfill criteria for TOC of 10% and 3% respectively.

The single sample tested may not representative of the considerable amount of material likely to be won during the excavation works, especially since only one sample was tested. Therefore, further testing must be performed by the earthworks contractor during construction prior to removal of any spoil off site to classify the site soils to be transported to a suitably licenced landfill facility to enable a more rigorous assessment to be undertaken.

5.6.4 Review of Qualitative Risk Assessment Following Investigation

Risk classification is a function of the severity of a potential impact or health effect, and the perceived likelihood of such harm occurring. Qualitative assessment of the risks posed by the potentially significant pollutant linkages identified in Section 5.6.1 is summarised in Table 11below and is supplemented by the quantitative data obtained as part of the ground investigation.

Based on the findings of this Phase 2 report for the site the risks to human health are considered to be **acceptably low**, providing appropriate mitigation measures are adopted at

Project/Report/Revision No: 2023-002-SIM-DAL

the site. It is particularly important that the mitigation measures are employed during the earthworks because of the site history.

The assessment within the report has been undertaken to determine the potential risks posed to identified receptors based on the proposed development at the time of writing. Should revisions in the development plans result in a change in the assessment parameters included in this report, a reassessment of the conceptual model and risk should be carried out

31 Daleham Gardens, London, NW3 5BU

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

31 Daleham Gardens, London, NW3 5BU

www.geofirmaconsultants.co.uk

Project/Report/Revision No: 2023-002-SIM-DAL

Source	Pathway	Receptor	Consequence	Likelihood	Classification*	Rationale/Mitigation
Organic and inorganic contaminants potentially present in Made Ground	Dermal contact, ingestion, particulate inhalation	Nearby site occupants & users (from on-site	Low to Medium	Unlikely	Low to moderate	No elevated results and no asbestos encountered during the ground investigation. Reports and logs produced M & M demolition infer the cleanup of the site.
		sources) Future site occupants & users				Appropriate PPE to be worn by site workers during basement excavation and construction works and COSHH assessment to be carried out. Risk is considered low if PPE is worn and general hygiene rules are followed on site
						On completion of construction works the majority of the site will be covered by building/hardstanding, hence risk to future site users will be low.
	Diffusion through plastic water supply pipes	Water supply pipes	Low	Unlikely	Very Low	Relates to local deposits of Made Ground / fill associated with construction of foundations and hardstanding. No organics observed during the ground investigation or elevated TPH results so risk to water pipes is negligible.
	Leaching into groundwater; subsurface migration.	Secondary A Aquifer	Low to Medium	Unlikely	Low to moderate	Low permeability London Clay Formation underlying the Claygate Formation is classed as unproductive strata and will restrict vertical migration. The site is not designated to be within Groundwater Source Protection Zones within 2000m radius of site. Leachate testing recommended to confirm this assessment.

Table 11: Phase II Conceptual Site Model

31 Daleham Gardens, London, NW3 5BU

_	Source	Pathway	Receptor	Consequence	Likelihood	Classification*	Rationale/Mitigation	
	Potential asbestos containing	Release of asbestos fibres; subsequent	Site occupants & users	Low	Unlikely	Very Low to negligible	No asbestos encountered during the ground investigation. Asbestos already moved as part of site clear up by M & M Demolition	
	structure	Innalation	Construction workers				(See appendix J). Further records available from the client, NW3 CLT).	

31 Daleham Gardens, London, NW3 5BU Project/Report/Revision No: 2023-002-SIM-DAL geofirmaconsultants.co.uk 20/04/2023

NW3 CLT

Page 36 of 40

6. **REFERENCES**

- [1] British Geology Society, BGS Geology of Britain Viewer, BGS: www.bgs.ac.uk, 2018.
- [2] Clayton C, CIRIA Report 143. The Standard Penetration Test (SPT): Method and Use, London: CIRIA, 1995.
- [3] Padfield C.J, and Sharrock M.J CIRIA Special Publication 27. Settlement of structures on clay soils, 1983.
- [4] Building Research Establishment, BRE Special Digest 1- Concrete in Aggressive Ground., London: BRE, 2005.
- [5] British Standard Institution, BS 5930:2015, Code of Practice for Site Investigation., London: BSI, 2015.
- [6] British Standard Institution, BS EN 1997_2 Geotechnical Design Part 2: Ground Investigation, BSI, 2005.
- [7] British Standard Institution, BS EN ISO 14688-2 2004 Soil test principal of classification, BSI, 2004.
- [8] British Standard Institution, BS EN ISO 22476 Part 3 2005 + A1 2011 Geotechnical Field testing, Standard Penetration Test (SPT), BSI, 2011.
- [9] British Standards Institution, BS10175:2011+A1:2013, Investigation of Potentially Contaminated Sites Code of Practice and its Investigation, London: BSI, 2013.
- [10] British Standards Institution, BS8004, Code of practice for foundation design, London: BSI, 2015.
- [11] CIRIA, C552, Contaminated Land Risk Assessment; a Guide to Good Practice., London: CIRIA, 2001.
- [12] British Standards Institution, Methods for tests for soils for civil engineering purposes, BS1377, BSI., London., 1990.
- [13] NHBC, Standards Part 4, Foundations, NHBC, 2020.
- [14] British Standards Institution, BS8002, Code of practice for earth retaining structures, London: BSI, 2015.

APPENDIX A -

EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Logs

Soil and Rock Legend

Installation/ Backfill Legend

Mechanical and Discontinuity Log

AZCL: Assumed Zone of Core Loss

CRF: Core Recovered From The Following Run

NI: Non-Intact

NM: Not Measured

NR: No Recovery

TCR: Total Core Recovery as percentage of Core Run

SCR: Solid Core Recovery as percentage of Core Run. Solid Core = At least 1 full core diameter

RQD: Rock Quality Designation as percentage of Core Run. Lengths of Solid Core greater than or equal to 100mm

IF: Fracture Spacing in mm. Minimumm, maximumm and typical spacings given

FI: Fracture Index- No.of fractures per m. Minimumm, maximum and typical given

Notes:

1. Unless indicated, the exploratory hole is vertical and all depths are measured along its axis from ground level.

2. Descriptions: BSEN ISO 14688-9 2002&2003, BS5930 2015. Weathering: EN ISO 14689-1.

3. Chalk is logged in general accordance with Lord et al (2002) CIRIA C574.

- 4. Description is based on qualitative field assessment except where noted.
- 5. Granular soils density = N Value. Bedding, banding, discontinuity spacing: measured. Rock strength: geological hammer.
- 6. Consistency of cohesive materials is based on qualitative field assessment.
- 7. Core loss assumed to be at top of core run unless strong indication as to where loss has occurred.
- 8. Drilling and handling induced discontinuities where discernible omitted from SCR,RQD and IF/ FI.
- 9. In-situ test values are uncorrected.
- 10. Pocket Penetrometer used is ELE-29-3729. Readings=Kg/cm2 range:0.5-4.5Kg/cm2. Or similar.
- 11. For deatils of other In-situ test equipment used see log.
- 12. Water levels are recorded during drilling or excavating and may not represent standing levels.
- 13. Where flush is used groundwater observations not possible other than significant strikes.
- 14. Unless stated otherwise core photography undertaken rig side. Core washed prior to photography from rock-head.

Sampling and In-Situ Testing

B: Bulk Sample
BLK: Block Sample
C: Chemical Sample
CBR: CBR Mould Sample
CS: Core Sub-Sample
D: Disturbed Sample
P: Piston Sample
S: SPT Split Spoon Sample
U: Undisturbed Sample
UT: Undisturbed Thinwall Sample
W: Water Sample
X: Dynamic Sample

BHVP: Borehole Vane Peak Strength BHVR: Borehole Vane Residual Strength HVP: Hand Vane Peak Strength HVR: Hand Vane Residual Strength Kch: Constant Head Permeability Test Kfh: Falling Head Permeability Test Kpf: Packer Free-Flow Permeability Test Kpi: Packer Injection Permeability Test Krh: Rising Head Permeability Test PLTa: Point Load Test- Axial PLTd: Point Load Test- Diametral PLTil: Point Load Test- Irregular Lump **PP: Pocket Penetrometer PM: Pressuremeter Test** SPT: Standard Penetration Test (Split Spoon Sampler) SPTC: Standard Penetration Test (Solid Cone)

BH1

Page 1 of 2

Start Date: 01/02/2023	Eastings:	Drilled By: Geofirma Ltd	
Finish Date: 01/02/2023	Northings:	Drill Rig/ Team: Dando 2000	Logged By: E Smith
Termination Depth (mBGL): 0.55	Elevation (mAD):	Driller: CB/ BW	Checked By:J Wills

Exploratory Hole Progress, Details with Depth and General Remarks

Hole	Hole	Casing	Casing	Depth to	Comments
Depth	Diameter	Depth	Diameter	Water	
(mBGL)	(mm)	(mBGL)	(mm)	(mBGL)	
0.00	PIT	NA	NA	NR	Hand-dug pit
0.55	PIT	NA	NA	NR	End of hole
	-	8	-		

Water Strikes

Depth of Strike (mBGL)	Depth of Casing (mBGL)	Date and Time	Post Strike Depth (mBGL)	Minutes After Strike	Sealed at (mBGL)	Remarks
						No groundwater encountered

Termination: Refusal from demolition debris. Location moved to BH1A.

Groundwater:	None encountered
Sampling:	None encountered
Backfill:	Hole backfilled with arisings
Weather:	Cold, sunny

Notes:

1. SPT Hammer SDA3

2. 1 hour chiselling recorded by driller

31 Daleham Gardens, London, NW3 5BU

BH1

Page 2 of 2

Start Date: 01/02/2023 Eastings: Drilled By: Geofirma Ltd Finish Date: 01/02/2023 Northings: Drill Rig/ Team: Dando 2000 Logged By: E Smith Termination Depth (mBGL): 0.55 Elevation (mAD): Driller: CB/ BW Checked By:J Wills Field Records Depth Description Depth Sampling Testing Backfill/ Legend Installation From/ To and Thickness From/ To (mBGL) From/ To (mBGL) Type/ Result Туре No. (mBGL) (mBGL) (m) MADE GROUND. Black very organic slightly clayey slightly Thickness: 0.30 0 0.00-0.30 gravelly medium sand with abundant rootlets 0.30-0.55 Thickness: 0.25

Hand excavated pit

Refusal from demolition debris. Location moved to BH1A.

BH1A

Page 1 of 4

StartDate:02/02/2023	Eastings:	Drilled By: Geofirma Ltd	
Finish Date: 03/02/2023	Northings:	Drill Rig/ Team: Dando 2000	Logged By: E Smith
Termination Depth (mBGL): 25.45	Elevation:	Driller: CB/ BW	Checked By:J Wills

Exploratory Hole Progress, Details with Depth and General Remarks

Hole Depth (mBGL)	Hole Diameter (mm)	Casing Depth (mBGL)	Casing Diameter (mm)	Depth to Water (mBGL)	Comments
0.00	PIT	NA	NA	Dry	Hand-dug pit
1.50	150	NA	NA	Dry	SPT
2.50	150	NA	150	Dry	SPT
3.50	150	4.5	150	Dry	SPT
4.00	150	4.5	150	Dry	Undisturbed sampling
5.00	150	4.5	150	Dry	SPT
6.00	150	4.5	150	Dry	Undisturbed sampling
7.00	150	4.5	150	Dry	SPT
8.00	150	4.5	150	Dry	Undisturbed sampling
9.00	150	4.5	150	Dry	SPT
10.00	150	4.5	150	Dry	Undisturbed sampling
11.00	150	4.5	150	Dry	SPT
12.00	150	4.5	150	Dry	Undisturbed sampling
13.00	150	4.5	150	Dry	SPT
14.00	150	4.5	150	Dry	Undisturbed sampling
15.00	150	4.5	150	Dry	SPT
16.50	150	4.5	150	Dry	Undisturbed sampling
18.00	150	4.5	150	Dry	SPT
19.50	150	4.5	150	Dry	Undisturbed sampling
21.00	150	4.5	150	Dry	SPT

Water Strikes

Depth of Strike (mBGL)	Depth of Casing (mBGL)	Date and Time	Post Strike Depth (mBGL)	Minutes After Strike	Sealed at (mBGL)	Remarks
1.80	NR	NR	NR	NR	NR	Perched water

Termination: 25.45m bgl. Geofirma specification met.

Groundwater:

Water strike at 1.8 m bgl when drilling, driller recorded as fast water flow. No water was was recorded next day 03/02/2023.

Sampling:

2No. B, 20No. D, 4No. ES, 12No. SPTD, 10No. U.

Backfill:

Slotted standpipe installed on completion. Refer to installation column. log. Cold, sunny

Weather:

Notes:

31 Daleham Gardens, London, NW3 5BU

BH1A

Page 2 of 4

Start Date: 02/02/2023 Finish Date: 03/02/2023

Eastings: Northings:

Drilled By: Geofirma Ltd Drill Rig/ Team: Dando 2000

Logged By: E Smith

Termination Depth (mBGL): 25.45

Elevation (mAD):

Driller: CB/ BW

Checked By:J Wills

end	Depth Description		Depth	Samı	oling		Testing		Field Records		fill/ tion
a B	(mBGL)		(mBGL) (m)	From/ To (mBGL)	Туре	No.	From/ To (mBGL)	Type/ Result			Bach
	0.00-0.30	MADE GROUND Black slightly clayey slightly gravelly medium	Thickness: 0.30 0						ř.	0	ĒĒ
	0.30-0.55	to coarse flint and brick. (TOPSOIL)	Thickness: 0.25	0.30	ES	1]	
	0.55-1.00	MADE GROUND.Grey clayey sandy gravel (demo crush)	Thickness: 0.45	0.50	ES	2				-	
<u> ~~~~</u>	1.00-3.60	MADE GROUND Grey and brown clayey sandy gravel of angular to subangular fine to coarse concrete brick and tile.	Thickness: 2.60	1.00	D	3				1-	
		MADE GROUND Soft light orangeish brown slightly gravelly slightly sandy CLAY. Remolded Claygate with occasional inclUsion of demolition debris (brick and concrete). Gravel is angular to subangular fine to coarse brick and concrete.		1.50-1.95 1.50	SPT ES	4 5	1.50-1.95	SPT N=10	1,3/3,1,3,3		
$\overline{\nabla}$			2—	2.00	D	6				2-	
			1 E	2.50-2.95	SPT D	7	2.50-2.95	SPT N=4	1,1/1,1,1,1		
			3-	3.00 3.00	D ES	8 9				3-	
	3.60-6.50	CLAYGATE MEMBER Soft to firm greyish brown sandy CLAY. Sand is fine.	Thickness: 2.90	3.50-3.95	SPT D	10	3.50-3.95	SPT N=7	1,1/2,2,1,2	-	
			4	4.00 4.00-4.45 4.00-4.50	D U B	11 12 13	4.00-4.45	U No Recov	12 blows	4-	ninin kin
			5	5.00-5.45	SPT D	14	5.00-5.45	SPT N=10	2,1/1,4,2,3	5-	
			- - - 	5.50	D	15				6	
			-	6.00-6.45	U	16	6.00-6.45	U 90% Recov	12 blows]	
	6.50-8.50	LONDON CLAY. Firm grey sandy CLAY. Micaeous inclusion present in sand. Sand is fine and sub angular.	Thickness: 2.00	6.50	D	17				-	
			7	7.00-7.45	SPT D	18	7.00-7.45	SPT N=15	2,2/3,4,4,4	7-	נוינ
			3	7.50	D	19					
			8	8.00-8.45	U	20	8.00-8.45	U 50% Recov	24 blows	8-	
	8.50-11.50	LONDON CLAY. Firm grey sandy CLAY. Micaeous inclusion present in sand. Sand is fine and sub angular.	Thickness: 3.00	8.50	D	21					
			 	9.00-9.45	SPT D	22	9.00-9.45	SPT N=18	3,2/3,5,5,5	9-	חיח
			10	9.50	D	23				10	

Hand excavated pit to 1.20m then hole advanced using cable percussive tools. Standpipe installed to 10 m bgl with slotted zone between 6 m bgl and 10 m bgl. Water strike at 1.8 m bgl when drilling, driller recorded as fast water flow. No water was was recorded next day 03/02/2023.

31 Daleham Gardens, London, NW3 5BU

BH1A

Page 3 of 4

Start Date: 02/02/2023 Finish Date: 03/02/2023

Eastings:

Drilled By: Geofirma Ltd Drill Rig/ Team: Dando 2000

Termination Depth (mBGL): 25.45

Northings: Elevation (mAD):

Driller: CB/ BW

Logged By: E Smith Checked By:J Wills

	pu ağarı	Depth From/ To (mBGL)	Description	Depth and Thickness (mBGL) (m)	Samp From/ To	oling Type	No.	Testing From/ To	Type/	Field Record	ts	Backfil / stallation
2		(IIIBGE)			(mBGL)			(mBGL)	Result			2
			LONDON CLAY Firm grey sandy CLAY. Micaeous inclusion present in sand. Sand is fine with sub angular particles.		10.00-10.45	U	24	10.00-10.45	U 100% Recov	31 blows		
				11	10.50	D	25				11-	
		11 50 05 15			11.00-11.45	D	26	11.00-11.45	N=23	3,4/5,6,6,6	-	
		11.50-25.15	LONDON CLAY Stiff grey slightly sandy micaceous fissured CLAY. Fissures are randomly orientated widely spaced smooth, undulating and clean. Micaceous inclusion present on firssured surfaces.	1 hickness: 13.65	11.50		27	12 00 12 15		24 bloom	12-	
					12.00-12.45		28	12.00-12.45	100% Recov	34 blows		
				13-	12.50		30	12 00.12 45	SDT	3 1/2 5 1 6	13-	
					13.00-13.45	D	31	15.00-15.45	N=18	5,4/5,5,4,6	-	
				14 —	14.00-14.45		32	14 00-14 45		54 blows	-	
					14.50	D	33	100% Recov	54 010 003	-		
				15	15.00-15.45	SPT	34	15.00-15.45	SPT	3,4/5,6,5,8	15-	
					15.50	D D	35		N=24		-	
				16							16-	
					16.50-16.95	U.	36	16.50-16.95	U	64 blows	-	
				17	10.50-17.00		5,		Recov NR		17-	
				20 20							-	
				18 —	18.00-18.45	SPT D	38	18.00-18.45	SPT N=25	4,4/6,5,7,7	18-	
					18.50	D	39				-	
				19							19-	
				20	19.50-19.95	U	40	19.50-19.95	U 80% Recov	74 blows	20	

Hand excavated pit to 1.20m bgl then hole advanced using cable percussive tools. Standpipe installed to 10 m bgl with slotted zone between 6 m bgl and 10 m bgl. Water strike at 1.8 m bgl when drilling,driller recorded as fast water flow. No water was was recorded next day 03/02/2023.

31 Daleham Gardens, London, NW3 5BU

BH1A

Page 4 of 4

Start Date: 02/02/2023 Finish Date: 03/02/2023

Termination Depth (mBGL): 25.45

Eastings: Northings:

Elevation (mAD):

Drilled By: Geofirma Ltd Drill Rig/ Team: Dando 2000

Driller: CB/ BW

Logged By: E Smith Checked By:J Wills

lege rd	Depth From/ To (mBGL)	Description	Depth and Thickness (mBGL) (m)	Samp From/ To (mBGL)	oling Type	No.	Testing From/ To (mBGL)	Type/ Result	Field Records	Backfilly
		LONDON CLAY Stiff grey slightly sandy micaceous fissured CLAY. Fissures are randomly orientated widely spaced smooth, undulating and clean. Micaceous inclusion on present on firssured surfaces.	21	20.00 21.00-21.45 21.50	D SPT D	41 42 43	21.00-21.45	SPT N=31	4,5/7,8,8,8	
			22	22.50-22.95 23.00	U	44 45	22.50-22.95	U 100% Recov	22 - - 76 blows - 23 -	- - - - - -
			24	24.00-24.45 24.50	SPT D D	46 47	24.00-24.45	SPT N=34	4,5/7,8,9,10 	-
	25.15-25.45	LONDON CLAY. Claystone band	25 Thickness: 0.30	25.00-25.45	U	48	25.00-25.45	U 100%	70 blows	

Hand excavated pit to 1.20m then hole advanced using cable percussive tools. Standpipe installed to 10 m bgl with slotted zone between 6 m bgl and 10 m bgl. Water strike at 1.8 m bgl when drilling, driller recorded as fast water flow. No water was was recorded next day 03/02/2023.

31 Daleham Gardens, London, NW3 5BU

BH2

Page 1 of 3

Start Date: 01/02/2023	Eastings:	Drilled By: Geofirma Ltd	
Finish Date: 01/02/2023	Northings:	Drill Rig/ Team: Dando 2000	Logged By: E Smith
Termination Depth (mBGL): 15.50	Elevation (mAD):	Driller: CB/ BW	Checked By:J Wills

Exploratory Hole Progress, Details with Depth and General Remarks

Hole Depth (mBGL)	Hole Diameter (mm)	Casing Depth (mBGL)	Casing Diameter (mm)	Depth to Water (mBGL)	Comments
h		· · · · ·			
0.00	PIT	NA	NA	Dry	Hand-dug pit
1.00	150	NA	NA	Dry	SPT
1.50	150	NA	NA	Dry	Undisturbed sampling
2.50	150	NA	NA	Dry	SPT
3.50	150	2.50	150	Dry	Undisturbed sampling
4.50	150	2.50	150	Dry	SPT
5.00	150	2.50	150	Dry	Undisturbed sampling
6.00	150	2.50	150	Dry	SPT
7.00	150	2.50	150	Dry	Undisturbed sampling
8.00	150	2.50	150	Dry	SPT
9.00	150	2.50	150	Dry	Undisturbed sampling
10.00	150	2.50	150	Dry	SPT
11.00	150	2.50	150	Dry	Undisturbed sampling
12.00	150	2.50	150	Dry	SPT
13.00	150	2.50	150	Dry	Undisturbed sampling
14.00	150	2.50	150	Dry	SPT
15.00	150	2.50	150	Dry	Undisturbed sampling then end of hole @15.45m

Water Strikes

Depth of Strike (mBGL)	Depth of Casing (mBGL)	Date and Time	Post Strike Depth (mBGL)	Minutes After Strike	Sealed at (mBGL)	Remarks
						No groundwater encountered

Termination: 15.50m bgl. Geofirma specification met.

Groundwater: None encountered

Sampling: 0No. B, 16No. D, 3No. ES, 8No. SPTD, 8No. U.

Slotted standpipe installed on completion. Refer to installation column on log. Backfill:

Weather: Cold, sunny

Notes:

31 Daleham Gardens, London, NW3 5BU

BH2

Page 2 of 3

Start Date: 01/02/2023 Finish Date: 01/02/2023

Eastings:

Drilled By:**Geofirma Ltd** Drill Rig/ Team: **Dando 2000**

Termination Depth (mBGL): 15.50

Northings: Elevation (mAD):

Driller: CB/ BW

Logged By: E Smith Checked By:J Wills

gend	Depth From/To	Description	Depth and Thickness	Samı	Sampling		Testing		Field Records	kfill/ ation
ब	(mBGL)		(mBGL) (m)	From/ To (mBGL)	Туре	No.	From/ To (mBGL)	Type/ Result		Bac
	0.00-0.30	MADE GROUND Soft dark brown slightly gravelly sandy CLAY. Gravel is angular to rounded fine to coarse flint and brick. (TOPSOIL)	Thickness: 0.30 0	0.20	ES	1			, c	
	0.50 0.50	MADE GROUND Soft brown slightly sandy slightly gravelly CLAY. Gravel is angular to rounded fine to coarse flint and brick		0.50	ES	2				
	0.90-2.00	CLAYGATE MEMBER Soft light orangeish brown mottled grey slightly sandy CLAY. Sand is fine to medium.	Thickness: 1.10 1	1.00 1.00 1.00-1.45	D ES SPT	3 4 5	1.00-1.45	SPT N=12	1,1/3,2,3,4	
				1.50-1.95	U	6	1.50-1.95	U 100% Recov	30 blows	
	2.00-3.00	CLAYGATE MEMBER Brown orangeish mottled grey clayey medium SAND	Thickness: 1.00	2	D	7			2	
				2.50-2.95	SPT D	8	2.50-2.95	SPT N=17	2,3/4,4,4,5	
	3.00-5.50	WEATHERED/REWORKED LONDON CLAY. Soft to firm light orange brown mottled grey slightly gravelly sandy CLAY. Sand is fine.	Thickness: 2.50	3.00	D	9			3	
$\overline{\Delta \nabla}$				3.50-3.95	U	10	3.50-3.95	U 100% Recov	34 blows	
			4	4.00	D	11				
				4.50-4.95	SPT D	12	4.50-4.95	SPT N=10	2,1/2,3,2,3	
$\overline{\Delta}$			5 - -	5.00 5.00-5.45	D U	13 14	5.00-5.45	U 100% Becov	28 blows	
	5.50-8.00	LONDON CLAY Firm grey CLAY with sand inclusions. Sand is fire to medium.	Thickness: 2.50 –	5.50	D	15				
			6	6.00-6.45	SPT D	16	6.00-6.45	SPT N=11	1,2/3,2,3,3	
				6.50	D	17				
			7	7.00-7.45	U	18	7.00-7.45	U 100% Recov	35 blows	1
				7.50	D	19		necov		1
	8.00-12.00	LONDON CLAY Firm becoming stiff fissured grey sandy CLAY.	Thickness: 4.00	8.00-8.45	SPT D	20	8.00-8.45	SPT N=17	3,3/3,4,5,5	-
		אווע בו אופע די		8.50	D	21				
			9	9.00-9.45	U	22	9.00-9.45	U 60% Recov	20 blows	-1
				9.50	D	23				
•••-			10 -						10	

Hand excavated pit to 1.20m then hole advanced using cable percussive tools. Standpipe installed to 6 m bgl with slotted zone between 2 m bgl and 6 m bgl.

BH2

Page 3 of 3

Start Date: 01/02/2023 Finish Date: 01/02/2023

Eastings:

Drilled By: Geofirma Ltd Drill Rig/ Team: Dando 2000

Termination Depth (mBGL): 15.50

Elevation (mAD):

Northings:

Driller: CB/ BW

Logged By: E Smith Checked By:J Wills

1			2						42	12
puəsət	Depth From/ To (mBGL)	Description	Depth and Thickness (mBGL) (m)	Samp From/To (mBGL)	oling Type	No.	Testing From/ To (mBGL)	Type/ Result	Field Record	Backfill/ Installation
									ř	
		LONDON CLAY.Firm becoming stiff fissured grey sandy CLAY. Sand is fine		10.00-10.45	SPT D	24	10.00-10.45	SPT N=20	3,3/4,5,5,6	
			2	10.50	D	25				
			11-	11.00-11.45	U	26	11.00-11.45	U 100% Becov	42 blows	
·			1					Necov		-1888
				11.50		27				-1888
			=							
	12.00-15.50	LONDON CLAY. Stiff slightly sandy fissured CLAY. Fissures are randomly orientated widely spaced smooth, undulating and	Thickness: 3.50	12.00-12.45	SPT D	28	12.00-12.45	SPT N=26	2,5/4,6,8,8	"]
		clean. Micaeous inclusion present on fissured surfaces								
			2	12.50	D	29				
			2-							1888
\square			13—	12 00 12 45		20	12 00 12 /5	l	EE blows	13-
····			1	15.00-15.45		30	15.00-15.45	100%	JODIOWS	-1888
								Recov		
				13.50	D	31				1888
1			1							1888
$\overline{\cdots}$			14 —	14 00-14 45	SPT	32	14 00-14 45	SPT	4 3/5 7 9 19	14-
····			1	1.001.00	D	52	1 100 1 11 10	N=40	()0/0///0/20	-1888
										- 888
			-	14.50		33				
			=							1888
$\overline{\cdots}$			15	15.00-15.45	υ	34	15.00-15.45	υ	61 blows	15-1
			3					100% Recov		

Hand excavated pit to 1.20m then hole advanced using cable percussive tools. Standpipe installed to 6 m bgl with slotted zone between 4 m bgl and 6 m bgl.

Trial Pit Log

TP1

Page 1 of 1

Start Date:	01/02/2023	Eastings:	Elevation (mAD):	Termination Depth (mBGL):	3.50	Logg	ged By: ES	mith	
Finish Date:	01/02/2023	Northings:	Excavation Contractor:			Che	cked By: J	Wills	
Legend	Depth (mBGL)	Reduced Level/ Thickness (m AOD/m)	Strata Desci	iption	Der (m/	oth AD)	Sample	Tes	t

	(MBGL)	(m AUD/m)		(MAD)		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				r i		
	0.00-0.30	Thickness: 0.30 U	MADE GROUND Black very organic slightly clayey	0.00-0.30		0
		-	slightly gravelly medium SAND with abundant rootlets.		ES	1 1
		2	Gravels are angular with low sphericity			
		1.1	Clavels are angular with low sphericity.			1
********	0 20 0 55	Thickness: 0.25		0 30-0 55	ES	
	0.50-0.55	- THICKNESS. 0.25	MADE GROUND Grey clayey medium sandy gravel	0.50-0.55	23	_
			(demolition crush). Gravels and demolition crush are			
		9 <u>4</u>	angular with low sphericity.			-
<u>~~~~~~~~</u>	0.55-3.50	Thickness: 2.95		0.55-3.50		
····			CLAYGATE MEMBER Soft to firm brown slightly gravelly			7
····		) <del>(</del>	medium sandy CLAY. Gravel is rounded fine to coarse			-
••• ••		100	flint			12
$\overline{\ldots}$		-				1 7
		1.00				
···· ··· ···		2				8
		1			FS	1
<u> </u>		6 <u>44</u>				-
<u> </u>						
$\cdots$ $\cdots$ $\cdots$		1				
·······	ř.					_
···· ··· ···	9					
···· ··· ···						-
••• ••		8 <u>-2</u>				
• • • • • • •						
		10				-
$\overline{\ldots}$						
						1 1
	2	( <u></u>				-
	1	5				
		2—				2
·····						
···· ··· ···						1 1
$\cdots$ $\cdots$ $\cdots$		12				4
···· ···						
····	4	1.5				
· · · · · · · · ·		-				_
··· — ··						
$\cdots$						-
$\overline{\ldots}$		-				
···· ··· ···		14				
	2	27				-
		12				
···· ···	2	-				-
$\Box$ $\Box$ $\Box$ $\Box$ $\Box$		19 A				
····		3				3
$\cdots$ $\cdots$ $\cdots$		) <del>1</del>				-
···· <u> </u>		1.00				
						- 1
$\cdots$						_
<u> </u>		-				-

Method: Not Recorded
Support: None
Stability: Not Recorded
Man Entry:
Ease of Excavation: Not Recorded
Variability: All sides similar. Logged on excavated materials.

Notes:

Termination:	Reached specified depth. Trial pit depth specified by Geofirma Ltd.
Groundwater:	No groundwater



TP1		
Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	CONSULTANTS

TP1 - Spoil	
Project Title	31 Daleham Gardens, London NW3 5BU
Project No	2023/002/SIM/DAL



**Trial Pit Log** 

## TP3

Page 1 of 1

Test

Start Date:	01/02/2023	Eastings:	Elevation (mAD):	Termination Depth (mBGL):	3.50	Logged By:	E Sm	ith
Finish Date:	01/02/2023	Northings:	Excavation Contractor:			Checked By:	JW	ills
Legend	Depth (mBGL)	Reduced Level/ Thickness (m AOD/m)	Strata Descri	ption	Depth (mAD)	Sam	ple	_
	0.00-0.20	Thickness: 0.20 0	MADE GROUND Soft dark b	rown slightly gravelly sandy	0.00-0.20			

1	5	a				13 CT
KXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0.00.0.20	Thiskness 0.20		0.00.0.20		0
	0.00-0.20	Thickness: 0.20	MADE GROUND Soft dark brown slightly gravelly sandy	0.00-0.20		v
		-	alou. Croupl is angular to rounded fine to see rea flint			-
			ciay. Graver is angular to rounded line to coarse lint		ES ES	
			and brick (TOPSOIL)			_
	0.20-3.50	Thickness: 3.30		0.20-3.50		
··· — ··						_
			CLAYGATE MEMBER Soft to firm brown slightly gravelly			
		~~~	sandy CLAX. Gravel is rounded fine to coarse flint			
··· — ··			sandy CLAT. Graver is rounded line to coarse linit			-
····						-
··· — ··						
···· — ··						
						-
··· — ··		10				1.1
		65				
		5				<u>8</u>
		1				1
··· — ··						
		(<u></u>				-
· · · — · ·		<u>1</u>				2
	4					
		6.7				
····						-
	2					-
· · · · · · · · · · · ·						
	·	100				-
···· ··· ···						-
	2					4
)	63				10
····						2
		2				2
		12				
						-
		-				-
····						
						-
						-
	5					
		9 <u>4</u>				-
		2.5				
••• ••						
	-					-
	5					
· · · · · · ·		-				-
	2	-				-
· · · · · · ·						
		3—				3
··· — ··		12				-
		62				
··· — ··						
········		5				-
••• •••						
		(-
···· ··· ···						
	,			K:		

Method: Not Recorded Support: None Stability: Not Recorded Man Entry: Ease of Excavation: Not Recorded Variability: All sides similar. Logged on excavated materials.

Notes:

 Termination:
 Reached specified depth. Trial pit depth specified by Geofirma Ltd.

 Groundwater:
 No groundwater

Photographs: No. of Samples: 1no. ES Backfill: Arisings Plan Dimensions: Not Recorded Strike of Face A:

TP3 - Spoil		
Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	CONSCIENTS

APPENDIX B -

EXPLORATORY HOLE LOCATION PLAN

APPENDIX C -

GEOTECHNICAL LABORATORY TEST RESULTS

K			Ta	Tests carried out in accordance with BS1377:Part 7 : 1990 clause 8 or 9 as appropriate to test type															
Job No.		Project Name												Programme					
32976		31 Daleham Gardens											nples r	eceive	03/02/2023				
Project No			Client											edule i	receive	08/02/2023			
2023-002-	Δι	Geofirm	Geofirma											Started	15/02/2023				
2020-002-01M-DAL												At (all as				13/02/2023			
Hole No.		Sar	npie	_	e Soil Description	Test Type	Density		w I	Length	Diameter	σ3	At failu Axial		Jre M		Demedia		
	Ref	Тор	Base	Туре			bulk	dry					strain	σ1 - σξ	cu	o d	Remarks		
		m	m				Mg	/m3	%	mm	mm	kPa	%	kPa	kPa	е			
BH1A	-	10.00	10.45	U	High strength dark grey silty CLAY	UU	1.96	1.51	29	198	102	170	6.6	221	110	в			
BH1A	-	14.00	14.45	U	High strength dark grey silty CLAY with occasional pockets of sand and rare decomposed shell fragments	UU	2.03	1.58	28	198	102	250	5.1	226	113	в			
BH1A	-	19.50	19.94	U	High strength dark grey silty CLAY	υυ	1.97	1.54	28	198	102	300	4.5	266	133	в			
BH1A	-	22.50	22.95	U	Dark grey silty CLAY with pockets of black slightly sandy peat with occasional wood fragments becoming @ 22.65 m very high strength dark grey silty CLAY	UU	2.02	1.57	29	198	102	330	6.1	355	177	в	Test carried out on silty CLAY section from 22.65m onwards		
BH2	-	3.50	3.95	U	Medium strength brown mottled orangish brown sandy silty CLAY with occasional fmc sandstone fragments	UU	1.89	1.48	28	198	102	50	5.6	117	59	В			
BH2	-	5.00	5.45	U	Medium strength dark grey slightly mottled brown slightly fine sandy silty CLAY	UU	1.96	1.53	28	198	102	70	16	101	51	с			
BH2	-	11.00	11.45	U	High strength dark grey silty CLAY	UU	2.01	1.57	28	198	102	170	14	240	120	с			
BH2	-	15.00	15.45	U	High strength dark grey silty CLAY	UU	2.00	1.54	30	198	102	210	5.6	254	127	в			
legend	«	sinale star	ne test (si	ngle ar	nd multiple specimens)	ڊي ا	Cellin	ressure				Moder	of failure		 R - F	 Srittl≏			
	UUM suffix	- Multistag R - remou	ge test on a single specimen $\sigma 1 - \sigma 3$ Maximum corrected deviator stressulded or recompactedcuUndrained shear strength, $\frac{1}{2} (\sigma 1 - \sigma 3)$													P - Plastic C - Compound			
	Test Report by K4 SOILS LABORATORY Unit 8 Olds Close Olds Approach Watford Herts WD18 9RU Tel: 01923 711 288 Email: james@k4soils.com Email: james@k4soils.com										Checked and Approved Initials: J.P Date: 24/02/2023								
2519	Approv	ed Signa	atories	s: K.Phaure (Tech.Mgr) J.Phaur	e (Lab.l	Mgr)				,		MSF-5-R7b							

(K	SOILS)	Sun	nma	ry of Natural N	Noisture Co	ontent,	Liquid	Limit	and P	lastic	Limit F	Results
Job No.			Project	Name							Prog	ramme	
329	76		31 Dale	ham G	Sardens					Samples	received	03/0)2/2023
Project No.			Client							Project st	received arted	08/0)2/2023
2023-002-	SIM-E	DAL	Geofirm	na						Testing S	tarted	21/0)2/2023
Hole No.		Sa	mple		Soil Desc	ription	NMC	Passing	LL	PL	PI	Re	marks
	Ref	Top m	Base m	Туре	0011 2000	npuon	%	425µm %	%	%	%		inanto
BH1A	-	1.00	-	D	Greyish brown slightly sa CLAY with slag and potto (gravel is fmc and angula	28							
BH1A	-	1.50	-	D	Brownish grey silty CLA lenses of yellowish brow	28							
BH1A	-	2.00		D	Brown slightly gravelly s CLAY with occasional fir deposits (gravel is fm co fragments)	lightly sandy silty ne carbonaceous oncrete and pottery	37	88	50	17	33	Sample obtain te	washed to st fraction
BH1A	-	3.00	-	D	Greyish brown slightly sa with brick fragments and angular and tabular grav	andy silty CLAY I rare fmc sub- rel	38						
BH1A	-	3.50	-	D	Grey silty CLAY		31						
BH1A	-	5.00	-	D	Grey silty CLAY with rare gravel	e fine sub-angular	28	98	51	18	33		
BH1A	-	6.00	6.45	U	Dark grey slightly fine sa with rare decomposed sl	andy silty CLAY hell fragments	29	100	49	16	33		
BH1A	-	10.00	10.45	U	High strength dark grey	silty CLAY	29						
BH1A	-	14.00	14.45	U	High strength dark grey s occasional pockets of sa decomposed shell fragm	silty CLAY with and and rare nents	28						
BH1A	-	19.50	19.94	U	High strength dark grey s	silty CLAY	28						
BH1A	-	22.50	22.95	U	Dark grey silty CLAY with slightly sandy peat with of fragments becoming @ 2 strength dark grey silty C	h pockets of black occasional wood 22.65 m very high CLAY	28						
BH2	-	1.00	-	D	Orangish brown fine san traces of roots and rootle	idy silty CLAY with ets	28	100	43	18	25		
(1)	Test	Method	ls: BS13	577: Pa	art 2: 1990:	Test	Report by	K4 SOILS		RATORY		Chec	ked and
	Natur Atterb	al Moistu berg Limit	re Conten s: clause	τ : clau 4.3, 4.4	se 3.2 and 5.0		Watford	Liose Old Herts Wi	is Appro D18 9RU	bacn J		App	proved
	These	e results (only apply	to the i	items tested		Tel·	01923 71	1 288			Initials	J.P
UKAS	NOTE	: The rep	oort shall r	not be r	eproduced except in full		Email: Ja	ames@k4	soils.co	m		Date:	24/02/2023
2519	witho Appr	ut authori oved Sig	ty of the la natories:	aborato K.Phau	ry ure (Tech.Mgr) J.Phaure	(Lab.Mgr)						MS	F-5-R1

(K	Summary of Natural Moisture Content, Liquid Limit and										and Plastic Limit Results					
Job No.			Project	Name							Prog	ramme				
329	76		31 Dale	ham C	Sardens					Samples I	received	03/	/02/2023			
Project No.			Client							Project sta	arted	08/	/02/2023			
2023-002-	SIM-E	DAL	Geofirm	na						Testing St	tarted	21/	02/2023			
		Sa	mple		Soil Dece	ription	NMC	Passing	LL	PL	PI	D	omorko			
Hole No.	Ref	Top m	Base m	Туре	Soli Desci	πριίοπ	%	425µm %	%	%	%		emarks			
BH2	-	1.50	1.95	U	Brown, light grey and ora sandy silty CLAY with rai possiby carbonaceous de	15										
BH2	-	2.00	-	D	Yellowish brown slightly CLAY	16										
BH2	-	2.50	-	D	Brownish grey silty CLA lenses of yellowish brow	Y with frequent n silt	21									
BH2	-	3.00	-	D	Orangish brown and occ sandy silty CLAY	asional grey fine	19	100	47	18	29					
BH2	-	3.50	3.95	U	Medium strength brown r brown sandy silty CLAY fmc sandstone fragments	mottled orangish with occasional s	27									
BH2	-	4.00	-	D	Brown slightly sandy ver	y silty CLAY	27									
BH2	-	5.00	5.45	U	Medium strength dark gr brown slightly fine sandy	ey slightly mottled silty CLAY	28	100	54	18	36					
BH2	-	11.00	11.45	U	High strength dark grey s	silty CLAY	28									
BH2	-	15.00	15.45	U	High strength dark grey s	silty CLAY	30									
(in	Test	Method	ls: BS13	877: Pa	art 2: 1990:	Test	Report by	K4 SOILS		RATORY		Cheo	cked and			
	Atterb	ai ivioistu berg Limit	s: clause	ι : clau 4.3, 4.4	ຣe ວ.∠ and 5.0	L	Watford	d Herts Wi	D18 9RU	J		Ар	proved			
	These	e results o	only apply	to the	items tested		Tel·	01923 71	1 288			Initials	J.P			
	NOTE	E: The rep ut authori	oort shall r ty of the la	not be r aborato	eproduced except in full ry		Email: Ja	ames@k4	soils.co	m		Date:	24/02/2023			
2519	Appr	oved Sig	natories:	K.Phau	re (Tech.Mgr) J.Phaure	(Lab.Mgr)						M	SF-5-R1			

APPENDIX D -

INSITU CBR TEST RESULTS

							Job Ref		3	32972	
Soils	In Situ	Californ	ia Bearir	ng Ratio	(CBR))	CBR No.		(CBR1	
Site Name	31 Daleham Gar	dens, Finchl	ey, London,	NW3 5BU			Depth m			0.30	
Project No.	2023-002-SIM-	DAL Cli	ent	G	eofirma		Date of T	est	02/	02/2023	
Soil Description		Brown slight	ly sandy silt	y CLAY with	occasiona	al rootlets	and trace	s of fine br	ick fragments		
Test Method	BS1377 : Part 9	: 1990, clau	se 4.3				CBR Tes	t Number		1	
Note: Test only applica	able when maximu	ım particle s	ize beneath	the plunger	does not e	exceed 20	Omm				
Rate if Strain	1.00 mm/i	min		Temperatur	e	11	0C				
Mass of Surcharge	4.5 kg			Environmer	ntal Parti	y sunny					
Proving Ring Factor	7.26 N/div	7.26 N/div Conditions									
Readings			ı		Fo	rce ver	sus Per	netratior	Plot		
Penetration of	Force on P	lunger	1.	.20	_	1					
Flunger	Dial Reading	LOad									
0.00	0	0.00								****	
0.25	38	0.28	1.	.00					***		
0.50	49	0.36		*	1	·	1				
0.75	57	0.41									
1.00	63 70	0.46	0.	.80							
1.50	70	0.51		*		*					
1.75	83	0.60	z								
2.00	88	0.64	× 0.	.60	$+ \checkmark$						
2.25	93	0.68	lied								
2.50	99	0.72	App		X						
2.75	104	0.76	9 0.	.40 /	4	\vdash				<u> </u>	
3.00	106	0.77	For	1							
3.25	109	0.79	_	¥							
3.50	111	0.81	0.	.20		\vdash					
3.75	115	0.83									
4.00	120	0.87									
4.50	123	0.89	0.	.00 #				k			
4.75	126	0.91		0	1	2	3 4	5	6	7 8	
5.00	130	0.94					Penetrat	ion mm			
5.25	132	0.96									
5.50	134	0.97		× Data	*	2.5mm	*	5.0mm	Cor	rection	
5.75	136	0.99	During								
6.00	140	1.02	Rema	aiks]	
6.50	145	1.05									
6.75	146	1.06	1								
7.00	147	1.07									
7.25	149	1.08									
7.50	151	1.10									
Results	Cu	irve	CBR Va	lues, %	Мо	oisture					
	corre	ection	Penetration	CBR	Value Co	ontent					
	ap	Jileu 2.5	mm on	nm		%					
	Ι.	-				~~					
	ſ	NU 5	.4 4	., 5.	.4	23					
•		Test De	out h:- 174 0		DATODY						
(L)		i est Rep Unit S	OIDS CLOSE	OILS LABO e Olds Annr	oach				Checked	and Approved	
		V	atford Her	ts WD18 9R	U				Initials:	J.P	
		E-	Tel: 0192	3 711 288 @k4soils c	om				Dato:	10/02/202	
TESTING NOTE: The rel	port shall not be reprodu	ת⊐ uced except in fu	I without authori	er+sulls.Co	ory These res	ults only ap	oly to the loca	tions tested.	Dale.	10/02/202	
2519 Approved	Signatories: K.Ph	aure (Tech.l	Mgr) J.Phau	re (Lab.Mgr))	,rr				MSF-5-R	

		.				Job Ref		329	72	
Soils	In Situ	Californ	ia Bearir	ng Ratio ((CBR)	CBR No.		CBI	R2	
Site Name	31 Daleham Gar	dens, Finchl	ey, London,	NW3 5BU		Depth m		0.3	30	
Project No.	2023-002-SIM-	DAL Cli	ent	Ge	eofirma	Date of Test		02/02/2023		
Soil Description		Brown slight	ly sandy silt	y CLAY with	occasional rootl	lets and traces of fi	ne brick t	fragments		
Test Method	BS1377 : Part 9	: 1990, clau	se 4.3			CBR Test Num	nber	2		
Note: Test only applica	able when maximu	ım particle s	ize beneath	the plunger o	does not exceed	d 20mm				
Rate if Strain	1.00 mm/i	min		Temperature	ə 11	0C				
Mass of Surcharge	4.5 kg			Environmen	tal Partly sunn	у				
Proving Ring Factor	0.42 N/div	,		Conditions						
Froming King Factor	0.42 10/01									
Readings			ı		Force v	ersus Penetra	tion Pl	ot		
Penetration of	Force on P	lunger	0.	.80						
Plunger	Dial Reading	Load								
mm		kN	_	70						
0.00	0	0.00	0.	. / 0						
0.25	260	0.11								
0.50	345 410	0.14	0.	.60						
1.00	475	0.20		*	 					
1.25	560	0.24	0.	.50			*			
1.50	620	0.26								
1.75	665	0.28	Ϋ́ς	40						
2.00	730	0.31	0. ح	.40						
2.25	777	0.33	plie	*	+					
2.50	823	0.35	d 0.	.30						
2.75	875	0.37	rce							
3.00	940	0.39	° с П	20						
3.50	1040	0.41			1					
3.75	1070	0.45								
4.00	1127	0.47	0.	.10 1						
4.25	1170	0.49		/						
4.50	1218	0.51	0.	.00 🖌	<u> </u>	ļ ļ	*	<u> </u>		
4.75	1250	0.53		0	1 2	3 4	5	6 7	[′] 8	
5.00	1285	0.54				Penetration m	ım			
5.20	1340	0.56		× Data	*2.5m	m*·5.0n	nm —	— Correc	ction	
5.75	1400	0.59								
6.00	1446	0.61	Rema	arks						
6.25	1480	0.62								
6.50	1523	0.64								
6.75	1554	0.65								
7.00	1587	0.67								
7.50	1645	0.69								
		0.00				-				
Results	Cu	Irve	UBK Va	aues, %	Moisture					
	an	blied 2.5	mm 5n	CBR V	/alue %	-				
		2.0	01	···	,,,	1				
	м	No 2	.6 2	.7 2	7 25					
	L	<u> </u>		1		J				
ಣ್ಣು		Test Rep	ort by K4 S	OILS LABO	RATORY			Checked ar	nd Approved	
		Unit 8	Olds Close	e Olds Appro	bach					
- (≯≮) -		v	Vatford Heri	ts WD18 9Rl	J		In	itials:	J.P	
		En	rei: 0192 nail: Iamoc	0 / 1 200 @k4enile.co	m			ato.	10/02/2022	
TESTING NOTE: The real	oort shall not be reprodu	ced except in fu	l without authori	ity of the laborato	ry These results only	apply to the locations te	sted.		10/02/2020	
2519 Approved	Signatories: K.Ph	aure (Tech.	Mgr) J.Phau	re (Lab.Mar)	,				MSF-5-R16	
		、 -	U ,	······································						

	In City	Californ	ia Deeria	n a Detie (Job Ref	32972	
Soils		Californ	la Bearli	ng Ratio (CBR)	CBR No.	CBR3	
Site Name	31 Daleham Ga	rdens, Finch	ley, London,	NW3 5BU		Depth m	0.40	
Project No.	2023-002-SIM	I-DAL CI	ient	Geo	ofirma	Date of Test	02/02/2023	
Soil Description		Brown sligh	tly sandy silt	y CLAY with o	ccasional rootle	ets and traces of fine	brick fragments	
Test Method	BS1377 : Part 9) : 1990, clau	ise 4.3			CBR Test Numbe	ır 3	
Note: Test only applica	able when maxim	um particle s	size beneath	the plunger d	oes not exceed	20mm		
Rate if Strain	1.00 mm	/min		Temperature	11	0C		
Mass of Surcharge	4.5 kg							
Proving Ring Factor	0.42 N/di	v		Conditions				
Readings			-		Force ve	ersus Penetratio	on Plot	
Penetration of	Force on I	Plunger	0	.40			· · · · · · · · · · · · · · · · · · ·	
Plunger	Dial Reading	Load	-					
0.00	0	0.00	0	.35				
0.25	180	0.08		*				
0.50	270	0.11	0	.30				
0.75	335	0.14	-					
1.25	443	0.17	0	.25 *		×		
1.50	476	0.20						
1.75	511	0.21	ΥΥ Υ	20				
2.00	548	0.23	eq	.20	\checkmark			
2.25	576	0.24	ilpdi	15				
2.75	618	0.26	A O	.15				
3.00	651	0.27	oro	/				
3.25	676	0.28	- 0	.10				
3.50	698 708	0.29	-	†				
4.00	728	0.30	0	.05				
4.25	748	0.31						
4.50	759	0.32	0	.00 #				
4.75	770	0.32	-	0	2	3 4 :	5 6 7 8	j
5.25	806	0.34	-			Fenetration min		
5.50	820	0.34	1 –	∗ — Data	* ·2.5mr	m ∗- -∙5.0mm	Correction	
5.75	831	0.35						
6.00	846 859	0.36	Rema	arks				
6.50	870	0.37	1					
6.75	880	0.37						
7.00	889	0.37	4					
7.50	905	0.38						
Populto			CBR Va		Mojeturo	1		
Results	cor	rection	Penetration		Content			
	ар	plied 2.	5mm 5r	nm CBR Va	alue %			
		No	1.9 1	.6 1.9	27			
						J		
-		Test Rep	ort by K4 S	OILS LABOR	ATORY		Checked and Appro	ved
		Unit	8 Olds Clos	e Olds Appro	ach			_
(≯≮)		'	Natford Her	ts WD18 9RU			Initials: J	.Р
UKAS		E	mail: James	@k4soils.cor	n		Date: 10/02	2/2023
TESTING NOTE: The rep	port shall not be reprod	luced except in f	Il without author	ity of the laboratory	These results only	apply to the locations tested	<i>l.</i>	
2519 Approved	Signatories: K.P	haure (Tech	Mgr) J.Phau	ire (Lab.Mgr)			MS	SF-5-R16

	In Cit	Califar	nia Dooni	na Dotio	(05		Job Ref			32972	
Soils	in Sit	u Califor	nia Beari	ng Ratio		SR)	CBR No).		CBR4	
Site Name	31 Daleham G	Bardens, Find	hley, London:	, NW3 5BU			Depth r	n		0.00	
Project No.	2023-002-SI	M-DAL C	Client	G	Geofirm	ia	Date of	Test		02/02/2023	
Soil Description				Dark	grey s	sandy silty	CLAY				
Test Method	BS1377 : Part	9 : 1990, cla	use 4.3				CBR Te	st Number		4	
Note: Test only applica	able when maxi	mum particle	size beneath	n the plunger	^r does i	not exceed	d 20mm				
Rate if Strain	1.00 mr	m/min		Temperatu	re	11	0C				
Mass of Surcharge	4.5 kg			Environme	ntal	Partly sunn	у				
Proving Ring Factor	0.42 N/	div		Conditions							
Readings	T		_			Force v	ersus Pe	netratior	n Plot		
Penetration of	Force or	Plunger		25							_
Plunger	Dial Readin	g Load	4						T		
mm	0	kN	4								
0.00	0 61	0.00	-								
0.50	83	0.03	C	0.20							1
0.75	99	0.04									
1.00	120	0.05		×				<u> </u>	*		
1.25	131	0.06).15							4
1.50	149	0.06	z								
2.00	184	0.07									
2.25	208	0.09	lied								
2.50	222	0.09	_ dq^).10		*					1
2.75	238	0.10	Ce	T							
3.00	254	0.11	For			\checkmark					
3.25	273	0.11	_	0.05							
3.50	209	0.12	- `		1						
4.00	322	0.10	-								
4.25	338	0.14									
4.50	351	0.15	C	.00 🖌	_	<u> </u>		<u> </u>		ļ	1
4.75	369	0.15	_	0	1	2	3	4 5	6	7	8
5.00	387	0.16	_				Penetra	ation mm			
5.50	408	0.17		Data		k · 2.5m	m*	•• 5.0mm	(Correction	
5.75	441	0.19									
6.00	458	0.19	Rem	arks							_
6.25	473	0.20	\neg								1
6.50	491	0.21	-								1
7.00	525	0.21	-								1
7.25	543	0.23									
7.50	557	0.23									
Results		Curve	CBR V	alues, %		Moisture					
	cc	orrection	Penetratio	n CBR	Value	Content	_				
	č	applied 2	.5mm 5	mm		%	-				
		N	0.74		~	00					
		INU	0.71 0	.oi 0 .	01	39					
							1				
		Taet Pr	nort by KA			RY			Char	kad and Ann-	oved
		Uni	t 8 Olds Clos	e Olds App	roach				Chec	neu anu Appr	oveu
(⊁∢)			Watford Her	ts WD18 9F	۱U				Initials:		J.P
			Tel: 0192	23 711 288							0/6
		- 4 1	Email: James	s@k4soils.c	om				Date:	10/0	2/2023
2510 NOTE: The rep	Signatorica: K	oduced except in	tull without autho	rity of the labora	ory The	se results only	apply to the loc	ations tested.		A	
2019 Approved	orginatories: K.	r naule (TeC	nivigi) J.Phal	ue (∟au.ivigi)					N	//JOF-D-K16

								1					
									Job Ref			32972	
	In S	itu Calif	ornia	Bearir	ıg R	atio (C	BR)	- F					
SOILS					_	-	-		CBR No).		CBR5	
		<u> </u>							D (1				
Site Name	31 Dalenam	Gardens,	Finchiey	/, London,	INVV 3	5BU			Depth r	n		0.00	
Project No	2023-002-		Clion	.t		Geofi	rma		Date of	Toet		02/02/202	2
T TOJECT NO.	2023-002-		Olien	it i		Geom	ma		Date of	1631		02/02/202	.5
Soil Description						Dark gre	y sandy	silty CL	AY				
											-		
Test Method	BS1377 : Pa	art 9 : 1990	, clause	4.3					CBR Te	st Number		5	
Note: Test only application	able when ma	ximum par	ticle size	e beneath	the p	lunger doe	s not ex	ceed 20	Omm				
5 11		,				0							
Rate if Strain	1.00	mm/min			Tom	noraturo		11	0C				
	1.00				Fnvi	ronmental	Partly	sunnv					
mass of Surcharge	4.5	kg			Conc	ditions	,						
Proving Ring Factor	0.42	N/div											
Readings							For	ce ver	sus Pe	netratio	n Plot		
Penetration of	Force	on Plunge	r										
Plunger		. Lo	ad	0.	³⁰ T								
mm	Dial Read		N										
0.00	0	0.	00										×
0.25	73	0.	03	0.	25 🕂				-				
0.50	99	0.	04										
0.75	120	0.	05										
1.00	140	0.	06	0.	20 🕂						\checkmark		
1.25	160	0.	07		*					+;*	<		
1.50	185	0.	08	7									
1.75	210	0.	10	± 0.	15 -					<u> </u>			
2.00	250	0.	10	ied									
2.50	200	0.	11	lqq					1				
2.75	290	0.	12	ୟ 8. 0.	10 -			<u> </u>					
3.00	306	0.	13	oro			\checkmark						
3.25	317	0.	13	ш.			ΧΙ	i					
3.50	338	0.	14	0	05 -	X							
3.75	354	0.	15	0.				i					
4.00	370	0.	16			1							
4.25	391	0.	10	0	<u> </u>	/		ļ					
4.30	410	0.	18	0.	00 *	1	2	~	3	4 5	6	7	8
5.00	442	0.	19						Penetra	tion mm			
5.25	466	0.	20										
5.50	487	0.	20	_	*—	Data -	- * ·2	.5mm	*	•• 5.0mm		 Correctio 	n
5.75	508	0.1	21										
6.00	525	0.1	22	Rema	arks								
6.25	540	0.	23										
6.50	575	0.	23										
7.00	589	0.	25										
7.25	607	0.1	25										
7.50	622	0.1	26										
Results	ſ	Curve		CBR Va	lues,	%	Mois	sture					
		correction	Р	enetration			Con	itent					
		applied	2.5m	m 5n	nm		9	%					
		No	0.86	6 0.9	93	0.93	3	6					
	L					-							
			_								T		
<u>Gio</u>		Test	Report	t by K4 S	OILS		ORY				Che	cked and A	Approved
(A)			UNIT & C Wa	tford Heri	S WF	5 Approac	11				Initials		.I P
(₽\$)			11a	Tel: 0192	3 711	288					muais	•	0.1
UKAS			Ema	il: James	@k4s	oils.com					Date:		10/02/202:
TESTING NOTE: The rej	port shall not be re	eproduced exce	ept in full w	ithout authori	ty of the	e laboratory T	hese resul	lts only app	oly to the loc	ations tested.			
2519 Approved	Signatories:	K.Phaure (Tech.Mg	gr) J.Phau	re (La	ab.Mgr)							MSF-5-R1

	In City	Coliforn	ie Deeri	na Detie (Job Ref	32972
Soils	in Sitt	Californ	la Bearli	ng Ratio (CBR)	CBR No.	CBR6
Site Name	31 Daleham Ga	ardens, Finch	ley, London,	, NW3 5BU		Depth m	0.45
Project No.	2023-002-SIN	/I-DAL Cli	ent	Geo	ofirma	Date of Test	02/02/2023
Soil Description		Brown sligh	tly sandy silt	ty CLAY with o	ccasional rootle	ets and traces of fine b	prick fragments
Test Method	BS1377 : Part 9	9 : 1990, clau	se 4.3			CBR Test Number	6
Note: Test only applica	able when maxin	num particle s	size beneath	the plunger d	oes not exceed	20mm	
Rate if Strain	1.00 mm	n/min		Temperature	11	0C	
Mass of Surcharge	4.5 kg			Environmenta	al Partly sunny	1	
Proving Ring Factor	0.42 N/d	liv		Conditions			
Readings			_		Force ve	ersus Penetratio	n Plot
Penetration of	Force on	Plunger	0	45			
Plunger	Dial Reading	Load	-				
mm 0.00	0	kN	0	.40		+ + +	<u> </u>
0.25	120	0.05					
0.50	205	0.09	0	.35			
0.75	275	0.12	_	*			
1.00	379	0.14	0	.30 -			
1.50	415	0.17		25			
1.75	443	0.19	Σ, υ	.20 *	*	×	
2.00	484	0.20	D G	20			
2.25	517	0.22	ilqq	.20			
2.75	578	0.23	- A - A - O	.15			
3.00	605	0.25	orc	/			
3.25	638	0.27	0	.10 /			
3.50	654 675	0.27		1			
4.00	710	0.20	0	.05 +			
4.25	728	0.31					
4.50	743	0.31	0	.00 ¥	.		
4.75	760	0.32		0 1	2	3 4 5	6 / 8
5.25	782	0.32				Penetration mm	
5.50	795	0.33		🗕 🗕 🗕 🗕 🗕	- 2.5mr	m * ·5.0mm	Correction
5.75	808	0.34					
6.00 6.25	820 840	0.34	Rem	arks			
6.50	858	0.36					
6.75	870	0.37					
7.00	885	0.37	4				
7.50	095 913	0.38	1				
			J L				
Results		Curve	CBR Va	alues, %	Moisture	1	
	COL	rrection	Penetration	n CBR Va	Content		
	a	pplied 2.5	5mm 5r	nm	%	4	
					0.4		
			1.0 1	ιο 1.8	34		
		1				J	
da		Test Rep	ort by K4 S	SOILS LABOR	ATORY		Checked and Approved
		Unit	8 Olds Clos	e Olds Appro	ach		Initiala: LB
(₽¶)			Tel: 0192	23 711 288			initials: J.P
UKAS		Er	nail: James	@k4soils.cor	n		Date: 10/02/202
TESTING NOTE: The re	port shall not be repro	duced except in fu	Ill without author	rity of the laboratory	These results only	apply to the locations tested.	_ _
2519 Approved	Signatories: K.P	haure (Tech.	Mgr) J.Phau	ire (Lab.Mgr)			MSF-5-R1

APPENDIX E -

CHEMICAL TEST RESULTS

Unit A2 Windmill Road Ponswood Industrial Estate St Leonards on Sea East Sussex TN38 9BY Telephone: (01424) 718618

> cs@elab-uk.co.uk info@elab-uk.co.uk

THE ENVIRONMENTAL LABORATORY LTD

Analytical	Report	Number:	23-46814
------------	--------	---------	----------

Issue:

Date of Issue: 24/02/2023

Contact: James Phaure

Customer Details: K4 Soils Laboratory Ltd Unit 8 Watford

1

Quotation No: Q22-03477

Order No: 32976

Customer Reference: 32976

Date Received: 17/02/2023

Date Approved: 24/02/2023

Details:

31 Daleham Gardens

HertfordshireWD18 9RU

Approved by:

Mike Varley, General Manager

Any comments, opinions or interpretations expressed herein are outside the scope of UKAS accreditation (Accreditation Number 2683

This report may only be reproduced in full

Sample Summary

Report No.: 23-46814, issue number 1

Elab No.	Client's Ref.	Date Sampled	Date Scheduled	Description	Deviations
312684	BH1A 1.00	Not Provided	17/02/2023	Sandy clayey loam	а
312685	BH1A 3.50	Not Provided	17/02/2023	Clay	а
312686	BH1A 22.50	Not Provided	17/02/2023	Sandy clayey loam	а
312687	BH2 13.00	Not Provided	17/02/2023	Clay	а

Results Summary

Report No.: 23-46814, issue number 1

•								
		312684	312685	312686	312687			
	C	Customer I	Reference					
		S	Sample ID					
	Sample Type							
		Sample	e Location	BH1A	BH1A	BH1A	BH2	
		Sample	Depth (m)	1.00	3.50	22.50	13.00	
		Sam	pling Date	Not Provided	Not Provided	Not Provided	Not Provided	
Determinand	Codes	Units	LOD					
Soil sample preparation parameter	ers							
Moisture Content	N	%	0.1	17.8	21.3	21.9	19.3	
Material removed	N	%	0.1	13.1	< 0.1	12.1	< 0.1	
Description of Inert material removed	N		0	Stones/Brick	None	Stones/Wood	None	
Anions								
Water Soluble Sulphate	М	g/l	0.02	0.62	0.22	0.21	0.07	
Inorganics								
Total Sulphur	N	%	0.01	0.24	0.50	0.28	0.63	
Acid Soluble Sulphate (SO4)	U	%	0.02	0.53	0.09	0.09	0.05	
Miscellaneous								
DH	М	pH units	0.1	10.4	8.7	8.7	9.1	

Method Summary Report No.: 23-46814, issue number 1

Parameter	Codes	Analysis Undertaken	Date Tostod	Method	Technique
Soil	1		resteu	Number	1
рН	М	Air dried sample	23/02/2023	113	Electromeric
Acid Soluble Sulphate	U	Air dried sample	23/02/2023	115	Ion Chromatography
Water soluble anions	М	Air dried sample	22/02/2023	172	Ion Chromatography
Total organic carbon/Total sulphur	N	Air dried sample	21/02/2023	216	IR

Tests marked N are not UKAS accredited

Report Information

Report No.: 23-46814, issue number 1

Key

Rey	
U	hold UKAS accreditation
М	hold MCERTS and UKAS accreditation
Ν	do not currently hold UKAS accreditation
۸	MCERTS accreditation not applicable for sample matrix
*	UKAS accreditation not applicable for sample matrix
S	Subcontracted to approved laboratory UKAS Accredited for the test
SM	Subcontracted to approved laboratory MCERTS/UKAS Accredited for the test
NS	Subcontracted to approved laboratory. UKAS accreditation is not applicable.
I/S	Insufficient Sample
U/S	Unsuitable sample
n/t	Not tested
<	means "less than"
>	means "greater than"
LOD	LOD refers to limit of detection, except in the case of pH soils and pH waters where it means limit of discrimination.
	Soil sample results are expressed on an air dried basis (dried at < 30°C), and are uncorrected for inert material removed.
	ELAB are unable to provide an interpretation or opinion on the content of this report. The results relate only to the sample received.
	PCB congener results may include any coeluting PCBs
	Uncertainty of measurement for the determinands tested are available upon request Unless otherwise stated, sample information has been provided by the client. This may affect the validity of the results.
Deviation	Codes
а	No date of sampling supplied
b	No time of sampling supplied (Waters Only)
С	Sample not received in appropriate containers
d	Sample not received in cooled condition
е	The container has been incorrectly filled
f	Sample age exceeds stability time (sampling to receipt)
g	Sample age exceeds stability time (sampling to analysis)

Where a sample has a deviation code, the applicable test result may be invalid.

Sample Retention and Disposal

All soil samples will be retained for a period of one month All water samples will be retained for 7 days following the date of the test report Charges may apply to extended sample storage

TPH Classification - HWOL Acronym System

- HS Headspace analysis
- EH Extractable Hydrocarbons i.e. everything extracted by the solvent
- CU Clean-up e.g. by florisil, silica gel
- 1D GC Single coil gas chromatography
- Total Aliphatics & Aromatics
- AL Aliphatics only
- AR Aromatics only
- 2D GC-GC Double coil gas chromatography
- #1 EH_Total but with humics mathematically subtracted
- #2 EH_Total but with fatty acids mathematically subtracted
- _ Operator underscore to separate acronyms (exception for +)
- + Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
- MS Mass Spectrometry

Jaime Wils Geofirma Ltd Geofirma Ltd Cardinal Point Park Road Rickmansworth WD3 1RE

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

- t: 01923 225404
- f: 01923 237404
- e: reception@i2analytical.com

e: jaime@geofirmaconsultants.co.uk

Analytical Report Number : 23-16525

Project / Site name:	31 Daleham Gardens	Samples received on:	07/02/2023
Your job number:	2023-002-SIM-DAL	Samples instructed on/ Analysis started on:	08/02/2023
Your order number:		Analysis completed by:	20/02/2023
Report Issue Number:	1	Report issued on:	21/02/2023
Samples Analysed:	1 10:1 WAC sample		

Noma Signed:

Dominika Warjan Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland. Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation. Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404

lonart No.		23-1	6525				
Report No:	-	23-1	.0525				
					Client:	GEOFIRMA	
						01011111	
Location		31 Daleha	m Gardens				
Lab Defense (Comple Number)					Landfill	Waste Acceptanc	ce Criteria
Lab Reference (Sample Number)		2578826	/ 2578827			Limits	
Sampling Date		01/02	2/2023			Stable Non-	
Sample ID		Т	P3		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)		0.10		Landfill	waste in non- hazardous Landfill	Waste Landfill	
olid Waste Analysis							
OC (%)**	5.0				3%	5%	6%
oss on Ignition (%) **	10.1						10%
.ΤΕΧ (μg/kg) **	< 5.0				6000		
um of PCBs (mg/kg) **	< 0.007				1		
lineral Oil (mg/kg) EH_1D_CU_AL	35				500		
otal PAH (WAC-17) (mg/kg)	4.64				100		
oH (units)**	8.1					>6	
cid Neutralisation Capacity (mmol / kg)	6.4					To be evaluated	To be evaluated
luate Analysis	10:1			10:1	Limit values for compliance leaching test		
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l mg/kg			using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
vrsenic *	0.0090			0.0642	0.5	2	25
Barium *	0.0050			0.134	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0014			0.010	0.5	10	70
Copper *	0.058			0.42	2	50	100
fercury *	< 0.0005			< 0.0050	0.01	0.2	2
1olybdenum *	0.0101			0.0723	0.5	10	30
lickel *	0.0033			0.024	0.4	10	40
ead *	0.0030			0.022	0.5	10	50
Intimony *	< 0.0017			< 0.017	0.06	0.7	5
elenium *	< 0.0040			< 0.040	0.1	0.5	7
linc *	0.023			0.16	4	50	200
Chloride *	2.4			17	800	15000	25000
luoride*	0.16			1.2	10	150	500
ulphate *	7.3			53	1000	20000	50000
DS*	180			1300	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	38.6			276	500	800	1000
each Test Information							
tone Content (%)	< 0.1		L			ļ	
Sample Mass (kg)	1.4						
Dry Matter (%)	71						
loisture (%)	29		+			+	
					* 18/40	ad (liauid 1 - 1	durin and X
					★= LIKAS accredit	od (liquid aluata ana	alveic only)

email:reception@i2analytical.com

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 23-16525 Project / Site name: 31 Daleham Gardens

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2578826	TP3	None Supplied	0.1	Brown loam and sand with gravel and vegetation.

Analytical Report Number : 23-16525 Project / Site name: 31 Daleham Gardens

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE	
Acid neutralisation capacity of soil	d neutralisation capacity of soil Determination of acid neutralisation capacity by addition In-house method based on Guidance an Sampling of acid or alkali followed by electronic probe. and Testing of Wastes to Meet Landfill Waste Acceptance""			W	NONE	
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS	
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE	
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270.	L064-PL	D	MCERTS	
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS	
pH at 20oC in soil	20oC in soil Determination of pH in soil by addition of water followed In house method. by electrometric measurement.		L005-PL	w	MCERTS	
Stones content of soil	es content of soil Standard preparation for all samples unless otherwise In-house method based on British Standard detailed. Gravimetric determination of stone > 10 mm as Methods and MCERTS requirements. % dry weight.		L019-UK/PL	D	NONE	
Total organic carbon (Automated) in soil	n (Automated) in soil Determination of organic matter in soil by oxidising with In house method. potassium dichromate followed by titration with iron (II) sulphate.		L009-PL	D	MCERTS	
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	headspace GC-MS. In-house method based on USEPA8260 accredited		w	MCERTS	
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260 Individual components MCERTS accredited		L073-PL	w	MCERTS	
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	of metals in leachate by acidification In-house method based on MEWAM 2006 P-OES. Methods for the Determination of Metals in Soil""		w	ISO 17025	
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025	
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025	
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025	
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031	W	ISO 17025	

Analytical Report Number : 23-16525 Project / Site name: 31 Daleham Gardens

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined aravimetrically using the moisture content which is carried out at a maximum of 300C Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil [®] , silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Jaime Wils Geofirma Ltd Geofirma Ltd Cardinal Point Park Road Rickmansworth WD3 1RE

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

e: jaime@geofirmaconsultants.co.uk

Analytical Report Number : 23-16521

Project / Site name:	31 Daleham Gardens	Samples received on:	07/02/2023
Your job number:	2023-002-SIM-DAL	Samples instructed on/ Analysis started on:	08/02/2023
Your order number:		Analysis completed by:	17/02/2023
Report Issue Number:	1	Report issued on:	17/02/2023
Samples Analysed:	2 soil samples		

Man Signed:

Adam Fenwick Technical Reviewer For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland. Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation. Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-16521

Project / Site name: 31 Daleham Gardens

Lab Sample Number				2578805	2578806
Sample Reference		BH1 A	BH2		
Sample Number		None Supplied	None Supplied		
Depth (m)				0.30	0.50
Date Sampled				02/02/2023	02/02/2023
Time Taken				None Supplied	None Supplied
		Ξ.			
		mit	Acc		
Analytical Parameter	S.	of	Sta		
(Soil Analysis)	lits	dete	litat		
		čti:	ion		
		on			
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	23
Total mass of sample received	ку	0.001	NONE	1.4	1.4
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	JSW	JSW
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	6.8	7.4
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Total Phenols					
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	ma/ka	0.05	MCERTS	< 0.05	0.18
Anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	ma/ka	0.05	MCERTS	< 0.05	0.59
Durene	ma/ka	0.05	MCERTS	< 0.05	0.55
Bonzo(a)anthracono	ma/ka	0.05	MCERTS	< 0.05	0.44
Chrysene	ma/ka	0.05	MCERTS	< 0.05	0.44
Benzo(h)fluoranthene & Benzo(k)fluoranthene	ma/ka	0.1	ISO 17025	< 0.05	0.99
Bonzo(a)nurono	ma/ka	0.05	MCERTS	< 0.05	0.55
	ma/ka	0.05	MCERTS	< 0.05	0.33
Dibonz(a,b)anthracono	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Bonzo(abi)pondono	ma/ka	0.05	MCERTS	< 0.05	0.05
Benzo(giii)perviene				< 0.05	0.37
Total DAH					
Speciated Total EBA-16 DAHs	ma/ka	0.8	ISO 17025	< 0.90	4.44
Specialed Total EFA-10 FAIls				< 0.80	4.44
Honur Motole / Motolloide					
Antimony (aqua rogia systematical)	ma/ka	1	ISO 17025	~ 1.0	~ 1.0
	ma/ka	1	MCEDIC	< 1.U 1F	< 1.U
	mg/kg	1	MCEDTC	15	9.0
Panuni (dyud reyid extractable)	ma/ka	10.06	MCERTS	کڻ در ۲	JU 0.41
Beron (water coluble)	mg/kg	0.00	MCEDTC	0.73	0.41
	mg/kg	0.2	MCEDTC	0.3	2.0
	mg/kg	1.2	NONE	< 0.2	< 0.2
Chromium (III)	mg/kg	1.4	NONE	< 1.2	< 1.2
	mg/kg	1	MCEDIC	30	12
	mg/kg	1	MCEDIC	36	12
Copper (aqua regia extractable)	mg/kg	1	MCEDTO	12	20
	mg/kg	1	MCEDTO	32	48
mercury (aqua regia extractable)	mg/kg	0.3	MCEDIC	< 0.3	< 0.3
Molypaenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.61	1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	11	9.9
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Zinc (aqua regia extractable)	шу/ку	1	PICER15	39	82
Monoaromatics & Oxygenates		-			
Benzene	µg/kg	5	MCERTS	< 5.0	< 5.0

Analytical Report Number: 23-16521

Project / Site name: 31 Daleham Gardens

Lab Sample Number				2578805	2578806
Sample Reference		BH1 A	BH2		
Sample Number	None Supplied	None Supplied			
Depth (m)				0.30	0.50
Date Sampled				02/02/2023	02/02/2023
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Toluene	µg/kg	5	MCERTS	< 5.0	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	< 5.0
p & m-xylene	µg/kg	5	MCERTS	< 5.0	< 5.0
o-xylene	µg/kg	5	MCERTS	< 5.0	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	< 5.0	< 5.0

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	12
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	12
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10
TPH_C/MC - Aromatic (EC5 - EC25)	ma/ka	10	NONE	< 10	14

 $\label{eq:US} U/S = Unsuitable \ Sample \quad I/S = \ Insufficient \ Sample \quad ND = Not \ detected$

Analytical Report Number : 23-16521 Project / Site name: 31 Daleham Gardens

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2578805	BH1 A	None Supplied	0.3	Brown clay and sand.
2578806	BH2	None Supplied	0.5	Brown loam with vegetation.

Analytical Report Number : 23-16521 Project / Site name: 31 Daleham Gardens

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	w	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

Analytical Report Number : 23-16521 Project / Site name: 31 Daleham Gardens

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
-		-		-	

•	
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

APPENDIX F -

RELEVANT DRAWINGS

SIMPLE WORKS, UNIT 301, 203/213 MARE ST STUDIOS, LONDON, E8 3JS

COLUMNS AND WALLS FOUNDATION ESTIMATED LOADS

FOR PILED FOUNDATIONS OR SHALLOW FOUNDATIONS (IF SUITABLE)

NOTES:	ESTIMATED LOADINGS (UNFACTORED
ASSUMED PILE DIAMETER: 450mm U.N.O. ASSUMED PILE LENGHT: 15m TBC BY SOIL SPECIALIST PILED RETAINING WALL ASSUMED ALL AROUND	
ASSUMED DEPTH OF PILE CAPS: 1000mm	WORST CASE - INTERNAL COLUMN DL = 465 kN, LL = 210 kN
PILES ASSUMED SLEEVED TO ORIGINAL BASEMENT (DEMOLISHED) FOUNDING	
	EXTERNAL COLUMN DL = 465 kN, LL = 115 kN

PROJECT: DALEHAM GARDENS **REV:** 00 TITLE: COLUMNS AND WALLS FOUNDATIONS ESTIMATED LOADS DATE: 06/03/23 DRAWN BY (CHECK): EC (AC) SKETCH No: 1803-XX-SK-01

)):

(03) RETAINING WALL DL = 111 kN/m, LL = 23 kN/m

PROJ ECT: DALEHAM GARDENSREV: 00TITLE: NR TUNNEL ZONE OF INFLUENCE - FOUNDATIONS OPTION 02SKETCH No: 1803-XX-SK-04bDATE: 07/03/23DRAWN BY (CHECK): EC (AC)

SIMPLE WORKS, UNIT 301, 203/213 MARE ST STUDIOS, LONDON, E8 3J S

APPENDIX G -

SITE PHOTOGRAPHS

	<image/>	
SITE PHOTOGRAPH 1		
Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	CONSULTANTS

SITE PHOTOGRAPH 2		
Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	

SITE PHOTOGRAPH 3		
Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	CONSULTANTS

SITE PHOTOGRAPH 4 Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	CONSULTANTS

SITE PHOTOGRAPH 5		
		6
Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	CONDULTANTS

SITE PHOTOGRAPH 6		
Project Title	31 Daleham Gardens, London NW3 5BU	
Project No	2023/002/SIM/DAL	CONSULTANTS

SITE PHOTOGRAPH 7 Project Title	31 Daleham Gardens, London NW3 5BU	GEOFIRMA

	on NW3 5BU	
	31 Daleham Gardens, Londor 2023/002/SIM/DAL	, , , , , ,
ITE PHOTOGRAPH 8	Project Title Project No	5
SITI		L

APPENDIX H -

GAS AND GROUNDWATER MONITORING RESULTS

	GEOTEC	OFIRMA CONSULTANTS							GAS AND	GR
	Cont	ract Name :								
	Cor	ntract No :								
		Date :					-			
	Pookaro	und Poodingo		O ₂ % v/v :	20.4	CO ₂ % v/v :	0.0	CH ₄ % v/v :	0.0	
	Баскуго	bund Readings:		H₂S ppm :	0	CO ppm :	0	Pressure Trend :	Stable	
Location	Date	Atmospheric	Differential	O ₂ (%	% v/v)	CO ₂ ((% v/v)	CH ₄	(% v/v)	
Location	Dale	Pressure (mb)	Pressure (mb)	Low	Steady	High	Steady	High	Steady	
BH2	6.2.23	1032	0.00	16.3	16.3	3.4	3.3	0.0	0.0	
BH1a		1032	0.00	12.3	14.2	0.1	0.1	0.0	0.0	
BH2	9.3.23	982	0.00	14.5	14.5	5.4	5.4	0.0	0.0	
BH1a		982	0.00	18.9	18.9	0.2	0.2	0.0	0.0	

OUNDWATER MONITORING RESULTS

31 Daleham Gardens

2023-002-SIM-DAL

6.2.23 Weather Conditions : Sunny Warm Equipment Used: Technician: GFM436 Ground Conditions : Damp ES Depth to Depth to Water Depth Gas Flow Rate (I/hr) VOC (ppm) H₂S (ppm) CO (ppm) Total Depth LNAPL DNAPL Steady Peak Peak (mbgl) (mbgl) (mbgl) (mbgl) Peak Peak 0 0 0.0 0.0 0.0 5.49 5.50 n.a. n.a. 0.0 3.25 10 0.0 10.20 0 0.0 n.a. n.a. DRY 5.50 0 0 0.0 0.0 0.0 n.a. n.a. 0.0 0.0 3.20 10.20 0 0 0.0 n.a. n.a.

APPENDIX I -

DEMOLITION RECYCLING REPORT

Demolition Recycling Report

Site Name:	Daleham Gardens
Address:	31 Daleham Gardens, London, NW3 5BU
Date:	22 nd December 2021
Audit By:	Karl Larcombe
Audit	This report was completed by Karl Larcombe of M&M Demolition Co Ltd.
Details	Senior Project Manager

M & M Demolition Co Ltd were contracted by Camden Council to demolish the severely fire damaged property at 31 Daleham Gardens. M & M Demolition managed to achieve recycling return of 99.4% of the demolition materials for this project. These figures are based on the waste carriers average recycling returns with only a small percentage of the general construction waste and the asbestos being used as landfill. The majority of the waste, hardcore and concrete, is processed with a crushing plant and used to produce recycled aggregate. M & M Demolition are able to recycle aggregate on site using their own mobile crushing plant should the client require this within their package.

Due to the severity of the fire damage and structural instability of the property, the recognised process of soft stripping the building prior to structural demolition was not possible. To segregate the demolition spoil into separate waste streams, the hardcore produced from mechanical demolition was processed by hand picking and mechanically using the selector grab attachment separating the mixed construction waste (plastic, wood, paper etc.) and metal from the hardcore. The mixed construction waste was loaded into 40 yard Roll On Roll Off bins and sent to a transfer station for further segregation. The metal waste was loaded into a 40 yard Roll On Roll Off bin and sent to EMR's yard for re-cycling. Hardcore and concrete was loaded into 8 wheeled tipper lorries and sent away for crushing. Asbestos waste was removed prior to demolition wrapped and removed from site by our licensed asbestos contractor ECT Environmental.

Waste Carriers on Project							
Product	Carriers Name	Waste Carrier License					
Mixed Metal	EMR LTD	CBDU188448					
Mixed Construction Waste	Manns Waste	CBDU83142					
Green Waste	Manns Waste	CBDU83142					
Mixed Construction Waste	Rhino Waste	CBDU112723					
Hardcore	RMS Haulage	CBDU149396					
Hardcore	O'Donovan	CBDU116673					
Asbestos	ECT Environmental	CB/CBDU650625					

Segregation Arrangements	Applicable	Notes & Details	Application of recycled material	Associated Issues
Plasterboard /	Yes	Non-hazardous, fully	A closed loop recycling	None
Glass	Yes	Non-hazardous, fully recycled	A closed loop recycling solution	None
Cables	Yes	Non-hazardous, fully recycled	Plastic and copper separated to make plastic furniture etc and new cable	None
Contaminated Metals (Dangerous Substances)	No	Hazardous – treatment of residual and then fully recycled.	N/A	
Refrigerators / Air Cond.	No	Non-hazardous if re- purposed, fully recycled	A closed loop recycling solution.	None
WEEE	Yes	Hazardous / Non-hazardous, fully recycled	Products stripped to make new electrical components and plastic recycled.	None
Solvents, Paints, Chemicals	No	Hazardous, recovered and treated / re-used.	N/A	
Concrete	Yes	Non-hazardous, fully recycled	Crushed to make aggregate for building	None
Tarmac	No	Non-hazardous, fully recycled	Crushed and reused for hardstanding	None
Canteen Waste	Yes	Non-hazardous, fully recycled	Used to make compost	None
Mixed Construction Waste	Yes	Non-hazardous, fully recycled	Sent to Transfer Station sorted into separate waste streams, Wood shredded for Fibre Board Plastic recycled into carpets, plastic furniture. Paper and cardboard recycled into egg boxes, car insulation, dust masks etc. can be turned into biofuel for energy	None
Mixed Metals	Yes	Non-hazardous, fully recycled	Shredded and melted down to metal plates etc	None
Timber / Doors	Yes	Non-hazardous, fully recycled	Shredded to reform into MDF or similar material	None
Mineral Oils	No	Treatment, disposal and re- use	A Closed loop recycling solution	

Items containing CFCs / HFCs	No	Recovery, treated, fully recycled	N/A	
Fluorescent Tubes	No	Hazardous, recovered, treated and recycled	Mercury and glass separated and reused to make fluorescent tubes	None
Mix of concrete, bricks, tiles and rubble.	Yes	Non-hazardous, fully recycled	Crushed to make aggregate for building	None
Soils & Stones	No	Non-hazardous, fully recycled	N/A	
Asbestos	Yes	Hazardous non-recyclable	Sent to Licensed Tip	None
Green Waste	Yes	Non-hazardous Fully recycled	Recycled board, compost, bio-fuel	None

Recycling Index Circa 99.4%

Daleham Gardens			DEN		WASTE LOG		
				Conveyance	Disposal Site		
Date	Carrier Registration	Haulier	Veh Reg	Waste Description	E W Code	Name	Ticket No
21-Oct-21	CB/CBDU650625	ECT	CR19 LSU	Doors & debris	17 06 01	CM13 3HD	3105
10-Nov-21	CBDU112723	Rhino Waste	LN68 ZPX	General Waste	17 09 04	EPR/FB3203LL/A001	33711
15-Nov-21	CBDU83142	MANNS Waste	EY71 SYW	General Waste	17 09 04	EPR/HP3098VH	138129
16-Nov-21	CBDU83142	MANNS Waste	EY71 SYW	General Waste	17 09 04	EPR/HP3098VH	138209
17-Nov-21	CBDU112723	Rhino Waste	LN68 ZNX	General Waste	17 09 04	EPR/FB3203LL/A001	34186
17-Nov-21	CBDU112723	Rhino Waste	LN68 ZNX	General Waste	17 09 04	EPR/FB3203LL/A001	34187
17-Nov-21	CBDU83142	MANNS Waste	EY71 SYW	General Waste	17 09 04	EPR/HP3098VH	138332
18-Nov-21	CBDU83142	MANNS Waste	EY71 SYW	General Waste	17 09 04	EPR/HP3098VH	138333
22-Nov-21	CBDU149396	RMS Ltd	EA66 BHZ	Hardcore	17 01 07	EPR/KB3136AM	630657
22-Nov-21	CBDU149396	RMS Ltd	EY68 YPA	Hardcore	17 01 07	EPR/KB3136AM	631716
24-Nov-21	CBDU149396	RMS Ltd	EY20 YTD	Hardcore	17 01 07	EPR/KB3136AM	625461
24-Nov-21	CBDU149396	RMS Ltd	EY64 CCE	Hardcore	17 01 07	EPR/KB3136AM	635705
24-Nov-21	CBDU149396	RMS Ltd	EY15 BYL	Hardcore	17 01 07	EPR/KB3136AM	634206
24-Nov-21	CBDU149396	RMS Ltd	EY20 YTB	Hardcore	17 01 07	EPR/KB3136AM	633713
24-Nov-21	CBDU149396	RMS Ltd	E65 BZU	Hardcore	17 01 07	EPR/KB3136AM	633424
24-Nov-21	CBDU83142	MANNS Waste	EY71 SYW	General Waste	17 09 04	EPR/HP3098VH	138813
25-Nov-21	CBDU83142	MANNS Waste	EY71 SYW	General Waste	17 09 04	EPR/HP3098VH	138814
29-Nov-21	CBDU83142	MANNS Waste	EY71 SYW	General Waste	17 09 04	EPR/HP3098VH	138975
29-Nov-21	CBDU149396	RMS Ltd	EJ68 TGK	Hardcore	17 01 07	EPR/KB3136AM	626094
29-Nov-21	CBDU149396	RMS Ltd	EK19 UUV	Hardcore	17 01 07	EPR/KB3136AM	631586
29-Nov-21	CBDU149396	RMS Ltd	EU66 XEX	Hardcore	17 01 07	EPR/KB3136AM	631372
29-Nov-21	CBDU149396	RMS Ltd	EH19 UMA	Hardcore	17 01 07	EPR/KB3136AM	636824
29-Nov-21	CBDU149396	RMS Ltd	EK19 UVJ	Hardcore	17 01 07	EPR/KB3136AM	626838
30-Nov-21	CBDU116673	O'Donovan	KT19 JPV	Hardcore	17 01 07	N15 4QF	325380
30-Nov-21	CBDU116673	O'Donovan	KW17 YMR	Hardcore	17 01 07	N15 4QF	330081
30-Nov-21	CBDU116673	O'Donovan	GR18 XCM	Hardcore	17 01 07	N15 4QF	329756
30-Nov-21	CBDU116673	O'Donovan	WP15 EOO	Hardcore	17 01 07	N15 4QF	327446
30-Nov-21	CBDU116673	O'Donovan	YN16 FTL	Hardcore	17 01 07	N15 4QF	329851

31 Daleham Gardens			DEN	AOLITION	Import Log	
Date	Carrier Registration	Haulier	Veh Reg	Material Description	Collection Point	Ticket No
08-Dec-21	CBDU116673	O'Donovan	EK19 UWN	6F2	N15 4QF	326399
08-Dec-21	CBDU116673	O'Donovan	496 JOE	6F2	N15 4QF	319081
08-Dec-21	CBDU116673	O'Donovan	EK19 UWL	6F2	N15 4QF	320076
08-Dec-21	CBDU116673	O'Donovan	KR68 UDU	6F2	N15 4QF	319160
13-Dec-21	CBDU116673	O'Donovan	EY18 HBF	6F2	N15 4QF	328810
13-Dec-21	CBDU116673	O'Donovan	GF18 ZTU	6F2	N15 4QF	327584
13-Dec-21	CBDU116673	O'Donovan	GF18 ZTP	6F2	N15 4QF	329244
13-Dec-21	CBDU116673	O'Donovan	GF18 ZTP	6F2	N15 4QF	329246
14-Dec-21	CBDU93685	LYNCH	EX21 HVT	Top Soil	UB9 4DF	T4818211214065230
14-Dec-21	CBDU93685	LYNCH	EX21 HVT	Top Soil	UB9 4DF	T4818211214102645
14-Dec-21	CBDU93685	LYNCH	EX21 HVT	Top Soil	UB9 4DF	T4818211214085115
14-Dec-21	CBDU93685	LYNCH	KR69 OSY	Top Soil	UB9 4DF	377337
14-Dec-21	CBDU93685	LYNCH	KR69 OSY	Top Soil	UB9 4DF	377338
14-Dec-21	CBDU93685	LYNCH	KR69 OSY	Top Soil	UB9 4DF	377339
14-Dec-21	CBDU93685	LYNCH	KR69 OSW	Top Soil	UB9 4DF	381987
14-Dec-21	CBDU93685	LYNCH	KR69 OSW	Top Soil	UB9 4DF	381988

31 Daleham Gardens			DEM	OLITION	Import Log		
Date	Carrier Registration Haulier		Veh Reg	Material Description	Collection Point	Ticket No	

HEALTH AND SAFETY FILE/POST DEMOLITION WORKS REPORT (CDM 2015)

Project Name: 31 Daleham Gardens, Belsize Park, London, NW3 5BU

	The Professional Team									
Client:	London Camdei	Borough of n	Principal Contractor:			M&M Demolition Co Ltd				
Construction Consultants:	Heritage Surveys Ltd	Quantity Surveyors:	Heritage Surveys Ltd	Principal Designer:	Bailey Garr (Health and Safety) Ltd					
		Descrip	tion of the Site							
Original Site Use & Description:			M&M Demolition Ltd were contracted by London Borough of Camden to demolish the severely fire damaged property at 31 Daleham Gardens, Belsize Park, NW3 5BU. The site is located within a residential area in the London Borough of Camden the site will be sold to others for future Re-Development.							
Site Location:			31 Daleham Gardens, Belsize Park, London, NW3 5BU							
Description of V	Norks Carrie	d Out:	 Site Set Up Rodent Sur CCTV Surve Dilapidation Disconnect Tree Prote Installation Asbestos R Erection of Mechanica Removal o Rite Cleara Formation Removal o Site Cleara Formation Removal o Soil and Se Erection of 	 & Welfare A Survey A	s ental Ma caffoldi f Struct g undatio parding	onitors ng ture ons of the Site				

Access to Work Site:	Via Main Site Temporary Entrance Vehicular Gates at the front of the Site
Date of Possession of the Site and Completion Date:	18 th October, 2021 to 17 th December, 2021
Description	n of Completed Works
Description of Completed Works:	 Site Set Up & Welfare Rodent Survey CCTV Survey Dilapidation Survey Disconnection of Services Tree Protection Works Installation of Environmental Monitors Asbestos Removal Works Erection of Demolition Scaffolding Mechanical Demolition of Structure Removal of All Scaffolding Reclaiming Red Bricks Removal of Slabs and Foundations Site Clearance Works Formation of Site Levels Removal of High Level Hoarding Soil and Seeding Erection Boundary Fence Erection of Site Hoarding Front of the Site
Remaining Site Hazards and Location:	None Known
Remaining Installed Temporary Works:	Site Hoarding – Design and Calculations Attached.

Description of Completed Works (continued)					
Remaining Scaffolding:	Not Applicable				
Waste M	aterials moved from Site				
Hazardous Wastes:	Asbestos Containing Materials				
	Hazardous Waste Consignment Note Attached.				
Non-hazardous Wastes:	General Waste & Metal				
	Waste Log Attached.				
Waste Removal Contractors details					
Hazardous Wastes:	ECT Environmental Ltd – Waste Consignent Note Attached				
Non-hazardous Wastes: Final Site Conditions:	Rhino – General Waste Away From SiteManns Waste – General Waste Away From SiteRMS – Hardcore & Concrete Away From SiteO'Donovan - Hardcore & Concrete Away From SiteEMR – Scrap Metal Away From SiteWaste Log Attached.The Site was left Clean and Tidy and as per the clients requirements.				

Remaining Structures

New Boundary Fencing

Noted Structural Defects: (on site and adjacent properties)	Not Applicable
Services:	Services Disconnected by prior to demolition works commencing.

	Electrical Disconnection Certificate Attached.
	Gas Disconnection Certificate Attached.
	BT Disconnection Email Attached.
	Water – Turned off stop valve outside the Boundary.
Remaining Licences and Notices in Force:	Not Applicable
Final Site Condition Acceptance/Sign off date:	Site Handover 17.12.2021
Documents and Drav	vings Submitted with this Report
Waste Disposal	Waste Log Attached
Isolation & Disconnection Certificates	Attached

This report has been compiled in accordance with our requirements of the Construction (Design & Management) Regulations 2015 (CDM2015). The information forms our contribution to the Health and Safety File which is submitted to our client on completion of our works.

For: London Borough of Camden

Name: Matthew P Saunders

Signature:

Title: Director

M&M Demolition Co Ltd

Date: 17th December, 2021

Geofirma Ltd Cardinal Point Park Road Rickmansworth Hertfordshire WD31RE

geofirmaconsultants.co.uk

Appendix D - Project risk register

MAJOR INJURY OR ILL HEALTH	н		м	м	L					
MINOR INJURY OR ILL HEALTH	м		м	L	L					
NO INJURY OR ILL HEALTH	L		L	L	L					
CDM DESIGN RISK	ASSESSMENT FORM						•			I
Simple Works, Unit 301 Ma	re St Studios, London, E8 3LY									
DOCUMENT REF.	SW_CDM_DESIGN_HAZARD_R	RISK_ASSESSMENT_FOR	M_REV 00							
PROJECT NAME	Daleham Gardens		PREPARED BY	AC		DATE	27/01/2023			
PROJECT NO.	1803		APPROVED BY	PI		DATE	27/01/2023			
REF. NO.	HAZARD DESCRIPTION					RISK LEVEL BEFORE DESIGN	MITIGATION	MITIGATION MEASURES	RISK LEVEL AFTER DESIGN MITIGATION	SIGNIFICANT RESIDUAL RISK
						(H / M / L)			(H / M / L)	COMMENTS / ADDITIONAL INFO FOR THE CONTRACTOR & OTHERS AND METHOD OF CONVEYANCE E.G. ON DRAWINGS
1. DESIGN STAGE										·
1.1	NETWORK RAIL TUNNEL TO SC	OUTH OF SITE MAY IMP	ACT DESIGN AND APPROVAL	PROCESS COULD LEAD T	O DELAYS		н	APPROVALS WITH NETWORK RAIL WILL BE REQUIRED WHICH WILL MITIGATE ANY RISK	L	
1.2	PROPOSED SUPER IMPOSED DEAD LOADINGS (FINISHES) CURRENTLY UNCONFIRMED AND ASSUMED					L	THE FLOOR BUILD UPS AND FINISHES TO BE AGREED IN THE NEXT STAGES TO ENSURE THE STRUCTURE CAN BE DESIGNED TO ACCOMODATE THIS. CHANGES TO THESE AFTER ISSUE OF TENDER INFORMATION WOULD HAVE THE POTENTIAL TO CAUSE A REDESIGN AFFECTING STRUCTURAL ZONES AND CONSTRUCTION PROGRAMMING.	L		
1.3	PROPOSED SUPER IMPOSED DEAD LOADINGS (FINISHES) CURRENTLY UNCONFIRMED AND ASSUMED						L	THE CLADDING LOADS TO BE AGREED IN THE NEXT STAGES	L	
1.4	RISK OF CONTAMINATION ON S	SITE					м	GEOTECHNICAL INVESTIGATIONS HAVE BEEN CARRIED OUT AND A CONTAMINATION ASSESSMENT WAS INCLUDED. THE RECOMMENDATIONS ARE INCLUDED IN THE REPORT	L	
1.5	DESIGN PARAMETERS FOR SUB STRUCTURE UNKNOWN						м	GEOTECHNICAL INVESTIGATION HAVE BEEN CARRIED OUT TO DETERMINE REQUIRED PARAMETERS. THE FULL REPORT IS IN THE REPORT	L	
1.6	BASEMENT IMPACT ASSESSMENT IS REQUIRED FOR PLANNING					м	A BASEMENT IMPACT ASSESSMENT REPORT HAS BEEN PREPARED FOR SUBMISSION WITH PLANNING. AN INDPENDENT REVIEW OF THIS HAS BEEN CARRIED OUT AND SUITABLE TIME ALLOWANCE SHOULD BE MADE FOR RESOLVING ANY COMMENTS POST PLANNING	L		
1.7	RISK OF OBSTRUCTIONS FROM REMAINS OF DEMOLISHED BUILDING IF NOT FULLY REMOVED AT TIME OF DEMOLITION						м	SURVEY TO CONFIRM IF ENTIRE FOOTPRINT OF BUILDING WAS REMOVED	L	
1.8	ATTENUATION ON SITE WILL B	BE REQUIRED TO ACHIE	VE SURFACE RUN OFF RATE	Ē			м	LOCATION OF ATTENUATION TANKS LIKELY TO BE IMPACTED BY NETWORK RAIL REQUIREMENTS. BLUE ROOFS TO BE CONSIDERED IN DESIGN	м	
1.9	DRAINAGE CONNECTIONS FOR	R THE NEW DEVELOPM	ENT				м	SOME OF THE EXISTING CONNECTIONS MAY BE REUSEABLE. CCTV SURVEY UPDATES ARE BEING UNDERTAKEN TO ESTABLISH CONNECTIONS	L	
1.10	RETAINING WALLS MAY REQUI	JIRE MINIMUM OFFSETS	FROM SURROUNDING STRU	JCTURES WHICH MAY IMPA	ACT THE SIZE OF		L	FURTHER DESIGN ITREATION SHOULD MITIGATE THE RISK OF THIS	L	
1.11	DESIGN ASSUMES TIMBER IS N RULES CHANGE THE DESIGN N	NOT ACCEPTABLE WITH MAY BE REVISED TO UT	IN EXTERNAL BUILD UPS FO	OR FAÇADE WHEN OBTAINI	NG GLA FUNDING. IF		L	SITUATION AND RULES SHOULD BE MONITORED	LL	
1.12	RISK OF DEEPER DISTRIBUTIO	ON OF MADEGROUND AF	ROUND THE SITE				м	FURTHER GEOTECHNICAL INVESTIGATIONS WILL BE REQUIRED TO EXPLORE GROUND IMPROVEMENTS AND CHEK THE EXTENT OF THE MADE GROUND TO DEVELOP THE RAFT DESIGN IN THE NEXT STAGES	L	
2. CONSTRUCTION STAGE										
2.1	UNIDENTIFIED SERVICES WITH	HIN THE FOOTPRINT					м	GPR SURVEY TO BE UNDERTAKEN IN ADVANCE AND CONTRACTOR TO EXCAVATE IN 300mm INCREMENTS AND STOP TO CHECK THERE ARE NO BURIED SERVICES	L	
2.2	CONTAMINATION ON SITE						м	WAC TESTING SHOULD BE CARRIED OUT IN ADVANCE OF STARTING	L	
2.3	DISCOVERY OF UXOs						м	CONTRACTOR TO UNDERTAKE NECESSARY ASSESSMENTS AND SURVEYS TO MINIMISE RISK	L	
2.4	DAMAGE TO TREES TO BE RET	TAINED DURING CONST	RUCTION				м	REFER TO ARBORICULTURAL REPORT FOR MITIGATION OF RISK FOR TREES	L	
2.5	OPEN EXCAVATIONS						Μ	CONTRACTOR TO ENSURE ALL EXCAVATIONS ARE CARRIED OUT SAFELY	L	
2.6	EXCESSIVE CONSTRUCTION L	LIVE LOAD OR LOADING	BEFORE CONCRETE SLAB H	IAS SUFFICIENTLY CURED.			м	A SITE MANAGEMENT SYSTEM CONTROLLING ACCESS AND STORAGE OF MATERIALS/EQUIPMENT TO BE IMPLEMENTED BY CONTRACTOR	L	
2.7	DUST AND OTHER PARTICULA	ATES PRODUCED DURIN	G CONSTRUCTION WORKS,	PARTICULARY CONCRETIN	G		м	MEASURES SHOULD BE TAKEN ON SITE TO LIMIT DUST INCLUDING SUPRESSION SYSTEMS	L	
2.8	DEMO/CONSTRUCTION VIBRAT	TIONS CAUSING DAMAG	E TO SURROUNDING STRUC	CTURES			м	VIBRATION LIMITS AS PER BEST PRACTICE, CONTRACTOR TO AGREE THESE	L	
2.9	WASTE ACCEPTANCE CRITERI	RIA NOT MET					м	REMOVAL OF ANY SOIL OFF SITE TO CLASSIFY THE SITE SOILS TO BE TRANSPORTED	L	
3. MAINTENANCE & USE										
3.1	LONG TERM CREEP OF TIMBER	ER ELEMENTS IF EXPOSI	ED TO HIGH LEVELS OF MOI	STURE			м	ALL TIMBER ELEMENTS TO BE PROTECTED FROM MOISTURE INGRESS, WATERPROOFING BY OTHERS.	L	
3.2	LONG TERM RISK OF MOVEME	ENT TO SOIL DUE TO NE	IGHBOURING TREES				м	TREES OF HIGH WATER CONTENT REMOVED FROM THE SCHEME CLOSE TO THE PROPOSED DWELLINGS	L	
3.3	MAINTENANCE STRATEGY FOR	R EXTERNAL ENVELOPE	WILL BE REQUIRED WHICH	I TAKES ACCOUNT OF BUIL	DING FORM		м	08M MANUAL TO BE PREPARED	L	

Appendix E - Architect's Drawings