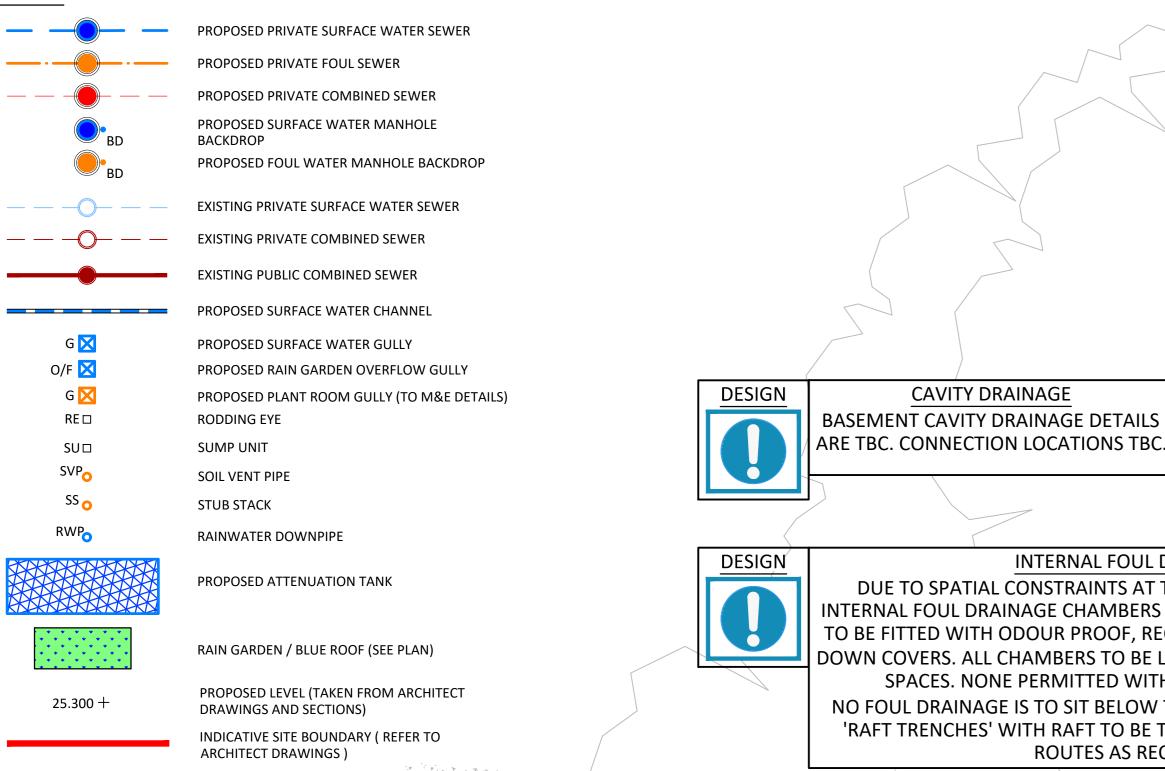

Tel +44 (0)1508 500922 Email solutions@subteno.co.uk Registered in England 10891962. www.subteno.co.uk

APPENDIX C – PROPOSED DEVELOPMENT PLANS

- P09 28/02/2023 Preliminary issue for coordination



Tel +44 (0)1508 500922 Email solutions@subteno.co.uk Registered in England 10891962. www.subteno.co.uk

APPENDIX D – PROPOSED DRAINAGE DRAWINGS

DRAINAGE NOTES.

- ALL PRECAST CONCRETE UNITS ARE TO BE TO BS 5911 (CLASS 3 SULPHATE RESISTANT CEMENT).
- ALL PROPOSED MANHOLE COVERS AND FRAMES ARE TO BE DUCTILE IRON COMPLYING WITH BS EN 124.
- ALL PRIVATE DRAINAGE WORKS TO BE IN ACCORDANCE WITH PART H OF THE BUILDING REGULATIONS AND BS EN 752
- ALL MANHOLE COVER LEVELS ARE APPROXIMATE AND TO BE ADJUSTED TO SUIT THE ARCHITECT'S PROPOSED LEVELS
- THE CONTRACTOR IS TO ALLOW FOR ALL ABANDONED DRAINAGE RUNS TO BE REMOVED OR GROUTED UP AS NECESSARY
- THE CONTRACTOR IS TO ALLOW FOR JET WASHING OF ALL LENGTHS OF EXISTING SEWERS WHICH ARE TO BE RETAINED.
- THE CONTRACTOR IS TO ALLOW FOR JET WASHING OF THE ENTIRE DRAINAGE SYSTEM ON COMPLETION OF WORKS.
- THE CONTRACTOR MUST CHECK THE LEVELS AND CONDITION OF ALL EXISTING DRAINAGE OUTFALLS PRIOR TO CONSTRUCTION OF ANY DRAINAGE, UNLESS OTHERWISE AGREED, TO ENSURE THE PROPOSED DESIGN MAY BE ACHIEVED. ANY DISCREPANCIES MUST BE REPORTED TO SIMPLE WORKS IMMEDIATELY.
- ALL RWP, SVP AND FOUL DRAINAGE POSITIONS, INCLUDING UNDERSLAB GULLIES, ARE TO BE CONFIRMED BY THE ARCHITECT.
- 10. WHERE RWP'S STUB STACKS AND SVP'S ARE CONNECTED DIRECT TO THE DRAIN, RODDING ACCESS PLATES ARE TO BE PROVIDED.
- 11. ALL FOUL WATER DRAINS ARE TO BE 100Ø @ 1:40 U.N.O.
- 12. ALL SURFACE WATER DRAINS ARE TO BE 1000 @ 1:60 U.N.O

DESIGN NOTES

SURVEY (SEC).

DESIGN.

- THE BELOW GROUND SURFACE WATER SYSTEM HAS BEEN DESIGNED TO THE FOLLOWING CONDITIONS: 1 YEAR - PIPE FULL 30 YEAR - SURCHARGING ALLOWED WITH NO FLOODING.
- 100 YEAR + 40% C/C SURCHARGING ALLOWED WITH NO FLOODING THIS DRAWING IS BASED ON ARCHITECT DRAWING REF 2102_A_999_PROPOSED_LOWER GROUND FLOOR PLAN, 2102_A_1000_PROPOSED_GROUND FLOOR PLAN, AND TOPOGRAPHICAL SURVEY REF 21-010-1-EXISTING TOPOGAPHICAL
- CONNECTIONS TO THE PUBLIC SEWER ARE SUBJECT TO FORMAL S106 APPLICATIONS WITH THAMES WATER. NO WORK ON THE PUBLIC SEWER IS TO TAKE PLACE WITHOUT PRIOR PERMISSION.
- THE DRAINAGE DESIGN IS SUBJECT TO APPROVAL WITH THE LOCAL PLANNING AUTHORITY AND THE SUBSEQUENT DISCHARGE OF RELEVANT PLANNING CONDITIONS, AND IS THEREFORE SUBJECT TO CHANGE TO SUIT LLFA COMMENTS.
- THE DRAINAGE DESIGN IS SUBJECT TO CONFIRMATION OF NETWORK RAIL ASSET PROTECTION REQUIREMENTS. FULL DETAILS OF THE BLUE ROOF INCLUDING FLOW RATES IS TO BE CONFIRMED TO COORDINATE WITH BELOW-GROUND DRAINAGE

See V. Berry

P. V. V. V. V.

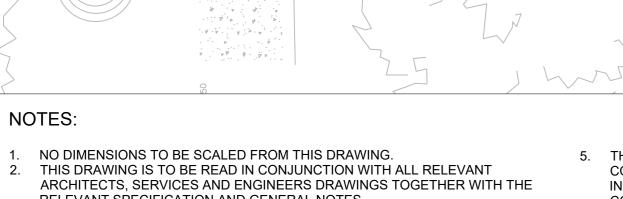
v 3 v v v

8 V 8 V

P. T. PT. P. P. P. P. P.

₩ _V v _V v

9 2 1 1


NOTES:

Yes a start of the second

P. V. K.P. K.

Р. Р. Р. Р. Р. Р. Р. Р.

ν. μ. ν. μ.

81.650+

81.150+

- ARCHITECTS, SERVICES AND ENGINEERS DRAWINGS TOGETHER WITH THE RELEVANT SPECIFICATION AND GENERAL NOTES ANY NON STRUCTURAL ITEMS SUCH AS WATERPROOFING, CLADDING, FINISHES, FIRE STOPPING ARE TO BE THE ARCHITECTS SPECIFICATIONS.
- ALL PROPRIETARY PRODUCTS ARE TO BE USED AND INSTALLED STRICTLY IN ACCORDANCE WITH THE MANUFACTURERS DETAILS AND REQUIREMENTS.

7⁰ 7 7 7

> CONFIRMED OR DESIGNED RESPECTIVELY PRACTICES.

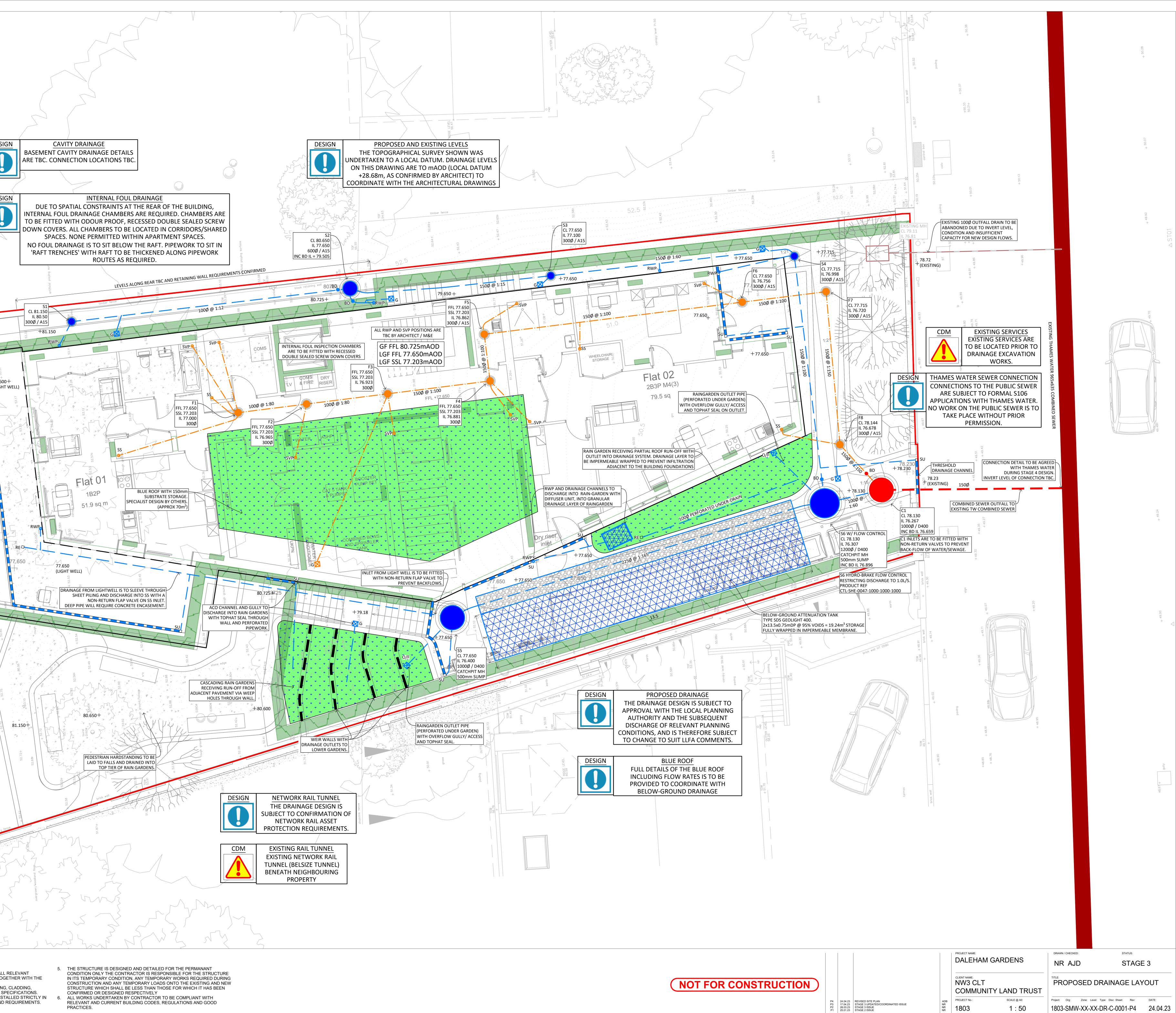
CAVITY DRAINAGE

1B2P

80.650+

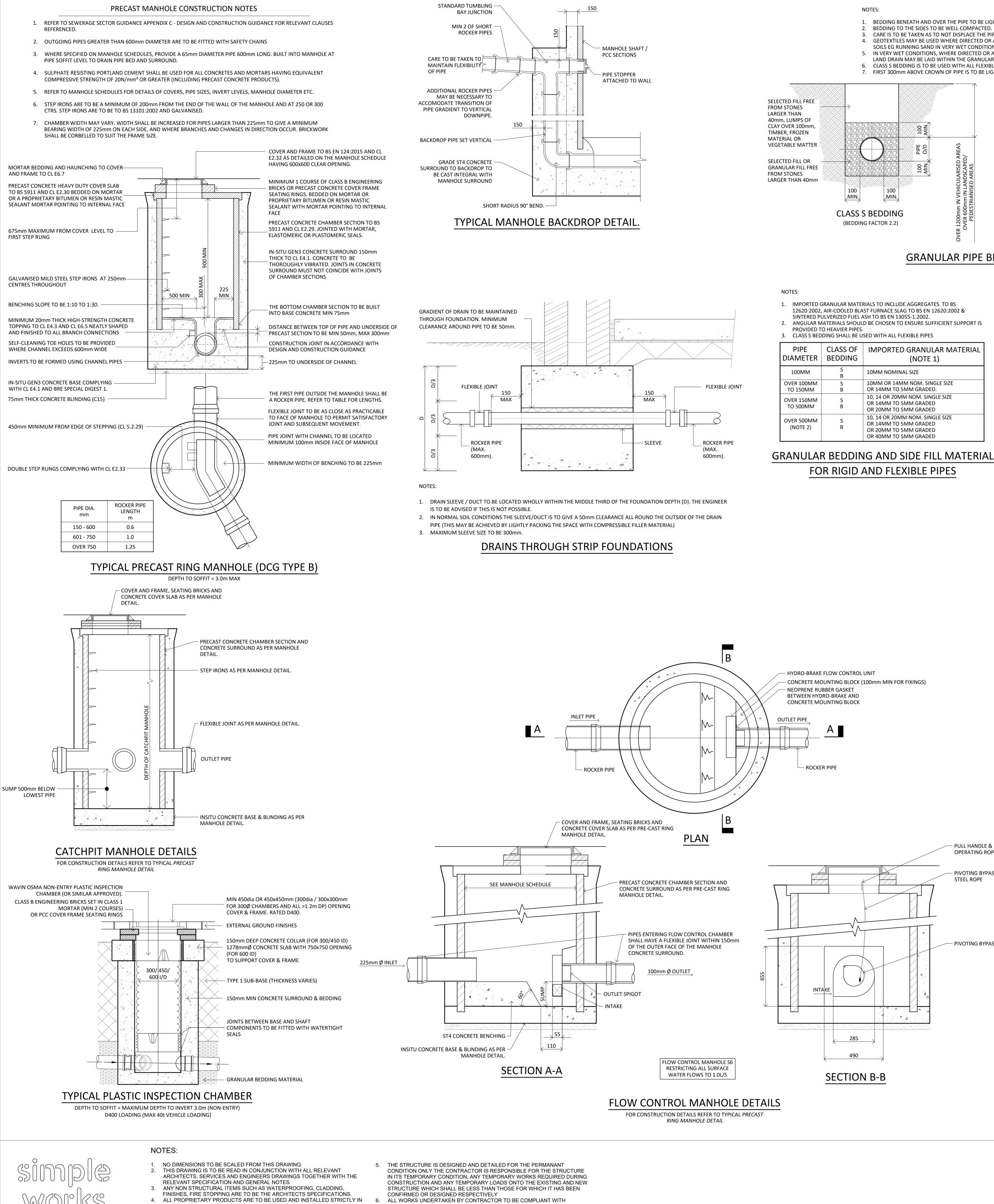
77.650

(LIGHT WELL)


51.9 sq m

L 81.150 🛲

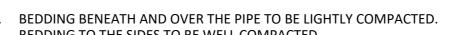
IL 80.50


300Ø / A15

LEGEND

REV. DATE DESCRIPTION

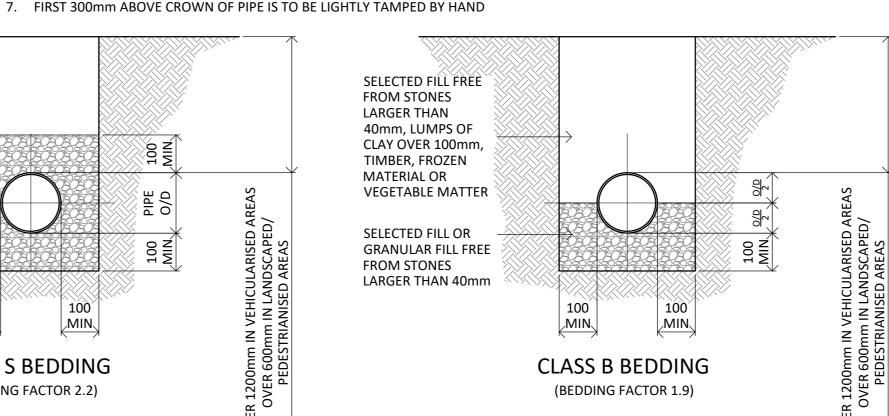
BY


ACCORDANCE WITH THE MANUFACTURERS DETAILS AND REQUIREMENTS.

PRACTICES.

RELEVANT AND CURRENT BUILDING CODES, REGULATIONS AND GOOD

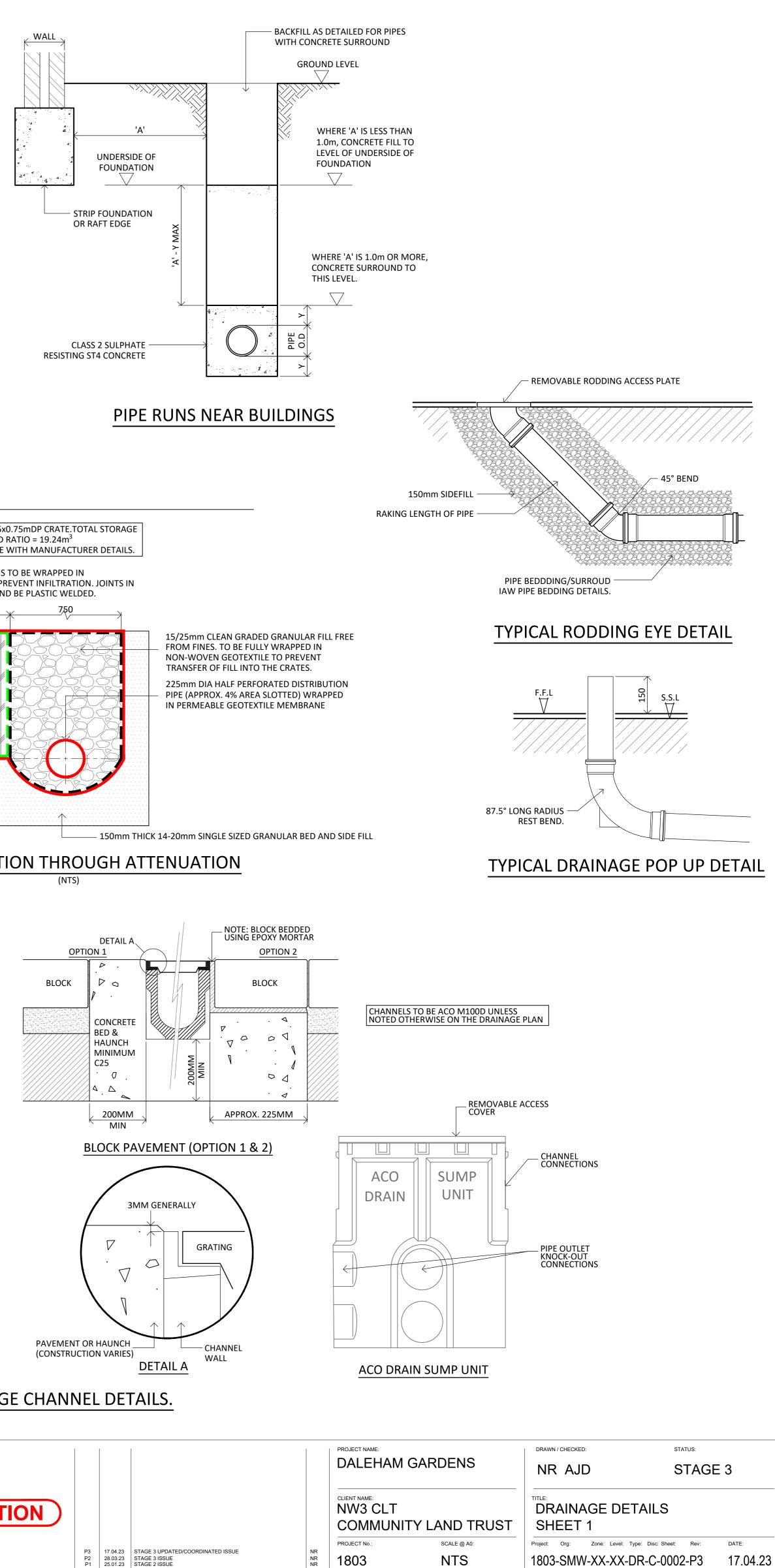
- 1. IMPORTED GRANULAR MATERIALS TO INCLUDE AGGREGATES TO BS 12620:2002, AIR-COOLED BLAST FURNACE SLAG TO BS EN 12620:2002 & SINTERED PULVERIZED FUEL ASH TO BS EN 13055-1:2002. 2. ANGULAR MATERIALS SHOULD BE CHOSEN TO ENSURE SUFFICIENT SUPPORT IS 3. CLASS S BEDDING SHALL BE USED WITH ALL FLEXIBLE PIPES CLASS OF IMPORTED GRANULAR MATERIAL


SOILS EG RUNNING SAND IN VERY WET CONDITIONS.

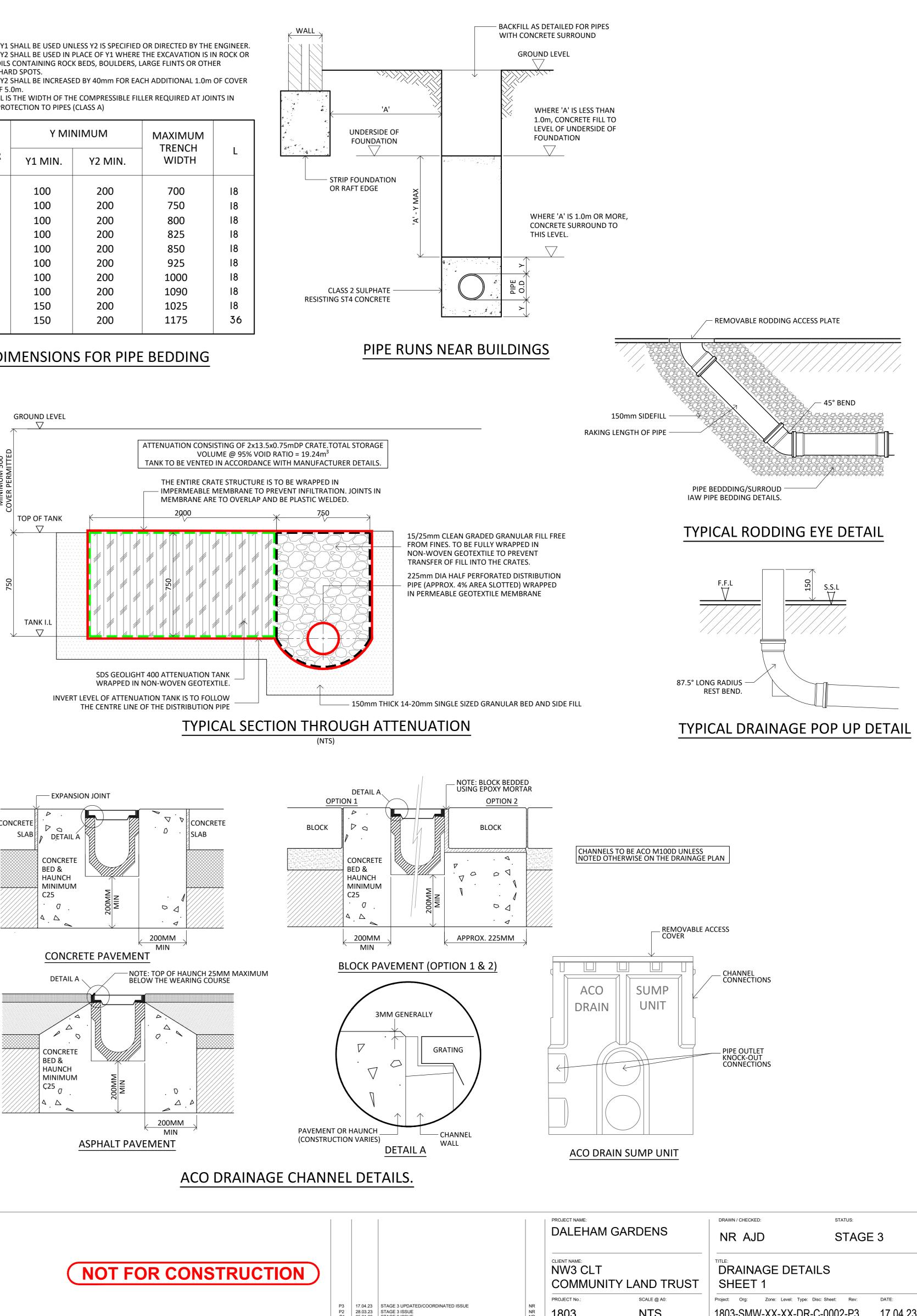
. CARE IS TO BE TAKEN AS TO NOT DISPLACE THE PIPE FROM ITS INTENDED POSITION.

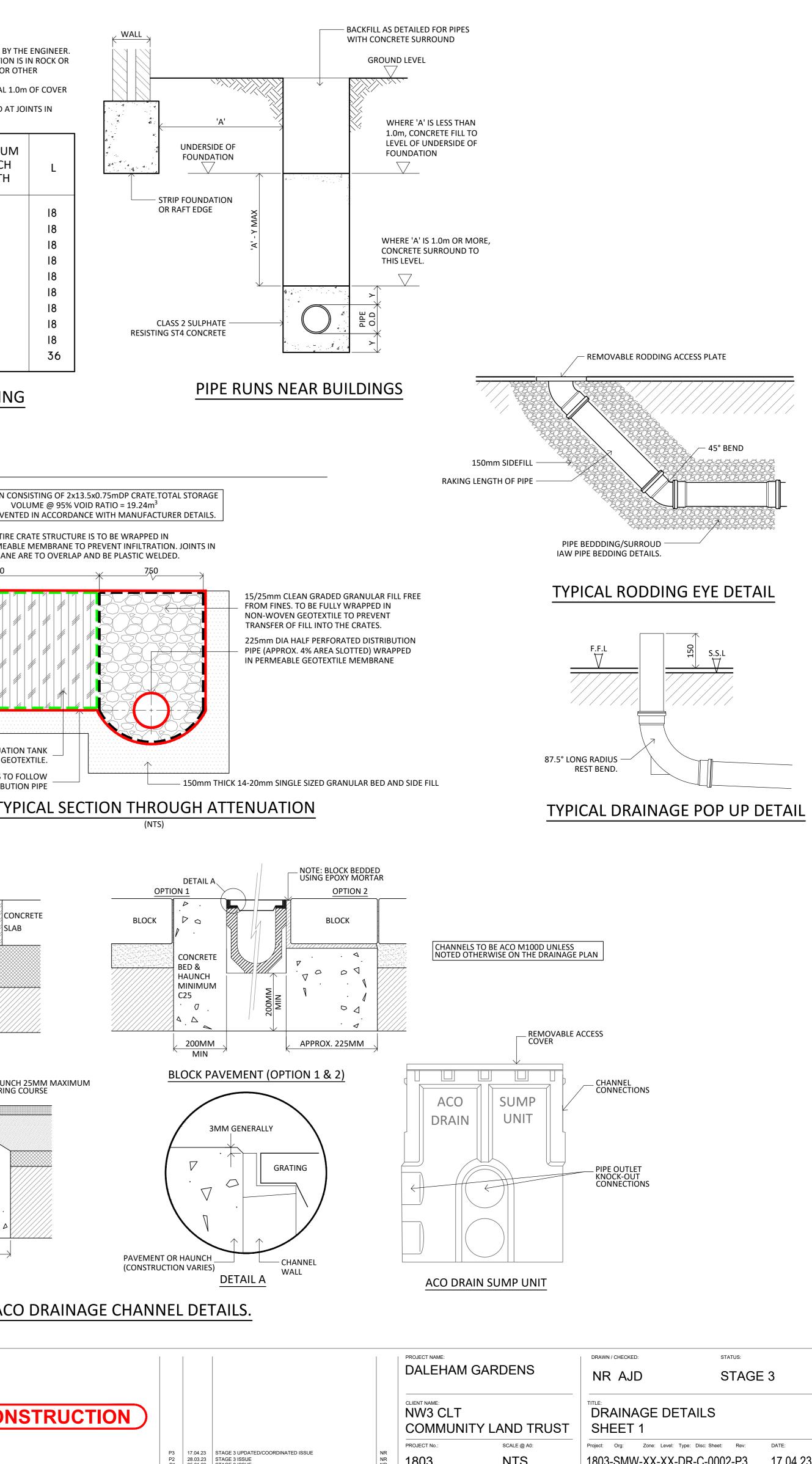
. GEOTEXTILES MAY BE USED WHERE DIRECTED OR APPROVED BY THE ENGINEER IN CERTAIN 5. IN VERY WET CONDITIONS, WHERE DIRECTED OR APPROVED BY THE ENGINEER A TEMPORARY

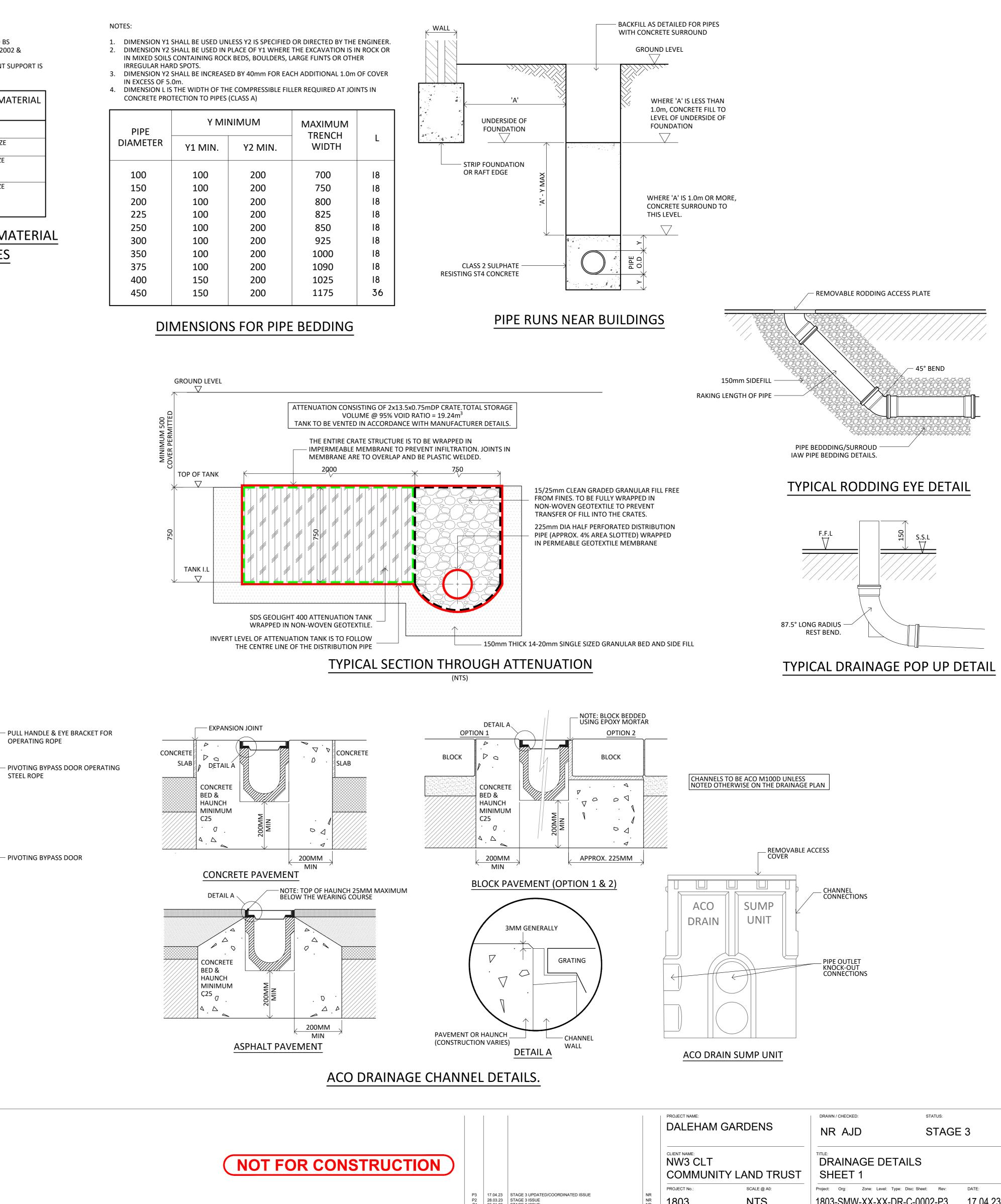
LAND DRAIN MAY BE LAID WITHIN THE GRANULAR BED. 6. CLASS S BEDDING IS TO BE USED WITH ALL FLEXIBLE PIPES.

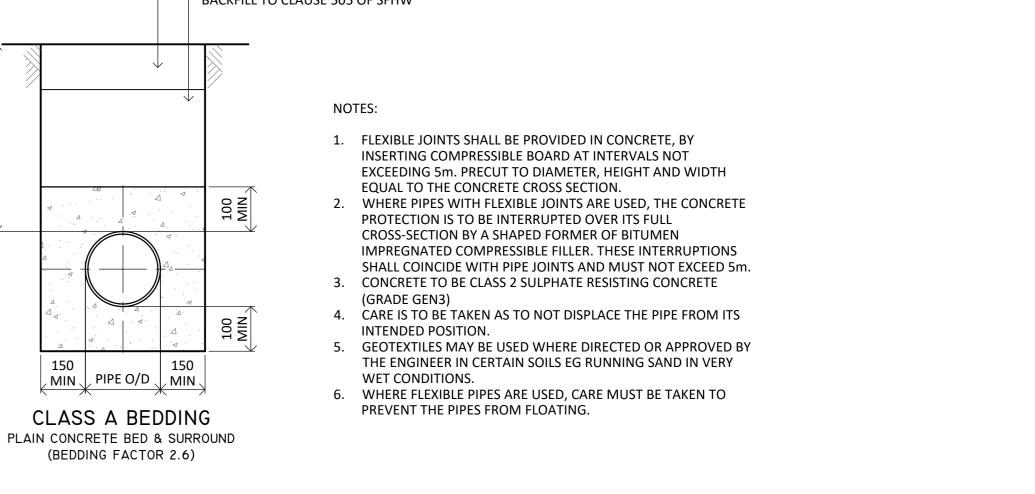

OPERATING ROPE

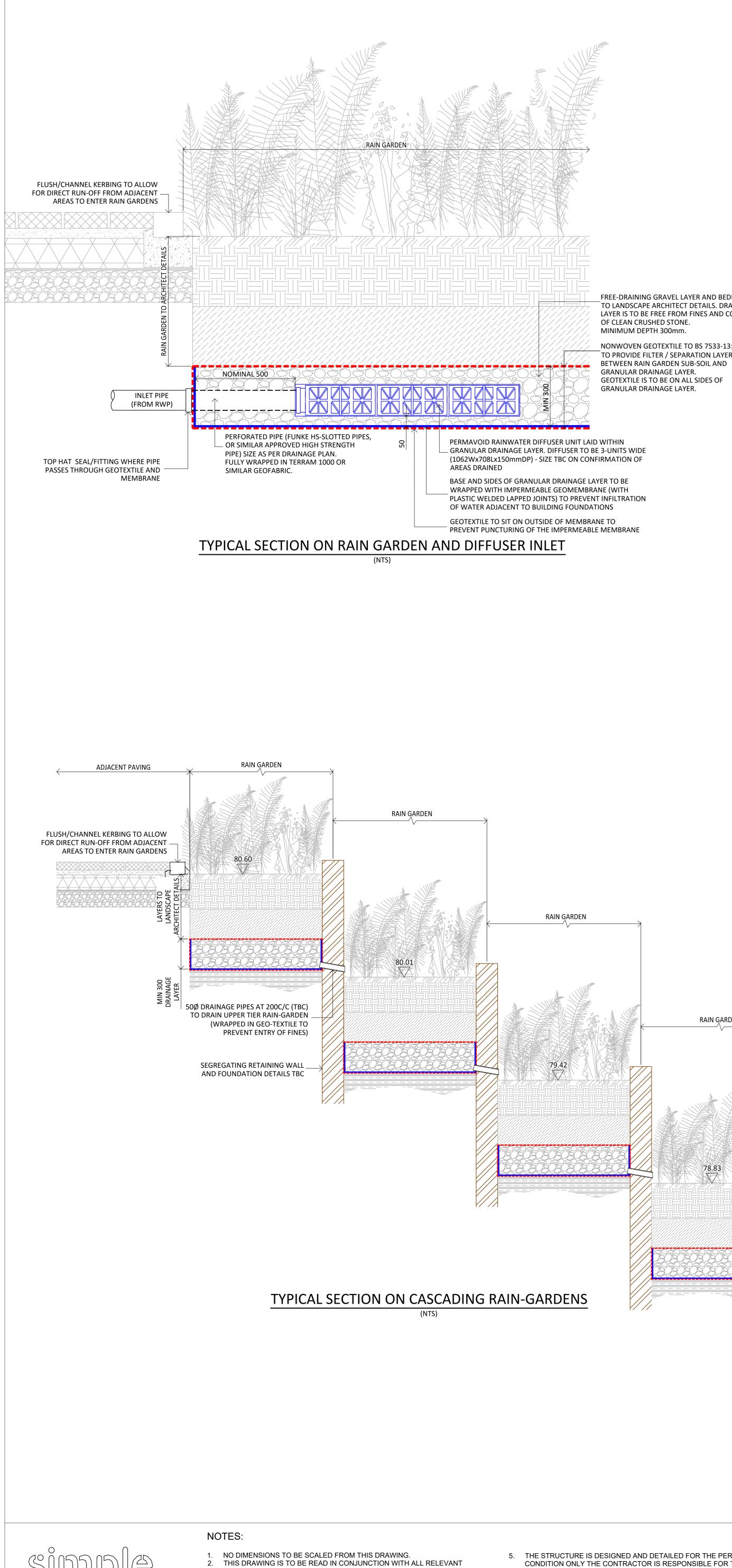
STEEL ROPE

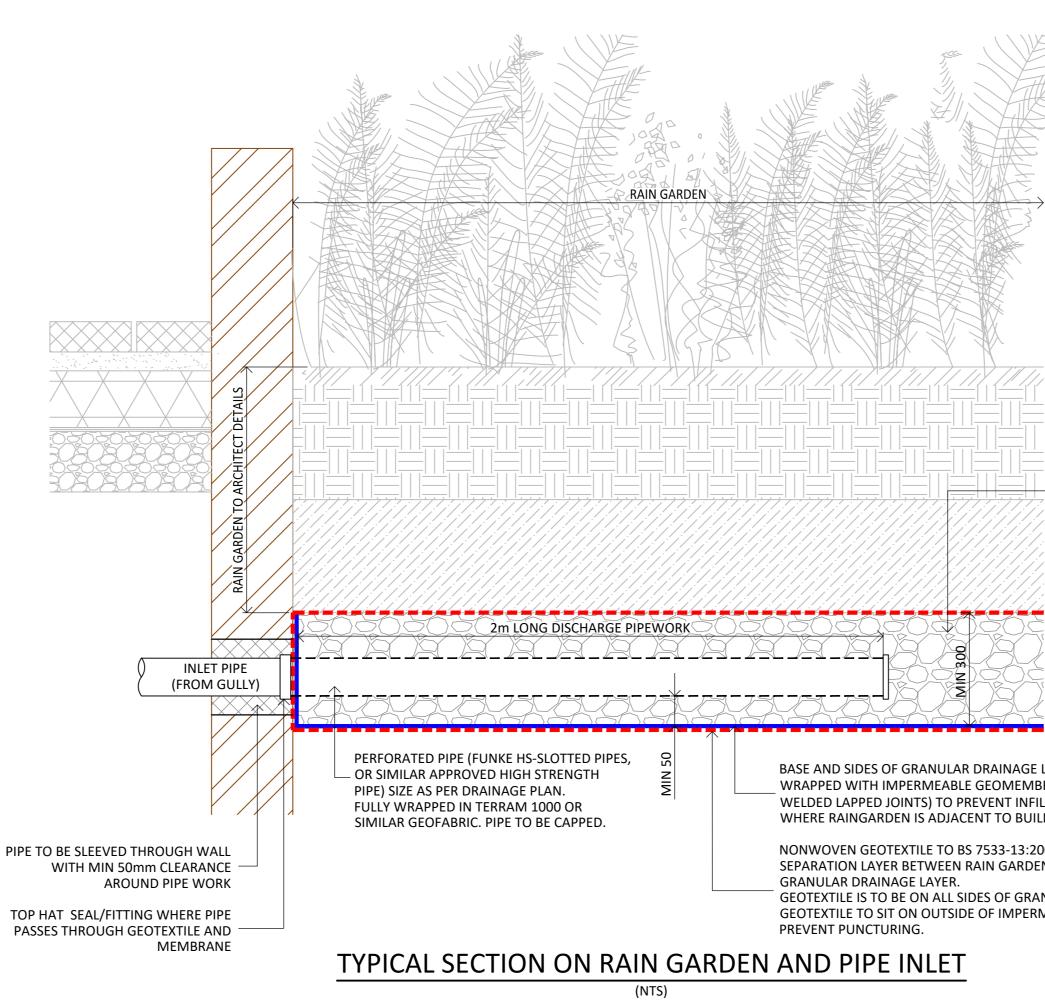

IN MIXED SOILS CONTAINING ROCK BEDS, BOULDERS, LARGE FLINTS OR OTHER


IN EXCESS OF 5.0m. CONCRETE PROTECTION TO PIPES (CLASS A)


PIPE	Y MII	NIMUM	MAXIMUM	
DIAMETER	Y1 MIN.	Y2 MIN.	TRENCH WIDTH	L
100	100	200	700	18
150	100	200	750	18
200	100	200	800	18
225	100	200	825	18
250	100	200	850	18
300	100	200	925	18
350	100	200	1000	18
375	100	200	1090	18
400	150	200	1025	18
450	150	200	1175	36

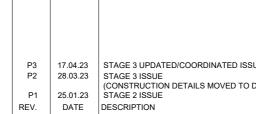


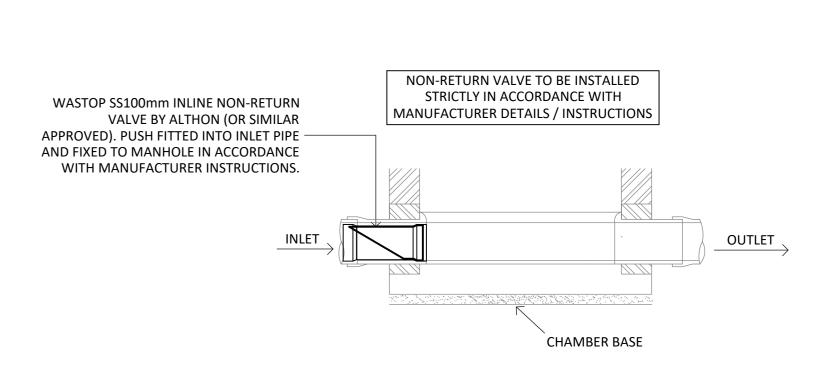



- ROAD FORMATION, SUB-FORMATION OR UNDERSIDE OF TOPSOIL - BACKFILL TO CLAUSE 505 OF SFHW

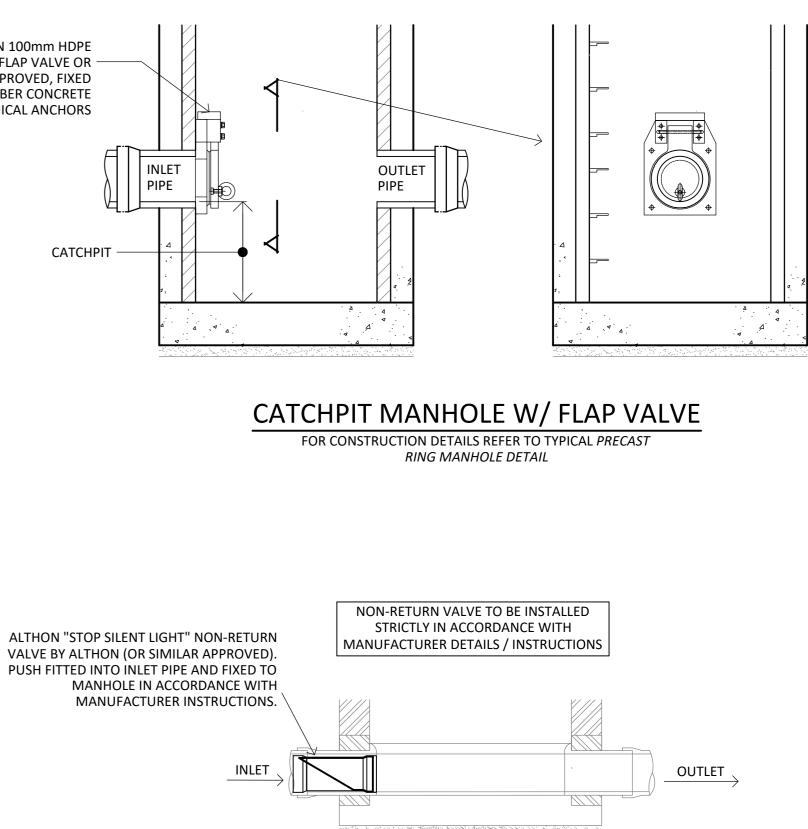
CONCRETE PIPE BEDDING DETAILS

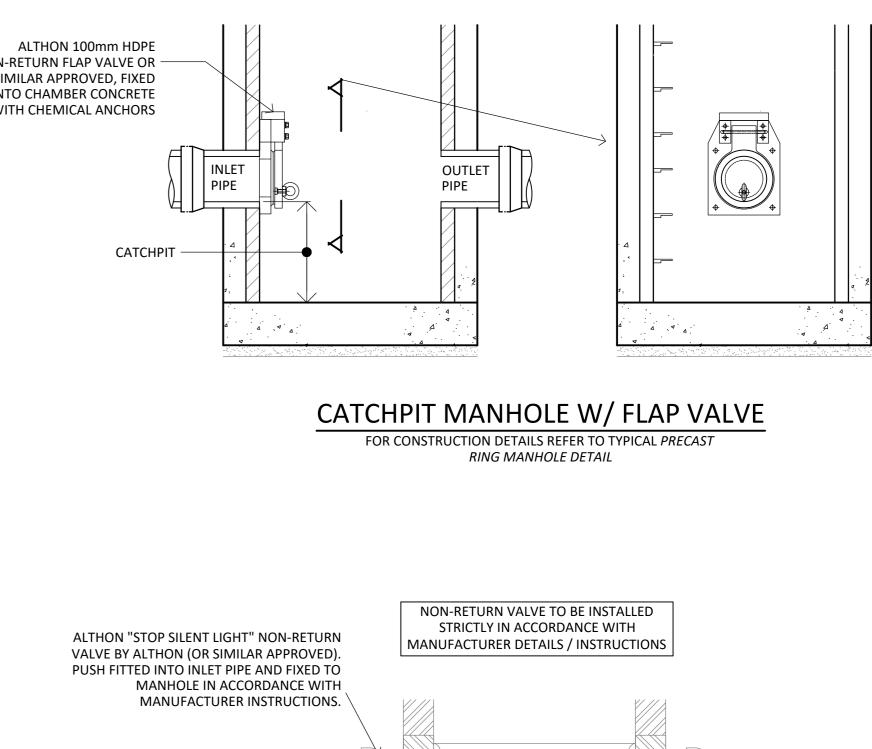
- ARCHITECTS, SERVICES AND ENGINEERS DRAWINGS TOGETHER WITH THE RELEVANT SPECIFICATION AND GENERAL NOTES ANY NON STRUCTURAL ITEMS SUCH AS WATERPROOFING, CLADDING,
- FINISHES, FIRE STOPPING ARE TO BE THE ARCHITECTS SPECIFICATIONS. ALL PROPRIETARY PRODUCTS ARE TO BE USED AND INSTALLED STRICTLY IN ACCORDANCE WITH THE MANUFACTURERS DETAILS AND REQUIREMENTS.

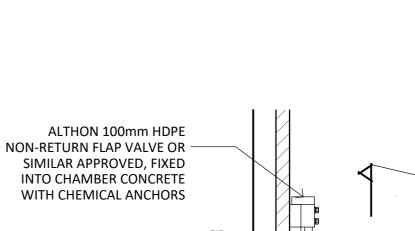

FREE-DRAINING GRAVEL LAYER AND BEDDING TO LANDSCAPE ARCHITECT DETAILS. DRAINAGE LAYER IS TO BE FREE FROM FINES AND CONSIST OF CLEAN CRUSHED STONE. MINIMUM DEPTH 300mm. NONWOVEN GEOTEXTILE TO BS 7533-13:2009 TO PROVIDE FILTER / SEPARATION LAYER GRANULAR DRAINAGE LAYER. GEOTEXTILE IS TO BE ON ALL SIDES OF

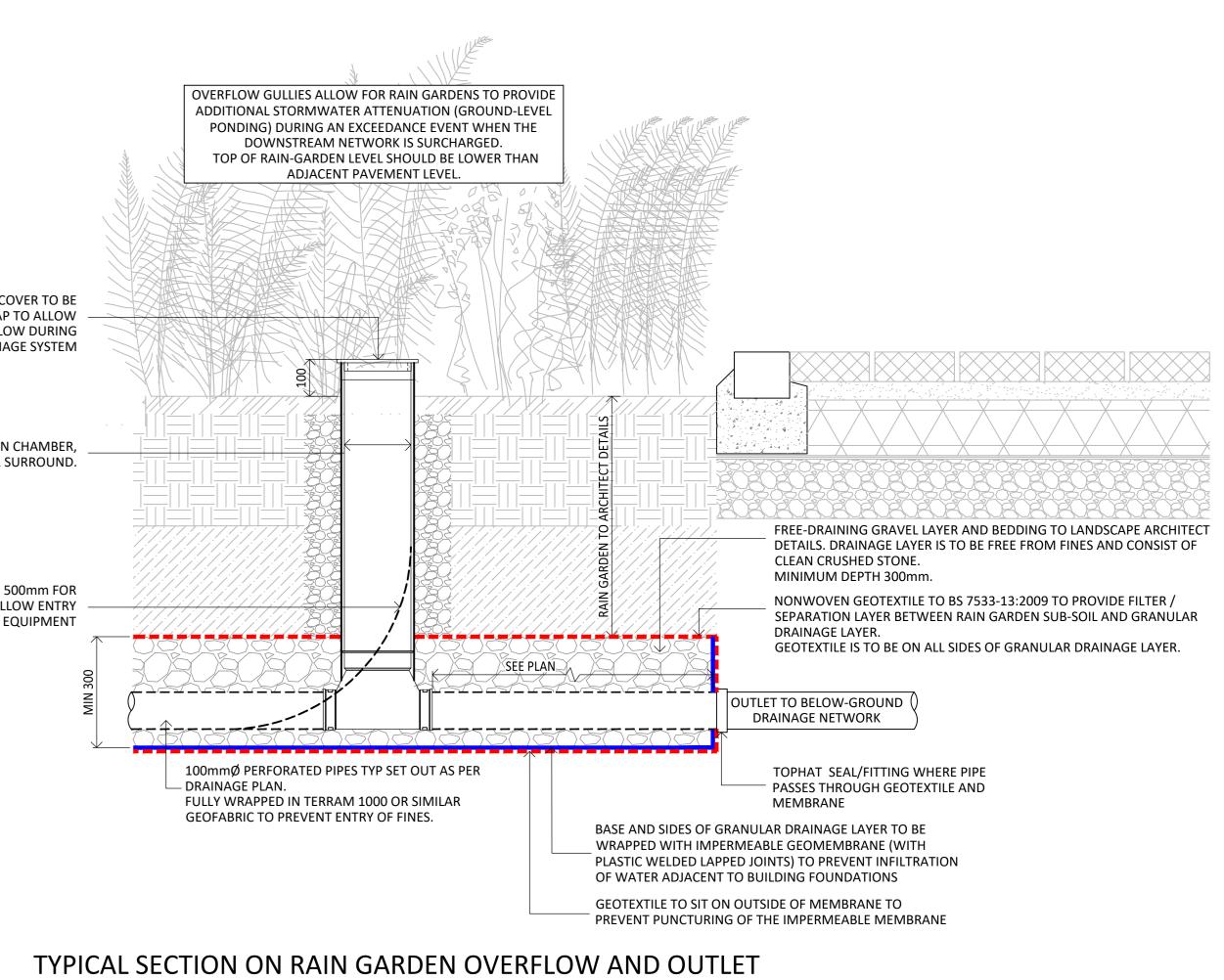

RAIN GARDEN ADJACENT PAVING RAIN GARDEN OVERFLOW / ACCÉSS GULLY. SEE DETAIL.

5. THE STRUCTURE IS DESIGNED AND DETAILED FOR THE PERMANANT CONDITION ONLY THE CONTRACTOR IS RESPONSIBLE FOR THE STRUCTURE IN ITS TEMPORARY CONDITION, ANY TEMPORARY WORKS REQUIRED DURING CONSTRUCTION AND ANY TEMPORARY LOADS ONTO THE EXISTING AND NEW STRUCTURE WHICH SHALL BE LESS THAN THOSE FOR WHICH IT HAS BEEN CONFIRMED OR DESIGNED RESPECTIVELY ALL WORKS UNDERTAKEN BY CONTRACTOR TO BE COMPLIANT WITH RELEVANT AND CURRENT BUILDING CODES, REGULATIONS AND GOOD

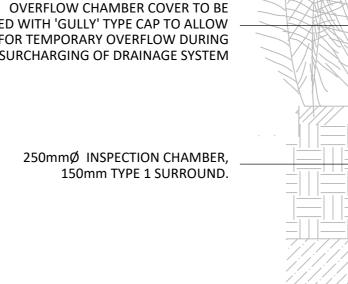

PRACTICES.

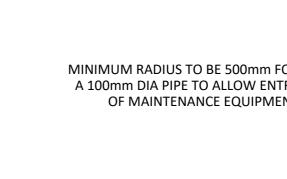


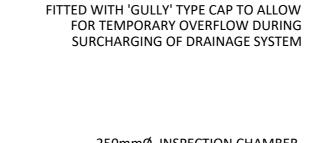




(NTS)







MINIMUM RADIUS TO BE 500mm FOR A 100mm DIA PIPE TO ALLOW ENTRY OF MAINTENANCE EQUIPMENT

FREE-DRAINING GRAVEL LAYER AND BEDDING TO LANDSCAPE ARCHITECT DETAILS. DRAINAGE LAYER IS TO BE FREE FROM FINES AND CONSIST OF CLEAN CRUSHED STONE. MINIMUM DEPTH 300mm.

BASE AND SIDES OF GRANULAR DRAINAGE LAYER TO BE WRAPPED WITH IMPERMEABLE GEOMEMBRANE (WITH PLASTIC WELDED LAPPED JOINTS) TO PREVENT INFILTRATION OF WATER WHERE RAINGARDEN IS ADJACENT TO BUILDING FOUNDATIONS NONWOVEN GEOTEXTILE TO BS 7533-13:2009 TO PROVIDE FILTER / GEOTEXTILE IS TO BE ON ALL SIDES OF GRANULAR DRAINAGE LAYER. GEOTEXTILE TO SIT ON OUTSIDE OF IMPERMEABLE MEMBRANE TO

SEPARATION LAYER BETWEEN RAIN GARDEN SUB-SOIL AND

GULLY IS SUITABLE FOR LIGHT DUTY PEDESTRIAN FOOTPATH AREAS ONLY,

DRAINING AREAS LESS THAN 20m²

TRAPPED GULLY

- GULLY GRATING TO ARCHITECT SPECIFICATION

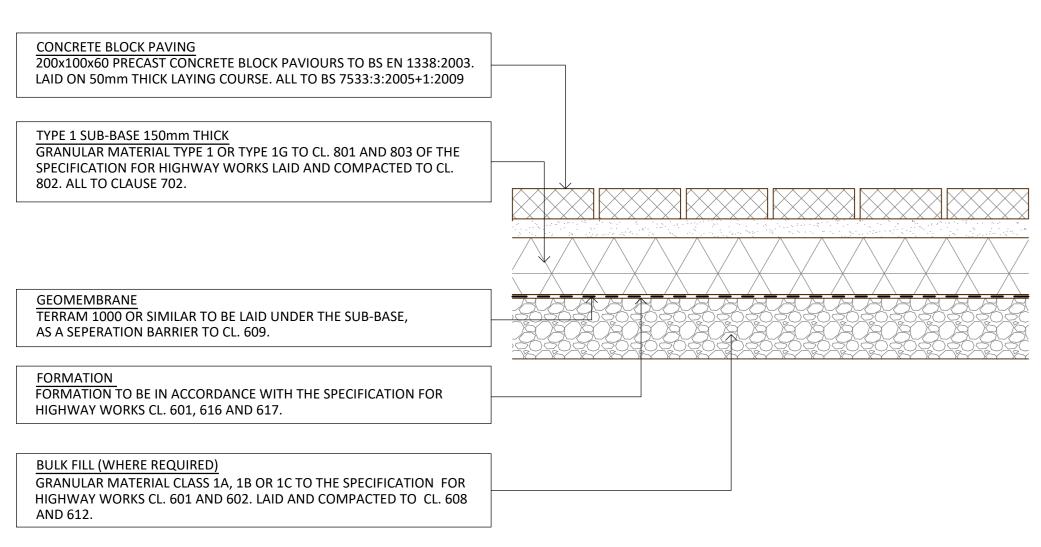
RAISING PIECE (IF REQUIRED)

100Ø OUTLET

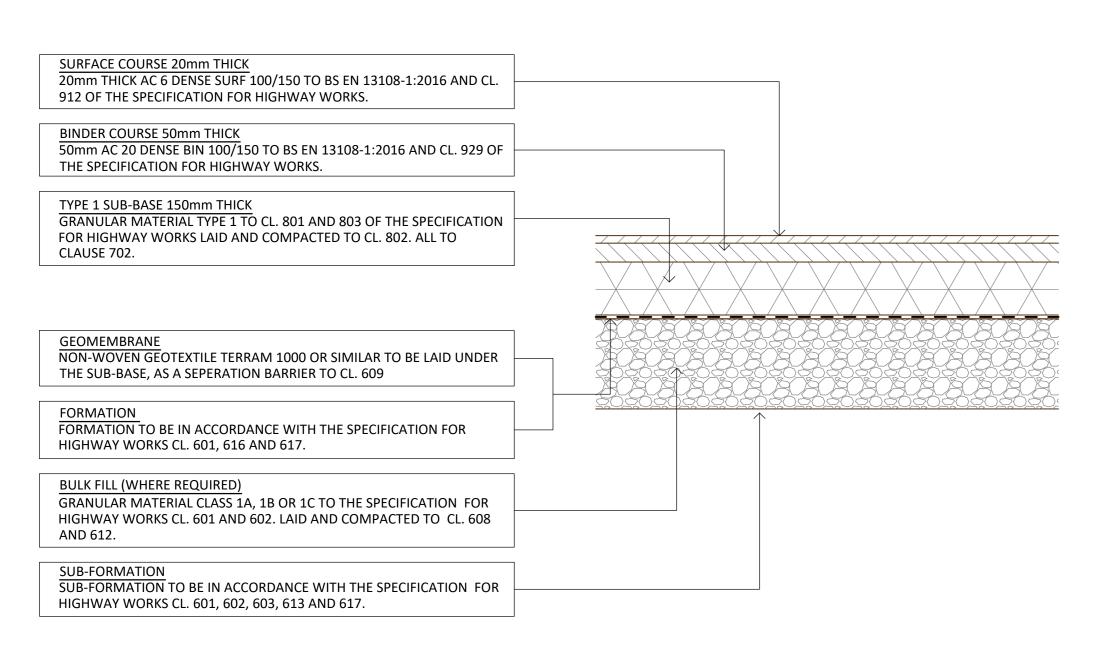
225mmØ x 595mm DEEP YARD GULLY POT

– SUMP/BOTTLE TRAP

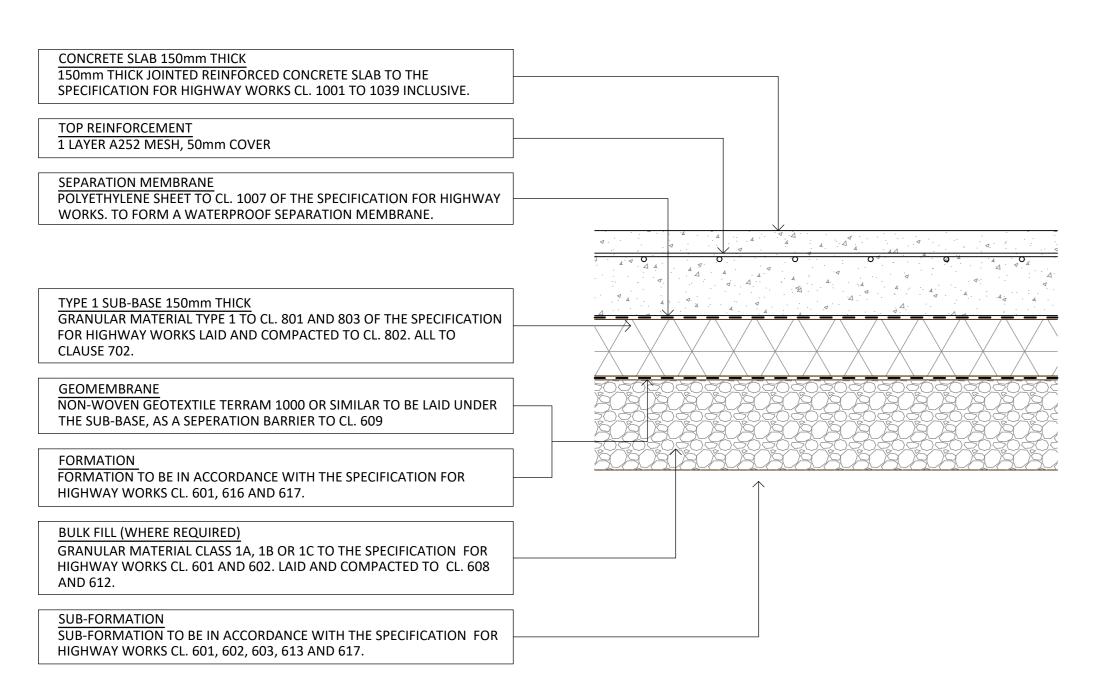
RODDING EYE WITH PLUG/STOPPER


REMOVABLE GALVANISED BUCKET (NOT

SUITABLE FOR HINGED GULLY GRATING)


150mm MINIMUM THICKNESS CLASS 2 SULPHATE RESISTING ST4 CONCRETE BED AND SURROUND

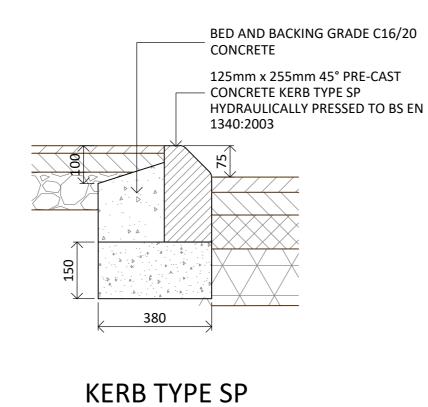
STORM DRAINAGE NON-RETURN VALVE


		DALEHAM	GARDENS	DRAWN / CHECKED:	status: STAGE	E 3
		CLIENT NAME: NW3 CLT COMMUNI	TY LAND TRUST	DRAINAGE DE SHEET 2	TAILS	
SUE 9 DRG C-0004)	NR NR BY	PROJECT No.: 1803	SCALE @ A0: NTS	Project: Org: Zone: Level: 7	Type: Disc: Sheet: Rev: DR-C-0003-P3	DATE: 17.04.23

BLOCK PAVED FOOTPATH CONSTRUCTION

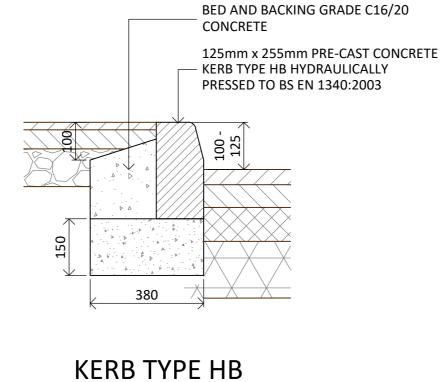
ASPHALT FOOTPATH CONSTRUCTION

BIN STORE CONSTRUCTION (NON-VEHICULAR LOADING)

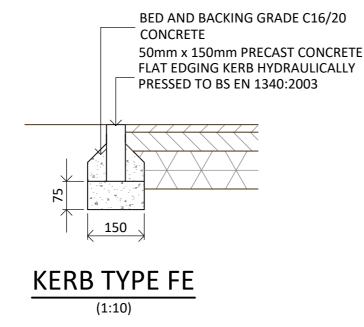

NOTES:

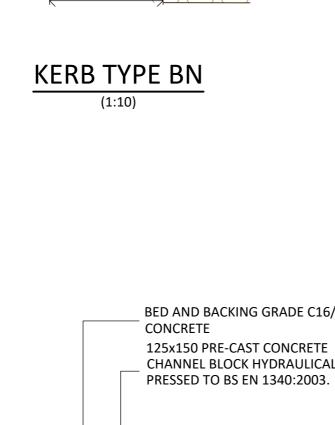
- 1. NO DIMENSIONS TO BE SCALED FROM THIS DRAWING. 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT
- ARCHITECTS, SERVICES AND ENGINEERS DRAWINGS TOGETHER WITH THE RELEVANT SPECIFICATION AND GENERAL NOTES ANY NON STRUCTURAL ITEMS SUCH AS WATERPROOFING, CLADDING,
- FINISHES, FIRE STOPPING ARE TO BE THE ARCHITECTS SPECIFICATIONS. 4. ALL PROPRIETARY PRODUCTS ARE TO BE USED AND INSTALLED STRICTLY IN ACCORDANCE WITH THE MANUFACTURERS DETAILS AND REQUIREMENTS.
- CONFIRMED OR DESIGNED RESPECTIVELY PRACTICES.

6


5. THE STRUCTURE IS DESIGNED AND DETAILED FOR THE PERMANANT CONDITION ONLY THE CONTRACTOR IS RESPONSIBLE FOR THE STRUCTURE IN ITS TEMPORARY CONDITION, ANY TEMPORARY WORKS REQUIRED DURING CONSTRUCTION AND ANY TEMPORARY LOADS ONTO THE EXISTING AND NEW STRUCTURE WHICH SHALL BE LESS THAN THOSE FOR WHICH IT HAS BEEN ALL WORKS UNDERTAKEN BY CONTRACTOR TO BE COMPLIANT WITH RELEVANT AND CURRENT BUILDING CODES, REGULATIONS AND GOOD

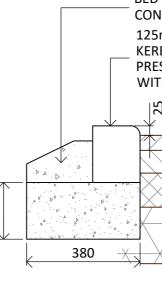
FOR LOCATION AND EXTENT OF TYPES OF CONSTRUCTION AND KERBING **REFER TO ARCHITECTS DRAWINGS**



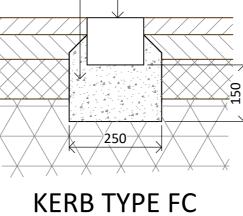


(1:10)

(1:10)



(1:10)



BED AND BACKING GRADE C16/20

CONCRETE 125mm x 150mm PRE-CAST CONCRETE

KERB TYPE BN HYDRAULICALLY PRESSED TO BS EN 1340:2003. WITH 25mm KERB UPSTAND.

BED AND BACKING GRADE C16/20 125x150 PRE-CAST CONCRETE CHANNEL BLOCK HYDRAULICALLY

NOT FOR CONSTRUCTION

1	PROJECT NAME:		DRAWN / CHECKE	D:	STATUS:	
	DALEHAM	GARDENS	NR AJ	D	STAGE	3
	CLIENT NAME: NW3 CLT COMMUNI	TY LAND TRUST		NAL WORKS	TAILS	
	PROJECT No.:	SCALE @ A0:	Project: Org:	Zone: Level: Type: Disc: Shee	et: Rev:	DATE:
NR NR BY	1803	NTS	1803-SMV	V-XX-XX-DR-C-00	04-P2	17.04.23

Tel +44 (0)1508 500922 Email solutions@subteno.co.uk Registered in England 10891962. www.subteno.co.uk

APPENDIX E – DRAINAGE CALCULATIONS

	Subteno Limited	File: Proposed Drainage.pfd	Page 1
Subteno	Crafton House	Network: Storm Network	Daleham Gardens
	Mentmore Way, Poringland	Nathan Rowe	Stage 3 Drainage Design
Engineering Consultants	NR14 7XP	17/04/2023	
			•

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	х

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.013	5.00	81.150	300	-14.123	281.460	0.650
2	0.006	5.00	80.650	600	-2.715	282.816	3.000
3	0.013	5.00	77.650	300	5.505	283.341	0.550
4	0.004	5.00	77.690	300	15.482	284.142	0.692
5	0.011	5.00	77.650	1000	1.477	269.338	1.250
6	0.005	5.00	78.144	1200	16.728	274.022	1.837
6_OUT			78.150	1000	19.050	274.568	1.883

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	11.488	0.600	80.500	79.505	0.995	11.5	100	5.08	50.0
1.001	2	3	8.237	0.600	77.650	77.100	0.550	15.0	150	5.14	50.0
1.002	3	4	10.009	0.600	77.100	76.998	0.102	98.1	150	5.30	50.0
1.003	4	6	10.196	0.600	76.998	76.896	0.102	100.0	150	5.47	50.0
2.000	5	6	15.954	0.600	76.400	76.307	0.093	171.5	225	5.27	50.0
1.004	6	6_OUT	2.385	0.600	76.420	76.267	0.153	15.6	100	5.49	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	2.287	18.0	1.7	0.550	1.045	0.013	0.0	21	1.433
1.001	2.616	46.2	2.6	2.850	0.400	0.019	0.0	24	1.403
1.002	1.014	17.9	4.3	0.400	0.542	0.032	0.0	50	0.836
1.003	1.005	17.8	4.8	0.542	1.098	0.036	0.0	54	0.858
2.000	0.995	39.6	1.5	1.025	1.612	0.011	0.0	30	0.484
1.004	1.966	15.4	7.1	1.624	1.783	0.052	0.0	47	1.919

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m³/ha)	20.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.400	1 year (l/s)	1.0
Summer CV	0.750	30 year (l/s)	1.0
Winter CV	0.840	100 year (l/s)	1.0
Analysis Speed	Normal	Check Discharge Volume	х
Skip Steady State	х		

Subteno Limited Crafton House Mentmore Way, Pol NR14 7XP	ringland Nat	: Proposed Drainage. work: Storm Networ han Rowe 04/2023		gn
15 30 60 120 180	Storm Durati 240 360	ons 480 600	720 960 1440	
	te Change Addi CC %)		onal Flow ጊ %)	
1	0	0	0	
30 100	0 40	0 0	0 0	
Pre-	development Dis	charge Rate		
	-	-		
Site Makeu Greenfield Metho		Growth Factor 3 Growth Factor 10	-	
Positively Drained Area (ha		Betterme	-	
SAAR (mn			QBar 0.3	
Soil Inde		Q 1 yea		
SP	-	Q 30 yea		
Regic Growth Factor 1 yea		Q 100 yea	ar (I/s) 0.8	
	0.05			
Node 5	Design Modifier	<u>s (Hydrograph)</u>		
_	epression Storage ression Storage D Applies to All st	epth (mm) 5	Evapo-transpiration (mm/day)	3
Node 6	Design Modifier	<u>s (Hydrograph)</u>		
_	epression Storag ression Storage D Applies to All st	epth (mm) 5	Evapo-transpiration (mm/day)	3
Node 5	Design Modifier	<u>s (Hydrograph)</u>		
_	epression Storage ression Storage D Applies to All st	epth (mm) 5	Evapo-transpiration (mm/day)	3
Node	6 Online Hydro-B	rake [®] Control		
Flap Valve x Replaces Downstream Link √	Sun	Objective (HE) № p Available √	linimise upstream storage	
Invert Level (m) 76.420		-	IE-0047-1000-1000-1000	
Design Depth (m) 1.000	Min Outlet D			
Design Flow (I/s) 1.0	Min Node Diar	meter (mm) 1200		
Node	e 6 Carpark Stora	<u>ge Structure</u>		
Base Inf Coefficient (m/hr) 0.00000	Inve	rt Level (m) 76.307	Slope (1:X) 165.0	
Side Inf Coefficient (m/hr) 0.00000	Time to half en	npty (mins)	Depth (m) 0.750	
Safety Factor 2.0		Width (m) 2.000	Inf Depth (m)	
Porosity 0.95		Length (m) 13.500		

	Subteno Limited	File: Proposed Drainage.pfd	Page 3
Subteno	Crafton House	Network: Storm Network	Daleham Gardens
	Mentmore Way, Poringland	Nathan Rowe	Stage 3 Drainage Design
Engineering Consultants	NR14 7XP	17/04/2023	

Node 6 Link Surround Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Link	2.000
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	76.307	Surround Shape	(Trench)
Safety Factor	2.0	Time to half empty (mins)		Diameter (mm)	750

Page 4 Daleham Gardens Stage 3 Drainage Design

Results for 1 year Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	80.522	0.022	1.8	0.0100	0.0000	ОК
15 minute winter	2	10	77.675	0.025	2.7	0.0080	0.0000	ОК
15 minute winter	3	10	77.153	0.053	4.5	0.0277	0.0000	ОК
15 minute winter	4	11	77.055	0.057	5.0	0.0106	0.0000	ОК
240 minute winter	5	168	76.493	0.093	0.3	0.0897	0.0000	ОК
240 minute winter	6	168	76.493	0.186	1.5	4.3353	0.0000	ОК
15 minute summer	6_OUT	1	76.267	0.000	0.0	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	1.8	1.441	0.099	0.0142	
15 minute winter	2	1.001	3	2.7	0.742	0.058	0.0305	
15 minute winter	3	1.002	4	4.4	0.759	0.245	0.0578	
15 minute winter	4	1.003	6	4.9	0.838	0.278	0.0599	
30 minute winter	5	2.000	6	1.0	0.105	0.026	0.2897	
240 minute winter	6	Hydro-Brake®	6_OUT	0.7				5.3

Subteno Limited
Crafton House
Mentmore Way, Poringland
NR14 7XP

Page 5 Daleham Gardens Stage 3 Drainage Design

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	80.535	0.035	4.4	0.0160	0.0000	ОК
15 minute winter	2	10	77.688	0.038	6.6	0.0124	0.0000	ОК
15 minute winter	3	10	77.191	0.091	10.8	0.0480	0.0000	ОК
15 minute winter	4	11	77.096	0.098	12.1	0.0183	0.0000	ОК
180 minute winter	5	172	76.733	0.333	0.9	0.3208	0.0000	SURCHARGED
180 minute winter	6	172	76.733	0.426	3.9	11.5648	0.0000	SURCHARGED
15 minute summer	6_OUT	1	76.267	0.000	0.8	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	4.4	1.845	0.243	0.0271	
15 minute winter	2	1.001	3	6.5	0.896	0.141	0.0608	
15 minute winter	3	1.002	4	10.7	0.916	0.596	0.1167	
15 minute winter	4	1.003	6	12.0	1.036	0.676	0.1180	
15 minute winter	5	2.000	6	3.7	0.258	0.094	0.5761	
30 minute winter	6	Hydro-Brake [®]	6_OUT	0.8				7.5

Subteno Limited Crafton House Mentmore Way, Poringland NR14 7XP

File: Proposed Drainage.pfd Network: Storm Network Nathan Rowe 17/04/2023

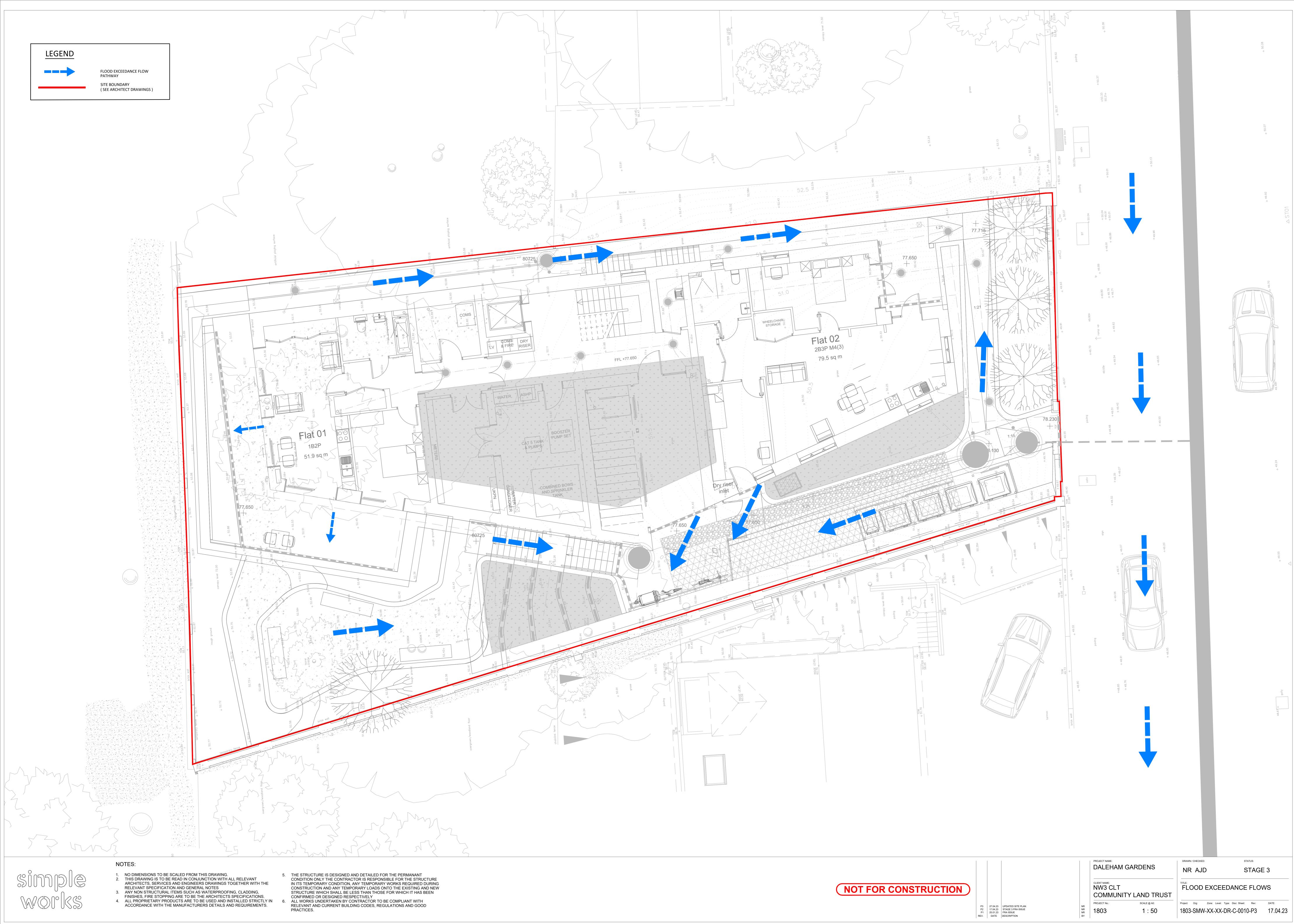
Page 6 Daleham Gardens Stage 3 Drainage Design

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	80.549	0.049	8.0	0.0226	0.0000	ОК
15 minute winter	2	10	77.702	0.052	11.9	0.0169	0.0000	ОК
240 minute winter	3	224	77.405	0.305	3.7	0.1601	0.0000	FLOOD RISK
240 minute winter	4	224	77.405	0.407	4.2	0.0765	0.0000	FLOOD RISK
240 minute winter	5	224	77.405	1.005	1.3	0.9675	0.0000	FLOOD RISK
240 minute winter	6	224	77.405	1.098	5.9	23.0934	0.0000	SURCHARGED
15 minute summer	6_OUT	1	76.267	0.000	0.8	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	7.9	2.151	0.442	0.0424	
15 minute winter	2	1.001	3	11.9	0.944	0.257	0.0948	
15 minute winter	3	1.002	4	18.8	1.071	1.052	0.1762	
15 minute winter	4	1.003	6	21.2	1.208	1.196	0.1736	
15 minute winter	5	2.000	6	6.1	0.344	0.155	0.6345	
240 minute winter	6	Hydro-Brake [®]	6_OUT	1.0				20.0

CLIENT / PROJECT	SHEET NO.	REVISION	PROJECT REF.
NW3 CLT / DALEHAM GARDENS	1	STAGE 3	S221215
TITLE	PREPARED	CHECKED	DATE
FOUL WATER SEWER DESIGN FLOW RATES	NR	-	23.03.23


Calculations for foul water underground pipe design based on BS EN 12056-2:2000 System II

		WHB	WC	Shower	Kitchen Sink	Dishwasher	Bath	Washing Machin
	Discharge Units (I/s)	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Appliances	1	1	0	1	1	1	1
FLAT 1	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5			
	Total Appliances	1	1	0	1	1	1	1
FLAT 2	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5			
	Total Appliances	1	1	0	1	1	1	1
FLAT 3	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5			•
	Total Appliances	1	1	0	1	1	1	1
FLAT 4	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units			•	4.5			•
	Total Appliances	1	1	1	1	1	1	1
FLAT 5	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units			•	4.9			•
	Total Appliances	1	1	0	1	1	1	1
FLAT 6	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5			
	Total Appliances	1	1	0	1	1	1	1
FLAT 7	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units			1	4.5			
	Total Appliances	1	1	1	1	1	1	1
FLAT 8	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units				4.9			
	Total Appliances	1	1	0	1	1	1	1
FLAT 9	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units			1	4.5			
	Total Appliances	1	1	0	1	1	1	1
FLAT 10	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units	_	-		4.5		-	
	Total Appliances	1	1	1	1	1	1	1
FLAT 11	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units			I	4.9			
	Total Appliances	1	1	0	1	1	1	1
FLAT 12	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units			I ~	4.5			
	Total Appliances	3	3	1	1	1	1	1
FLAT 13	Discharge Units	0.9	5.4	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units	0.0		1	9.1		0.0	
	Total Appliances	1	1	1	1	1	1	1
FLAT 14	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units	0.5	1.0	1 0.4	4.9		0.0	0.0
					4.5			
	K VALUE				0.5			
	Qww=K(DU)0.5 (I/s)				4.15	2		

Tel +44 (0)1508 500922 Email solutions@subteno.co.uk Registered in England 10891962. www.subteno.co.uk

APPENDIX F – FLOOD EXCEEDANCE FLOWS

APPENDIX G – THAMES WATER PRE-PLANNING ENQUIRY

Mr Nathan Rowe

Subteno Ltd Rosebery Business Park Mentmore Way Poringland Norwich Norfolk NR14 7XP

10 April 2023

Pre-planning enquiry: Confirmation of sufficient capacity

Site: 31, DALEHAM GARDENS, LONDON, NW3 5BU.

Dear Mr Rowe,

Thank you for providing information on your development

Proposed development: Flat x 14 Proposed FW point(s) of connection: To the existing combined sewer via a lateral sewer. (Gravity) Proposed SW point(s) of connection: To the existing combined sewer via a lateral sewer. (Gravity) 1.0l/s.

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent combined sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

When developing a site, policy SI 13 of the London Plan states "Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:".

The disposal hierarchy being:

1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)

2) rainwater infiltration to ground at or close to source

3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)

- 4) rainwater discharge direct to a watercourse (unless not appropriate)
- 5) controlled rainwater discharge to a surface water sewer or drain
- 6) controlled rainwater discharge to a combined sewer.

Where connection to the public sewerage network is required to manage surface water flows we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted to a total of 1.0 l/s then Thames Water would not have any objections to the proposal.

Please see the attached 'Planning your wastewater' leaflet for additional information.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 0800 009 3921.

Yours Sincerely

Christopher Allen Project Engineer Developer Services – Sewer Connections Team Tel: 0800 009 3921 @: Developer.services@thameswater.co.uk

Get advice on making your connection correctly at connectright.org.uk

Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

Tel +44 (0)1508 500922 Email solutions@subteno.co.uk Registered in England 10891962. www.subteno.co.uk

APPENDIX H – LLFA PROFORMA

Pro-forma for any schemes in flood risk areas & all major development - Camden LLFA

All yellow boxes **must** be completed on this and all relevant tabs Complete peach cells with source document and section/page references, required to support/justify responses Do not edit grey cells Please note guidelines / notes in column M Complete all relevant tabs

Introduction: This Proforma is intended to help you understand the Sustainable Drainage and Flood Risk considerations that the Lead Local Flood Authority (LLFA) and Local Planning Authority (LPA) will take into account when considering an application in Canden, as well as helping us to consider the application. This does not replace the need also to provide where required a Drainage Statement, Flood Risk Assessment, and GLA-Camden SuDS Pro-forma, and observe the detailed guidance in ' Camden Planning Guidance (CPG) Water & Flooding'. Any information provided should be referenced to the relevant section of submitted supporting documents. This summary page will help provide key details on the application. Note that certain cells on this and other tabs will be populated automatically from previous answers given.

A. Application details

Planning reference (if known)	-		
Scheme name	DALEHAM GARI	DENS	
Scheme address	31 DALEHAM GA	ARDENS, LONDON	
Postcode	NW3 5BU		
Scale of development as registered	TBC		 _
Scale - policy subcategory		Residential parts	Non-residential parts
Type(s) of development	Residential		
Site area, hectares	0.075	100%	
Of which total permeable area, to nearest 0.0001 ha	0.024	32%	
Of which total impermeable area, to nearest 0.0001 ha	0.051	68%	

	Existing	Proposed					
	TOTAL pre-		infills, re-build,			Net UPLIFT post-	
				5 /		development	
Total floor area of development (GIA)	200	200	365		365	165	
of which residential	200	200	365		365	165	
of which non- residential		0	0		0	0	
Number of residential units							
List all use class(es)							

Drainage Statement document details IB-99-XX-FRA-C-00001 Subteno FRA & Drainage Statement, April 2023 Version 2 ent April 2023 Vers

s a Flood Risk Assessment with coping & mitigation proposals s Flood Risk Assessment if in area at risk to flooding; Drainage Statemer
d Risk Zones (Sept 2014) d Risk Zones (Sept 2014) less than 50m from a LFRZ boundary Strategic Flood Risk Assessment (July 2014) Goldhurst Terrace NW6 or Hillfield Road NW6 (1-2 flooded properties pe If yes, FRA required (major scheme or new basement)
tegic Flood Risk Assessment (July 2014) trategic Flood Risk Assessment (July 2014) d Risk Assessment (July 2014) If yes, DS required (basement or other vulnerable proposals)
posals that include vulnerable uses in areas at risk of flooding intained flats; bedrooms / living areas; critical plant & infrastructure; space plant & infrastructure; spaces for young, elderly, reduced-mobility or med relopment in flood-prone areas
>1ha; major schemes or basements in area at risk of SW flooding; baser
schemes; basement or other vulnerable schemes in area at risk of floodin
in areas at risk of flooding; National Planning Policy Framework requirem
submitted alongside or within FRA, Drainage Statement or SuDS proposa

Guidelines / notes

Any known intended name for the development

Full title, author, date and version

Full title, author, date and version

Consult 'Reference data' tab for subcategory definitions

First cell: Residential / Non-residential / Mixed; Second cell: Newbuild / Refurbishment or change of use / Both

ment; SuDS proposals; Greenfield run-off rates.

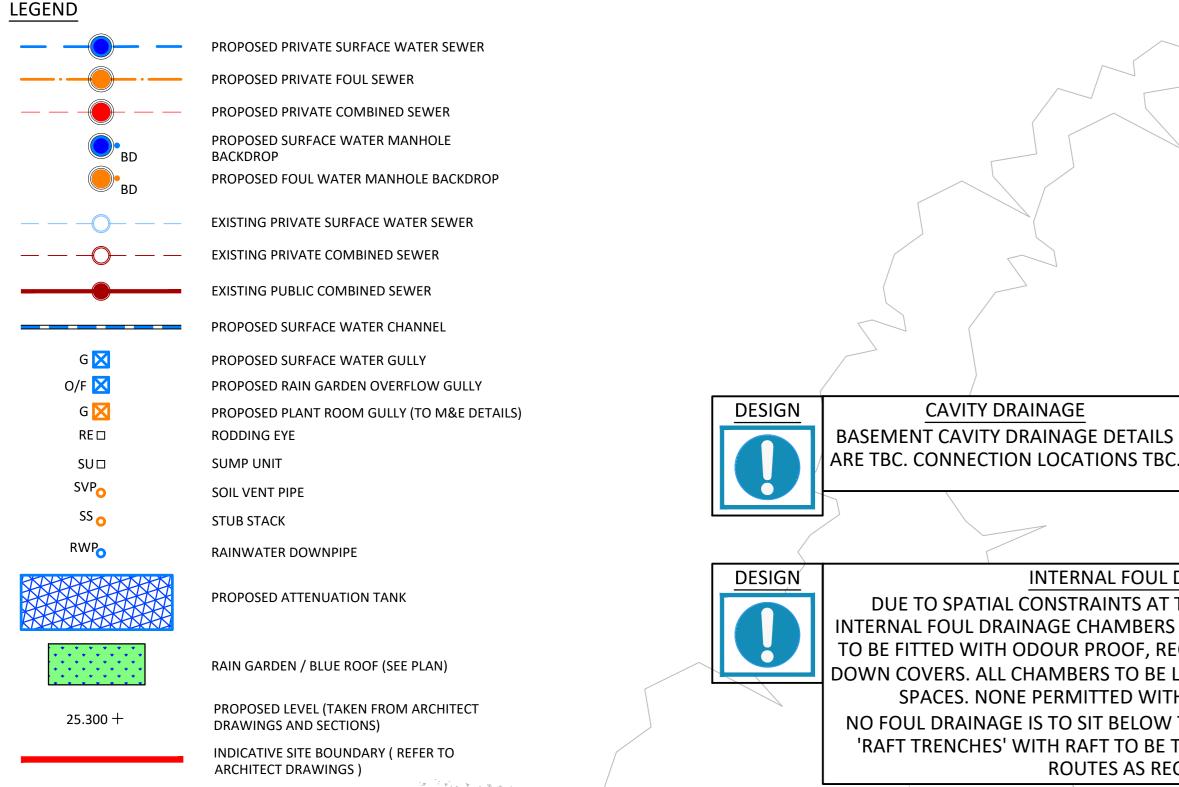
s per year)

paces for young, elderly, reduced-mobility or medically vulnerable persons. medically vulnerable persons.

asements in area at risk of other types of flooding

oding.

uirement for all major schemes

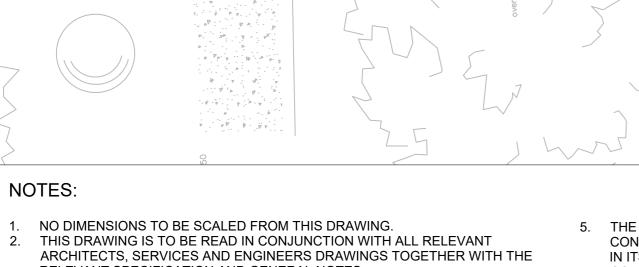

posals

Flood Risk Assessment, Proposals & Evidence

Sustainable Drainage (SuDS) Assessment, Evidence and Proposals

Recommendation (Council to complete)	Assessments	Document submitted?	Document title	Page/ section reference
	Drainage Statement (DS)	Yes	S221215-SUB-99-XX-FRA-C-00001	SECTION 6
	GLA-Camden SuDS Pro-forma (fully completed)	Yes		
Recommendation (Council to complete)	Policy compliance	Requirement met?	Document title	Page/ section reference
	DS must include identification of flood risk DS must include assessment of existing, greenfield & proposed runoff rates	Yes Yes	S2212150-SUB-99-XX-FRA-C-0001 S2212150-SUB-99-XX-FRA-C-0001	Section 4 Section 6
	DS must include identification of measures, in line with the drainage hierarchy, to reduce runoff rates	Yes	S2212150-SUB-99-XX-FRA-C-0001	Section 6
	Achieve greenfield runoff rates wherever feasible, or as close as possible Constrain runoff volumes to greenfield for 100yr 6hr event where feasible Backstop target for unaltered buildings: >50% reduction in existing run-off	1.0l/s 25m3 n/a	S2212150-SUB-99-XX-FRA-C-0001 S2212150-SUB-99-XX-FRA-C-0001	Section 6 Section 6
	Developments must include SuDS unless inappropriate Development should follow the detailed London Plan drainage hierarchy EA climate change factor applied: 2080s upper rainfall intensity allowance (40%)	Yes Yes Yes	S2212150-SUB-99-XX-FRA-C-0001 S2212150-SUB-99-XX-FRA-C-0001 S2212150-SUB-99-XX-FRA-C-0001	Section 6 Section 6 Section 6
Recommendation (Council to complete)	Evidence supporting Assessments & Proposals	Evidence submitted?	Document title	Page/ section reference
	Drawings detailing SuDS extent & position (incl. outfalls, control points, levels) Blue-green roof details with area & minimum 150mm substrate for storage Results of cross-site infiltration rate or similar tests to show soil (in)compatibility	Yes Yes No - site unsuitable	S2212150-SUB-99-XX-FRA-C-0001 S2212150-SUB-99-XX-FRA-C-0001	Appendix D Appendix D
	Professional run-off calculations supporting rates & volumes reported in DS Drawings showing on&off-site overland exceedance flows Evidence of site surveys and investigations relating to drainage	Yes Yes Yes	S2212150-SUB-99-XX-FRA-C-0001 S2212150-SUB-99-XX-FRA-C-0001 S2212150-SUB-99-XX-FRA-C-0001	Appendix E Appendix F Appendix B
	Lifetime maintenance and adoption arrangements (and maintenance owner) Management of health & safety risks related to SuDS design	Yes TBC during detailed design	S2212150-SUB-99-XX-FRA-C-0001	Section 7
	Confirmation of discharge capacity (or correspondence) from relevant body eg TW	Yes	S2212150-SUB-99-XX-FRA-C-0001	Appendix G

DRAINAGE NOTES.


- ALL PRECAST CONCRETE UNITS ARE TO BE TO BS 5911 (CLASS 3 SULPHATE RESISTANT CEMENT).
- ALL PROPOSED MANHOLE COVERS AND FRAMES ARE TO BE DUCTILE IRON COMPLYING WITH BS EN 124.
- ALL PRIVATE DRAINAGE WORKS TO BE IN ACCORDANCE WITH PART H OF THE BUILDING REGULATIONS AND BS EN 752
- ALL MANHOLE COVER LEVELS ARE APPROXIMATE AND TO BE ADJUSTED TO SUIT THE ARCHITECT'S PROPOSED LEVELS
- THE CONTRACTOR IS TO ALLOW FOR ALL ABANDONED DRAINAGE RUNS TO BE REMOVED OR GROUTED UP AS NECESSARY
- THE CONTRACTOR IS TO ALLOW FOR JET WASHING OF ALL LENGTHS OF EXISTING SEWERS WHICH ARE TO BE RETAINED.
- THE CONTRACTOR IS TO ALLOW FOR JET WASHING OF THE ENTIRE DRAINAGE SYSTEM ON COMPLETION OF WORKS.
- THE CONTRACTOR MUST CHECK THE LEVELS AND CONDITION OF ALL EXISTING DRAINAGE OUTFALLS PRIOR TO CONSTRUCTION OF ANY DRAINAGE, UNLESS OTHERWISE AGREED, TO ENSURE THE PROPOSED DESIGN MAY BE ACHIEVED. ANY DISCREPANCIES MUST BE REPORTED TO SIMPLE WORKS IMMEDIATELY.
- ALL RWP, SVP AND FOUL DRAINAGE POSITIONS, INCLUDING UNDERSLAB GULLIES, ARE TO BE CONFIRMED BY THE ARCHITECT.
- 10. WHERE RWP'S STUB STACKS AND SVP'S ARE CONNECTED DIRECT TO THE DRAIN, RODDING ACCESS PLATES ARE TO BE PROVIDED.
- 11. ALL FOUL WATER DRAINS ARE TO BE 100Ø @ 1:40 U.N.O.
- 12. ALL SURFACE WATER DRAINS ARE TO BE 1000 @ 1:60 U.N.O

DESIGN NOTES

SURVEY (SEC).

DESIGN.

- THE BELOW GROUND SURFACE WATER SYSTEM HAS BEEN DESIGNED TO THE FOLLOWING CONDITIONS: 1 YEAR - PIPE FULL 30 YEAR - SURCHARGING ALLOWED WITH NO FLOODING.
- 100 YEAR + 40% C/C SURCHARGING ALLOWED WITH NO FLOODING THIS DRAWING IS BASED ON ARCHITECT DRAWING REF 2102_A_999_PROPOSED_LOWER GROUND FLOOR PLAN, 2102_A_1000_PROPOSED_GROUND FLOOR PLAN, AND TOPOGRAPHICAL SURVEY REF 21-010-1-EXISTING TOPOGAPHICAL
- CONNECTIONS TO THE PUBLIC SEWER ARE SUBJECT TO FORMAL S106 APPLICATIONS WITH THAMES WATER. NO WORK ON THE PUBLIC SEWER IS TO TAKE PLACE WITHOUT PRIOR PERMISSION.
- THE DRAINAGE DESIGN IS SUBJECT TO APPROVAL WITH THE LOCAL PLANNING AUTHORITY AND THE SUBSEQUENT DISCHARGE OF RELEVANT PLANNING CONDITIONS, AND IS THEREFORE SUBJECT TO CHANGE TO SUIT LLFA COMMENTS.
- THE DRAINAGE DESIGN IS SUBJECT TO CONFIRMATION OF NETWORK RAIL ASSET PROTECTION REQUIREMENTS. FULL DETAILS OF THE BLUE ROOF INCLUDING FLOW RATES IS TO BE CONFIRMED TO COORDINATE WITH BELOW-GROUND DRAINAGE

81.650+

81.150+

- CONFIRMED OR DESIGNED RESPECTIVELY

PRACTICES.

CAVITY DRAINAGE

1B2P

80.650+

77.650

(LIGHT WELL)

51.9 sq m

L 81.150 🛲

IL 80.50

300Ø / A15

RELEVANT SPECIFICATION AND GENERAL NOTES

See V. Berry

P. V. V. V. V.

v 3 v v v

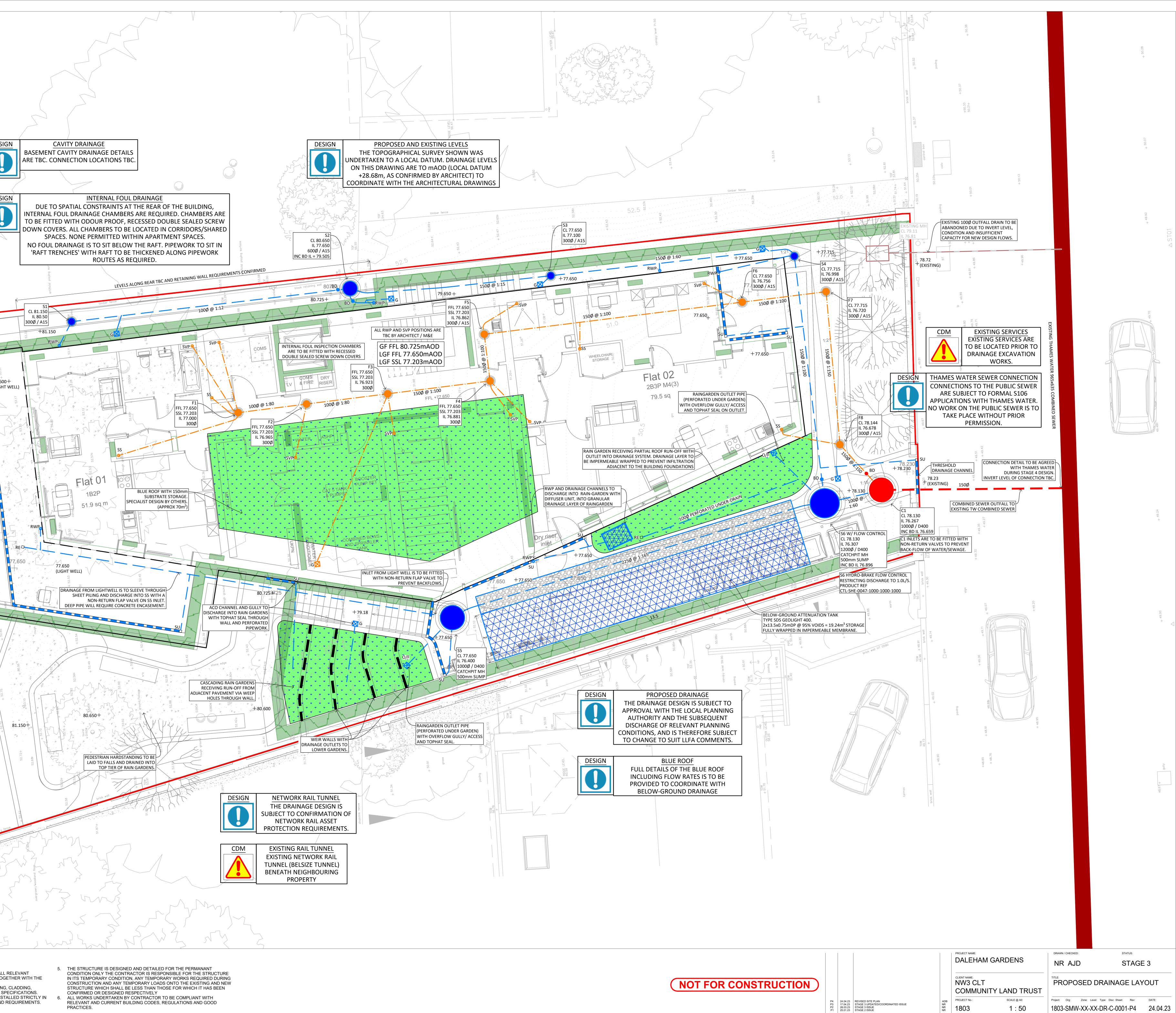
8 V 8 V

P. T. PT. P. P. P. P. P.

₩ _V v _V v

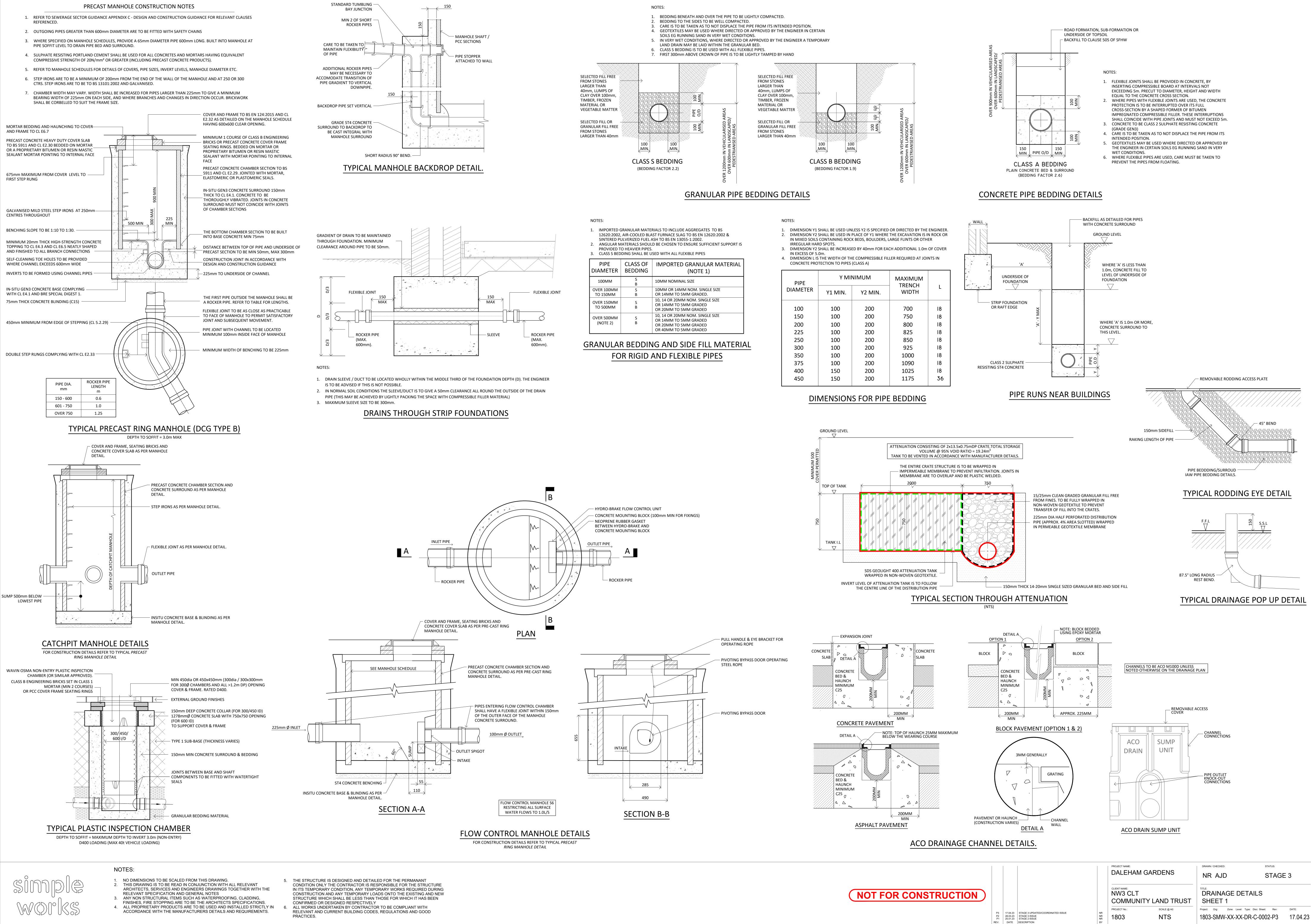
9 2 1 1

NOTES:

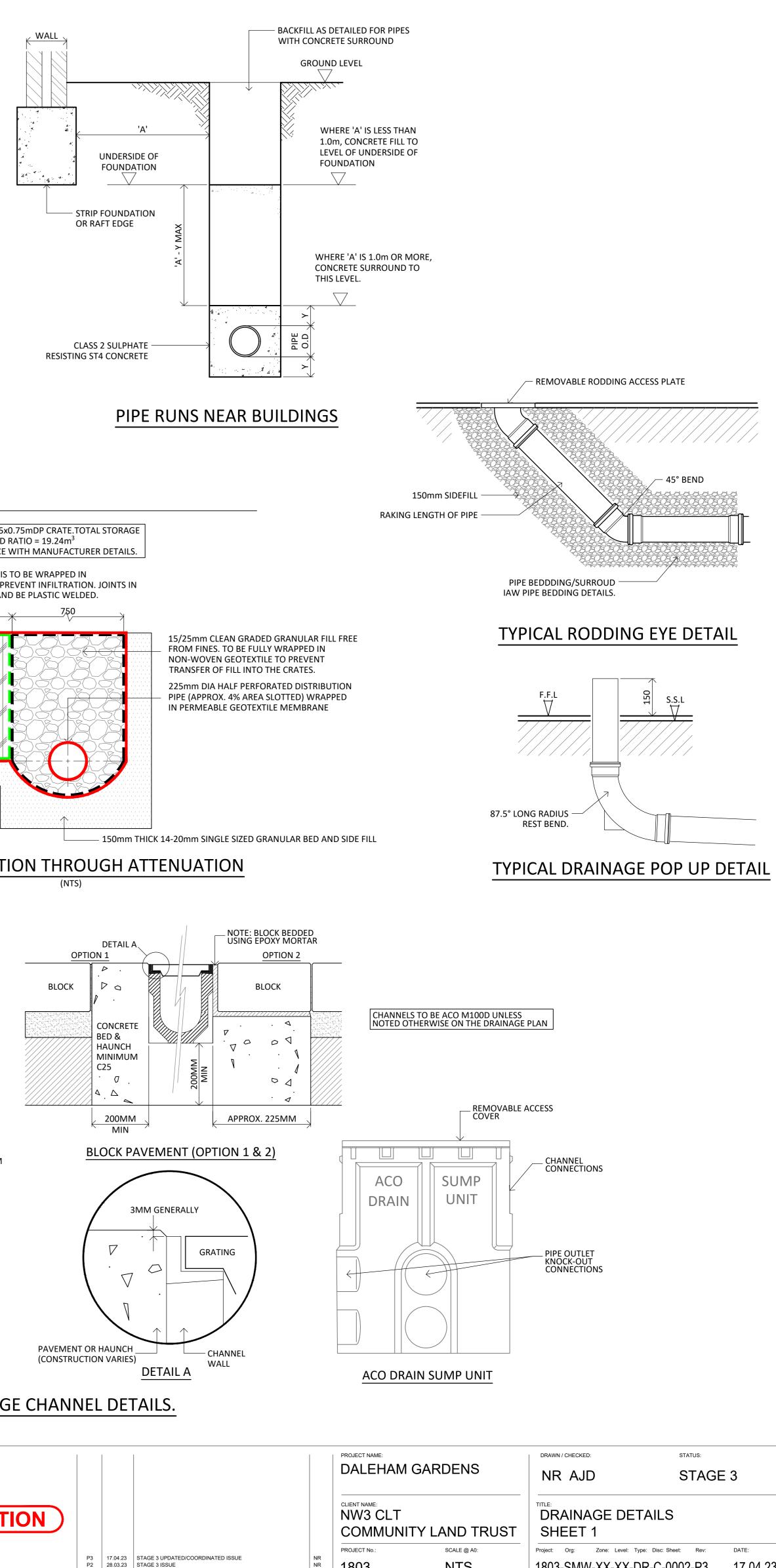

Yes a start of the second

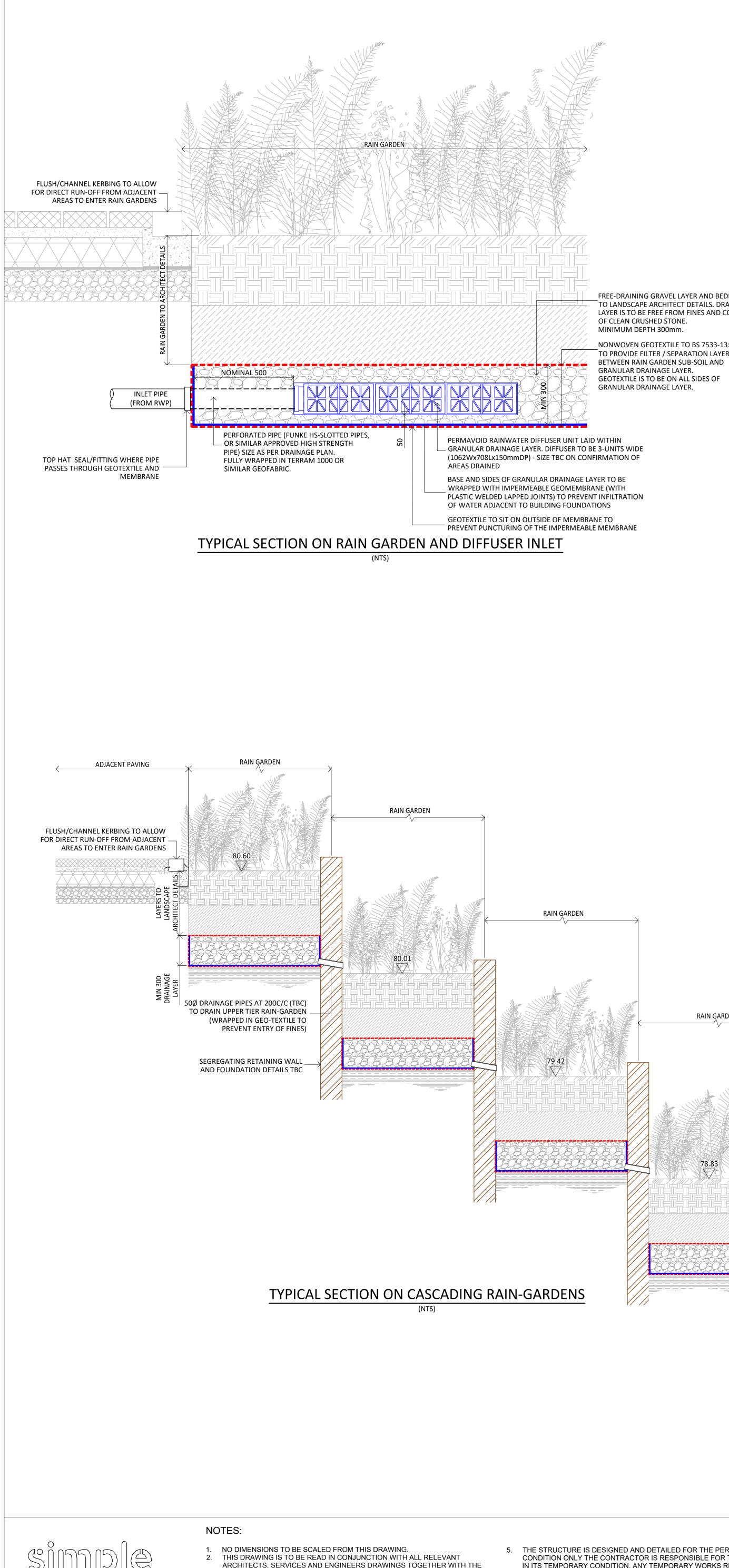
P. V. K.P. K.

Р. Р. Р. Р. Р. Р. Р. Р.

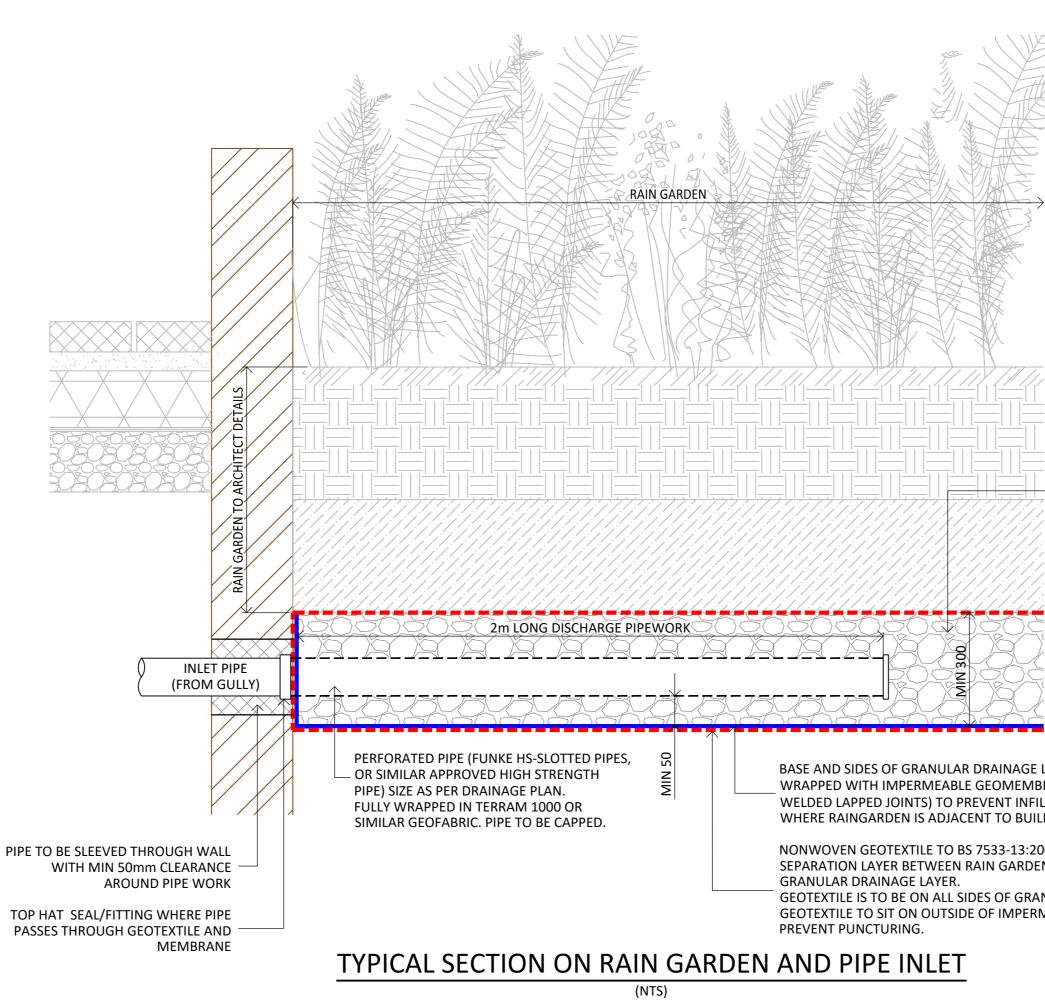

ν. μ. ν. μ.

- ANY NON STRUCTURAL ITEMS SUCH AS WATERPROOFING, CLADDING, FINISHES, FIRE STOPPING ARE TO BE THE ARCHITECTS SPECIFICATIONS.
- ALL PROPRIETARY PRODUCTS ARE TO BE USED AND INSTALLED STRICTLY IN ACCORDANCE WITH THE MANUFACTURERS DETAILS AND REQUIREMENTS.


REV. DATE DESCRIPTION

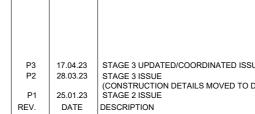

BY

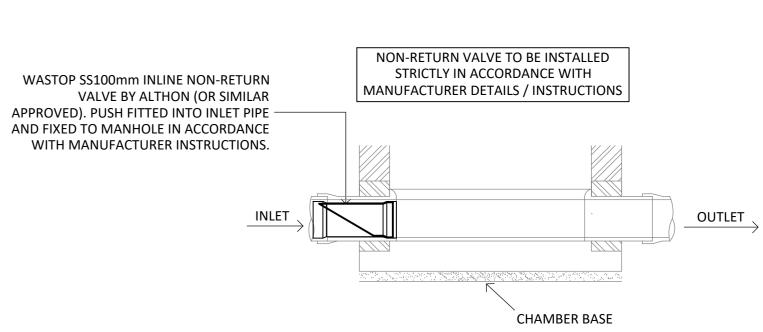
NOT	res:		
1.	12620:2002	, AIR-COOLED BLA	RIALS TO INCLUDE AGGREGATE ST FURNACE SLAG TO BS EN 12 ASH TO BS EN 13055-1:2002.
2.		ATERIALS SHOUL	D BE CHOSEN TO ENSURE SUFF
3.	CLASS S BED	DING SHALL BE U	SED WITH ALL FLEXIBLE PIPES
DI	PIPE AMETER	CLASS OF BEDDING	IMPORTED GRANULA (NOTE 1

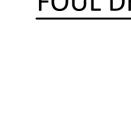

PIPE	Y MI	NIMUM	MAXIMUM	
DIAMETER	Y1 MIN.	Y2 MIN.	TRENCH WIDTH	L
100	100	200	700	18
150	100	200	750	18
200	100	200	800	18
225	100	200	825	18
250	100	200	850	18
300	100	200	925	18
350	100	200	1000	18
375	100	200	1090	18
400	150	200	1025	18
450	150	200	1175	36

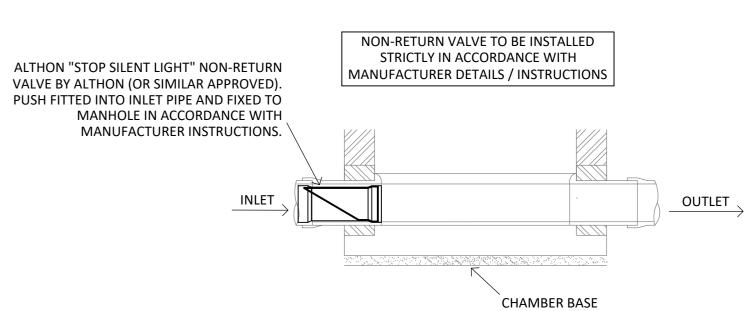
RELEVANT SPECIFICATION AND GENERAL NOTES ANY NON STRUCTURAL ITEMS SUCH AS WATERPROOFING, CLADDING,

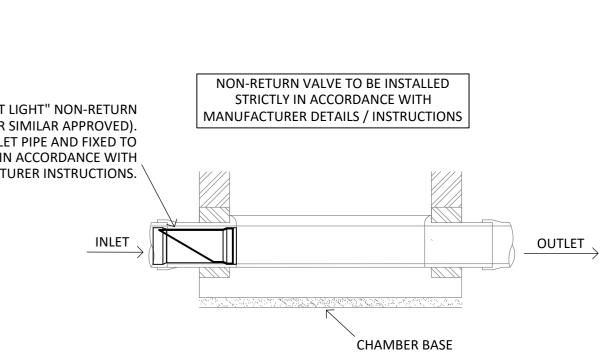
FINISHES, FIRE STOPPING ARE TO BE THE ARCHITECTS SPECIFICATIONS. ALL PROPRIETARY PRODUCTS ARE TO BE USED AND INSTALLED STRICTLY IN ACCORDANCE WITH THE MANUFACTURERS DETAILS AND REQUIREMENTS.

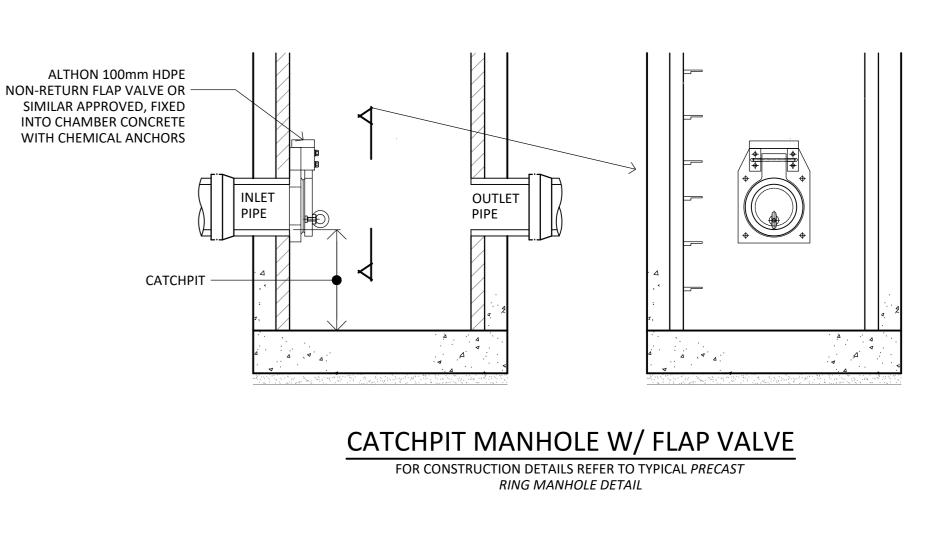

FREE-DRAINING GRAVEL LAYER AND BEDDING TO LANDSCAPE ARCHITECT DETAILS. DRAINAGE LAYER IS TO BE FREE FROM FINES AND CONSIST OF CLEAN CRUSHED STONE. MINIMUM DEPTH 300mm. NONWOVEN GEOTEXTILE TO BS 7533-13:2009 TO PROVIDE FILTER / SEPARATION LAYER GRANULAR DRAINAGE LAYER. GEOTEXTILE IS TO BE ON ALL SIDES OF

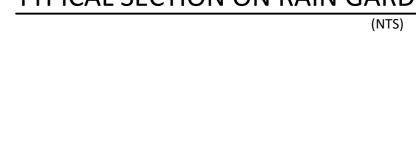

RAIN GARDEN ADJACENT PAVING RAIN GARDEN OVERFLOW / ACCÉSS GULLY. SEE DETAIL.

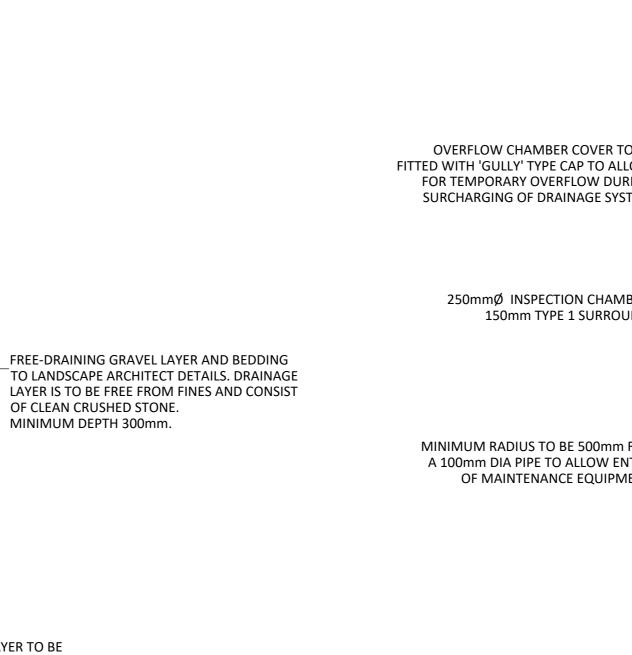

5. THE STRUCTURE IS DESIGNED AND DETAILED FOR THE PERMANANT CONDITION ONLY THE CONTRACTOR IS RESPONSIBLE FOR THE STRUCTURE IN ITS TEMPORARY CONDITION, ANY TEMPORARY WORKS REQUIRED DURING CONSTRUCTION AND ANY TEMPORARY LOADS ONTO THE EXISTING AND NEW STRUCTURE WHICH SHALL BE LESS THAN THOSE FOR WHICH IT HAS BEEN CONFIRMED OR DESIGNED RESPECTIVELY ALL WORKS UNDERTAKEN BY CONTRACTOR TO BE COMPLIANT WITH RELEVANT AND CURRENT BUILDING CODES, REGULATIONS AND GOOD


PRACTICES.









— DRAINAGE PLAN.

WRAPPED WITH IMPERMEABLE GEOMEMBRANE (WITH PLASTIC WELDED LAPPED JOINTS) TO PREVENT INFILTRATION OF WATER NONWOVEN GEOTEXTILE TO BS 7533-13:2009 TO PROVIDE FILTER / GEOTEXTILE IS TO BE ON ALL SIDES OF GRANULAR DRAINAGE LAYER. GEOTEXTILE TO SIT ON OUTSIDE OF IMPERMEABLE MEMBRANE TO

MINIMUM DEPTH 300mm. BASE AND SIDES OF GRANULAR DRAINAGE LAYER TO BE

WHERE RAINGARDEN IS ADJACENT TO BUILDING FOUNDATIONS SEPARATION LAYER BETWEEN RAIN GARDEN SUB-SOIL AND GRANULAR DRAINAGE LAYER.

> GULLY IS SUITABLE FOR LIGHT DUTY PEDESTRIAN FOOTPATH AREAS ONLY,

DRAINING AREAS LESS THAN 20m²

TRAPPED GULLY

- GULLY GRATING TO ARCHITECT SPECIFICATION

RAISING PIECE (IF REQUIRED)

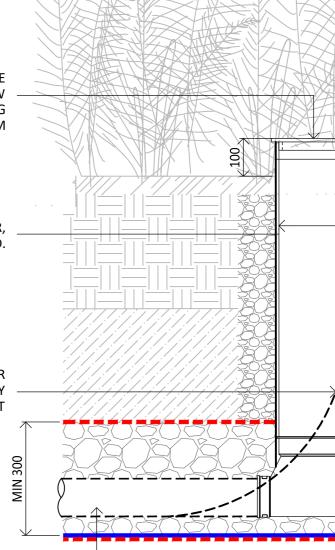
100Ø OUTLET

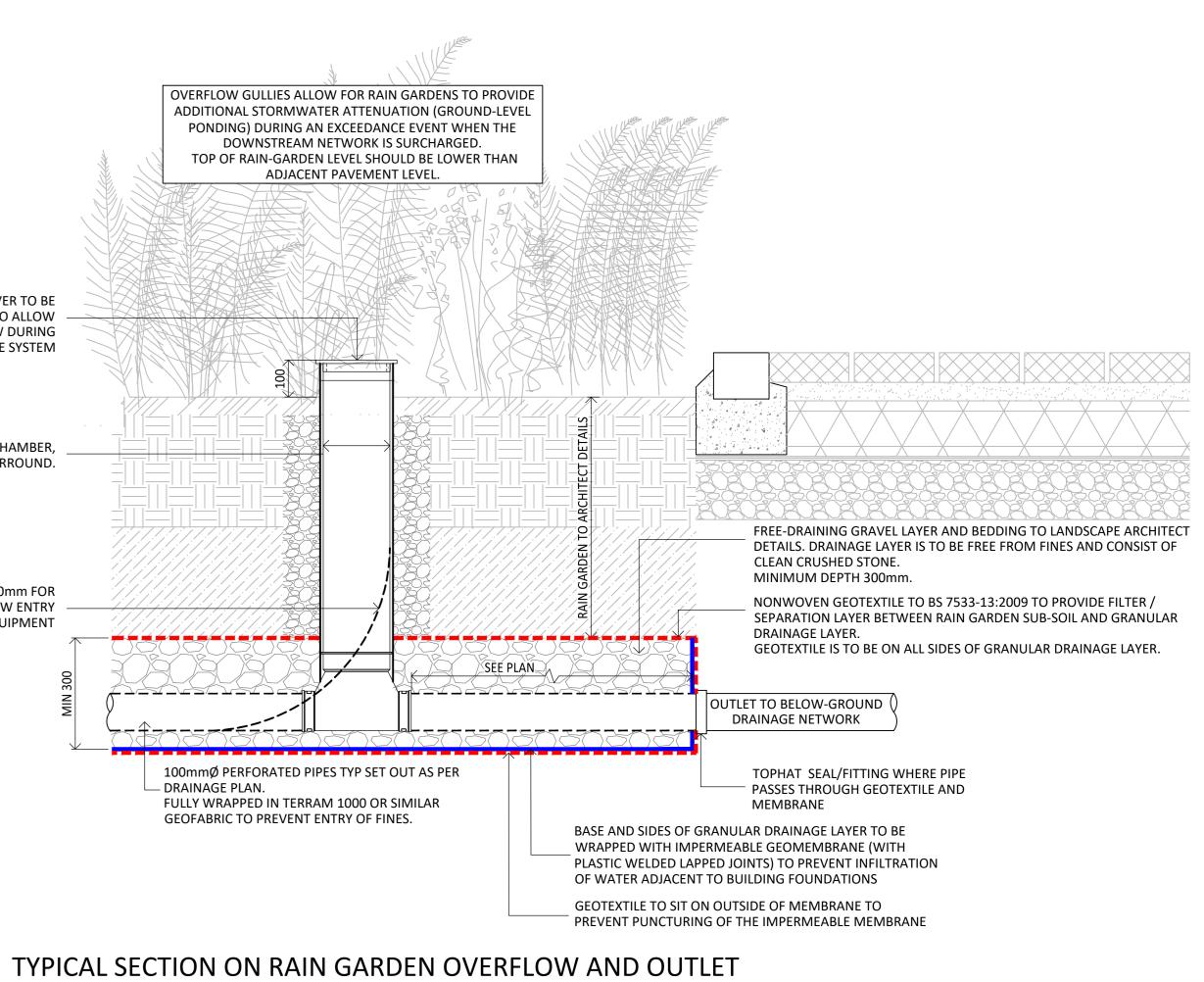
225mmØ x 595mm DEEP YARD GULLY POT

– SUMP/BOTTLE TRAP

RODDING EYE WITH PLUG/STOPPER

REMOVABLE GALVANISED BUCKET (NOT

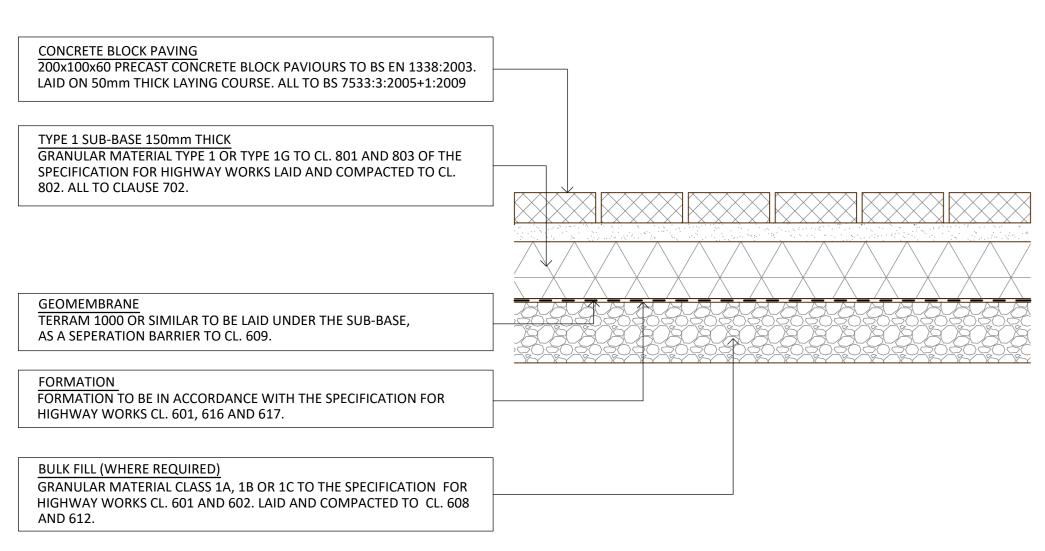

SUITABLE FOR HINGED GULLY GRATING)

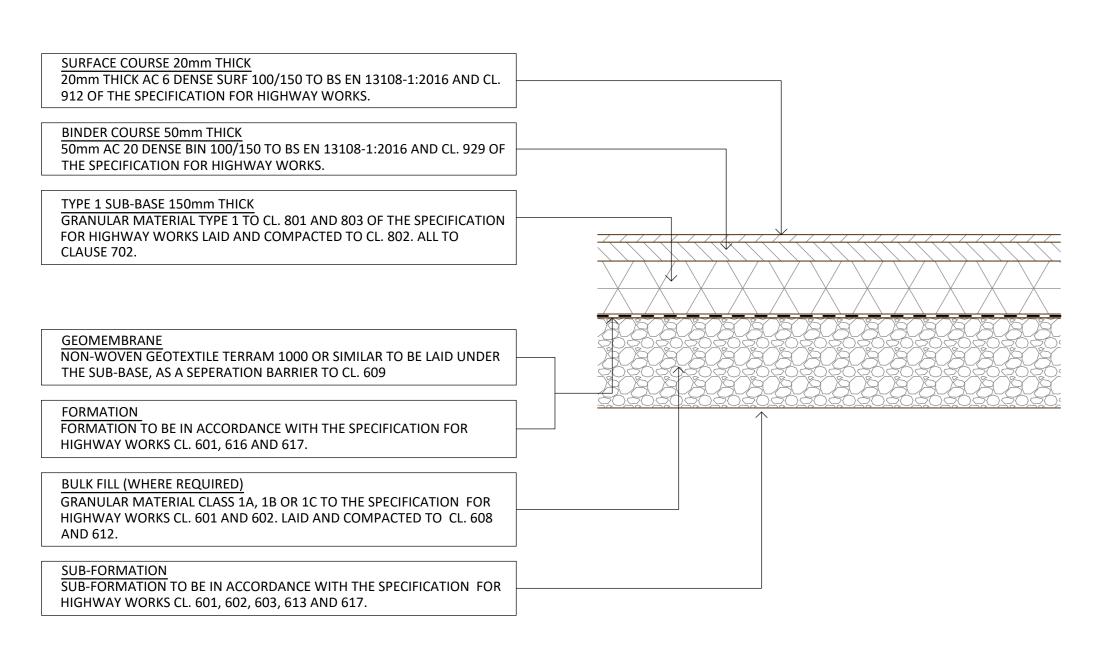

150mm MINIMUM THICKNESS CLASS 2 SULPHATE RESISTING ST4 CONCRETE BED AND SURROUND

OVERFLOW CHAMBER COVER TO BE FITTED WITH 'GULLY' TYPE CAP TO ALLOW FOR TEMPORARY OVERFLOW DURING SURCHARGING OF DRAINAGE SYSTEM

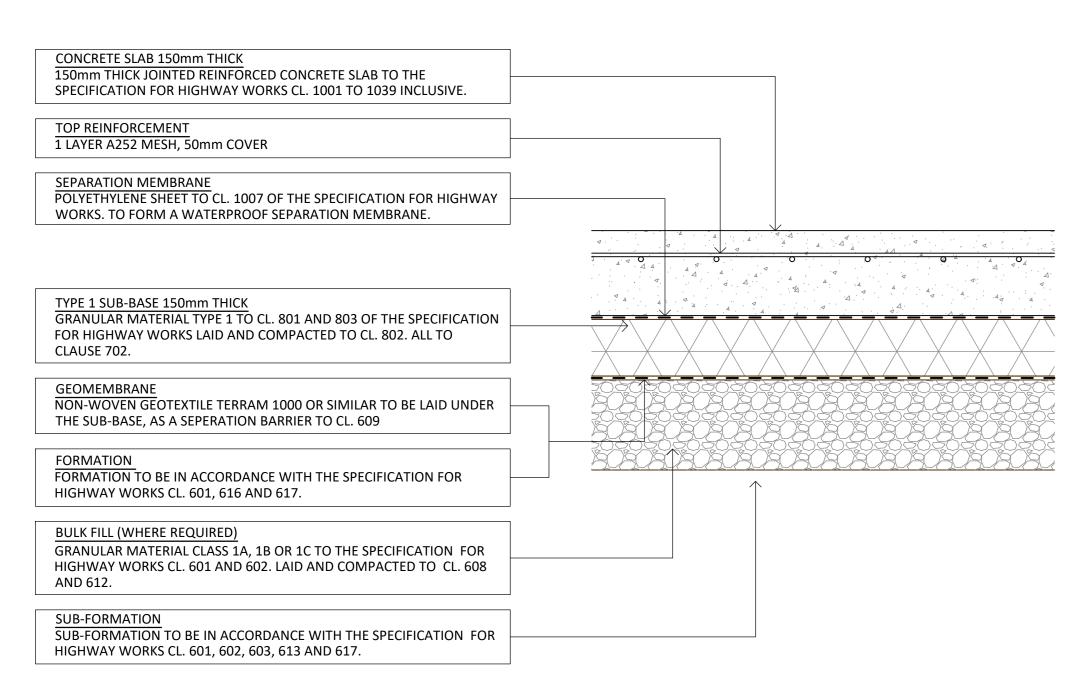
250mmØ INSPECTION CHAMBER, 150mm TYPE 1 SURROUND.

MINIMUM RADIUS TO BE 500mm FOR A 100mm DIA PIPE TO ALLOW ENTRY OF MAINTENANCE EQUIPMENT




FOUL DRAINAGE NON-RETURN VALVE

STORM DRAINAGE NON-RETURN VALVE


		DALEHAM	GARDENS	DRAWN / CHECKED:	STATUS: STAGE	Ξ3		
		CLIENT NAME: NW3 CLT COMMUNI	TY LAND TRUST	DRAINAGE DETAILS SHEET 2				
SUE) DRG C-0004)	NR NR BY	PROJECT No.: 1803	SCALE @ A0: NTS	Project: Org: Zone: Level: 1803-SMW-XX-XX-	Type: Disc: Sheet: Rev: DR-C-0003-P3	DATE: 17.04.23		

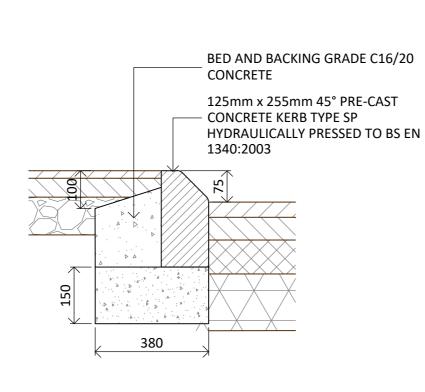
BLOCK PAVED FOOTPATH CONSTRUCTION

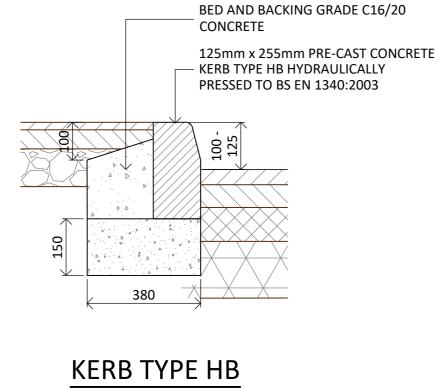
ASPHALT FOOTPATH CONSTRUCTION

BIN STORE CONSTRUCTION (NON-VEHICULAR LOADING)

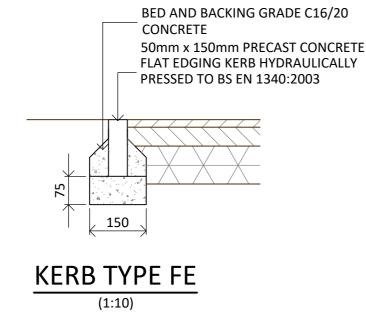
NOTES:

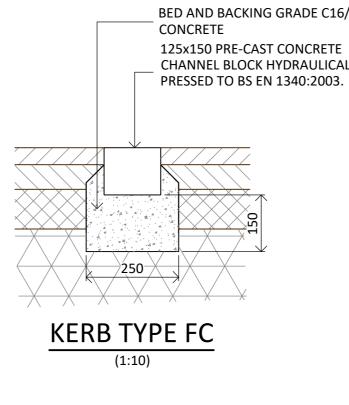
- 1. NO DIMENSIONS TO BE SCALED FROM THIS DRAWING. 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT
- ARCHITECTS, SERVICES AND ENGINEERS DRAWINGS TOGETHER WITH THE RELEVANT SPECIFICATION AND GENERAL NOTES ANY NON STRUCTURAL ITEMS SUCH AS WATERPROOFING, CLADDING,
- FINISHES, FIRE STOPPING ARE TO BE THE ARCHITECTS SPECIFICATIONS. 4. ALL PROPRIETARY PRODUCTS ARE TO BE USED AND INSTALLED STRICTLY IN ACCORDANCE WITH THE MANUFACTURERS DETAILS AND REQUIREMENTS.
- CONFIRMED OR DESIGNED RESPECTIVELY PRACTICES.

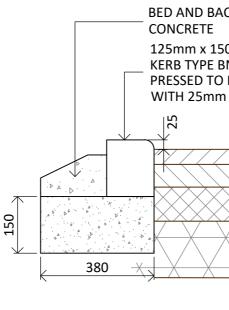

6


FOR LOCATION AND EXTENT OF TYPES OF CONSTRUCTION AND KERBING **REFER TO ARCHITECTS DRAWINGS**

KERB TYPE SP


(1:10)





(1:10)

(1:10)

BED AND BACKING GRADE C16/20

125mm x 150mm PRE-CAST CONCRETE KERB TYPE BN HYDRAULICALLY

PRESSED TO BS EN 1340:2003. WITH 25mm KERB UPSTAND.

KERB TYPE BN

BED AND BACKING GRADE C16/20 125x150 PRE-CAST CONCRETE CHANNEL BLOCK HYDRAULICALLY

NOT FOR CONSTRUCTION

I	PROJECT NAME:		DRAWN / CHECKE	D:	STATUS:	
	DALEHAM	GARDENS	NR AJ	3		
	CLIENT NAME: NW3 CLT COMMUNI	TY LAND TRUST		NAL WORKS		
	PROJECT No.:	SCALE @ A0:	Project: Org:	Zone: Level: Type: Disc: S	Sheet: Rev:	DATE:
NI NI B'	1803	NTS	1803-SMV	V-XX-XX-DR-C-()004-P2	17.04.23

CLIENT / PROJECT	SHEET NO.	REVISION	PROJECT REF.
NW3 CLT / DALEHAM GARDENS	1	STAGE 3	S221215
TITLE	PREPARED	CHECKED	DATE
FOUL WATER SEWER DESIGN FLOW RATES	NR	-	23.03.23

Calculations for foul water underground pipe design based on BS EN 12056-2:2000 System II

		WHB	WC	Shower	Kitchen Sink	Dishwasher	Bath	Washing Machin
	Discharge Units (I/s)	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Appliances	1	1	0	1	1	1	1
FLAT 1	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5	i		
	Total Appliances	1	1	0	1	1	1	1
FLAT 2	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5			
	Total Appliances	1	1	0	1	1	1	1
FLAT 3	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5			
	Total Appliances	1	1	0	1	1	1	1
FLAT 4	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				. 4.5			•
	Total Appliances	1	1	1	1	1	1	1
FLAT 5	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units			•	4.9	. <u>.</u>)		•
	Total Appliances	1	1	0	1	1	1	1
FLAT 6	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units				4.5	, <u> </u>		
	Total Appliances	1	1	0	1	1	1	1
FLAT 7	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units		-		4.5			
	Total Appliances	1	1	1	1	1	1	1
FLAT 8	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units				4.9	II)		
	Total Appliances	1	1	0	1	1	1	1
FLAT 9	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
_	Total Discharge Units				4.5			
	Total Appliances	1	1	0	1	1	1	1
FLAT 10	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units	0.0	210	, ,	4.5		0.0	0.0
	Total Appliances	1	1	1	1	1	1	1
FLAT 11	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
	Total Discharge Units	0.0	2.0		4.9		0.0	0.0
	Total Appliances	1	1	0	1	1	1	1
FLAT 12	Discharge Units	0.3	1.8	0	0.6	0.6	0.6	0.6
	Total Discharge Units	0.5	1.0	Ū	4.5		0.0	0.0
	Total Appliances	3	3	1	1	1	1	1
FLAT 13	Discharge Units	0.9	5.4	0.4	0.6	0.6	0.6	0.6
ILAI 15	Total Discharge Units	0.9	5.4	0.4	9.1		0.0	0.0
	Total Appliances	1	1	1	9.1	1	1	1
FLAT 14	Discharge Units	0.3	1.8	0.4	0.6	0.6	0.6	0.6
FLAI 14	Total Discharge Units	0.3	1.0	0.4	<u> </u>		0.0	0.0
					4.9	,		
					0.5			
	K VALUE							
	Qww=K(DU)0.5 (I/s)				4.15	9		

	Subteno Limited	File: Proposed Drainage.pfd	Page 1
Subteno	Crafton House	Network: Storm Network	Daleham Gardens
	Mentmore Way, Poringland	Nathan Rowe	Stage 3 Drainage Design
Engineering Consultants	NR14 7XP	17/04/2023	

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	100	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	20.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.400	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	5.00	Enforce best practice design rules	х

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
1	0.013	5.00	81.150	300	-14.123	281.460	0.650
2	0.006	5.00	80.650	600	-2.715	282.816	3.000
3	0.013	5.00	77.650	300	5.505	283.341	0.550
4	0.004	5.00	77.690	300	15.482	284.142	0.692
5	0.011	5.00	77.650	1000	1.477	269.338	1.250
6	0.005	5.00	78.144	1200	16.728	274.022	1.837
6_OUT			78.150	1000	19.050	274.568	1.883

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	1	2	11.488	0.600	80.500	79.505	0.995	11.5	100	5.08	50.0
1.001	2	3	8.237	0.600	77.650	77.100	0.550	15.0	150	5.14	50.0
1.002	3	4	10.009	0.600	77.100	76.998	0.102	98.1	150	5.30	50.0
1.003	4	6	10.196	0.600	76.998	76.896	0.102	100.0	150	5.47	50.0
2.000	5	6	15.954	0.600	76.400	76.307	0.093	171.5	225	5.27	50.0
1.004	6	6_OUT	2.385	0.600	76.420	76.267	0.153	15.6	100	5.49	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	2.287	18.0	1.7	0.550	1.045	0.013	0.0	21	1.433
1.001	2.616	46.2	2.6	2.850	0.400	0.019	0.0	24	1.403
1.002	1.014	17.9	4.3	0.400	0.542	0.032	0.0	50	0.836
1.003	1.005	17.8	4.8	0.542	1.098	0.036	0.0	54	0.858
2.000	0.995	39.6	1.5	1.025	1.612	0.011	0.0	30	0.484
1.004	1.966	15.4	7.1	1.624	1.783	0.052	0.0	47	1.919

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m³/ha)	20.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	√
Ratio-R	0.400	1 year (l/s)	1.0
Summer CV	0.750	30 year (l/s)	1.0
Winter CV	0.840	100 year (l/s)	1.0
Analysis Speed	Normal	Check Discharge Volume	1.0
Skip Steady State	x		Х
Ship Steady State	٨		

Subteno Limited Engineering Consultants	, Poringland	File: Proposed Di Network: Storm Nathan Rowe 17/04/2023		Page 2 Daleham Gardens Stage 3 Drainage Design	1					
15 30 60 120 18	Storm Dur 30 240 36	ations 50 480	600 720	960 1440						
Return Period Climate Change Additional Area Additional Flow (years) (CC %) (A %) (Q %)										
1	0	0		0						
30 100	0 40	0 0		0						
100	40	0		0						
<u> </u>	Pre-development [Discharge Rate								
Site Ma			actor 30 year	1.95						
Greenfield Me			actor 100 year	2.48						
Positively Drained Area		Be	etterment (%)	0						
SAAR	(mm) 650 Index 4		QBar Q 1 year (I/s)	0.3 0.3						
501	SPR 0.47	0	Q 1 year (l/s) Q 30 year (l/s)	0.6						
R	egion 6		100 year (l/s)	0.8						
Growth Factor 1	-	_	200 900. (., 0)							
Noc	le 5 Design Modifi	iers (Hydrograpi	<u>h)</u>							
	-		-							
Overrides Design Area x Overrides Design Additional Inflow x	Depression Stor Depression Storage Applies to Al	e Depth (mm)	18 Evapo- 5	transpiration (mm/day)	3					
Noc	<u>le 6 Design Modifi</u>	iers (Hydrograpi	<u>h)</u>							
Overrides Design Area x Overrides Design Additional Inflow x	Depression Stor Depression Storage Applies to Al	e Depth (mm)	13 Evapo- 5	transpiration (mm/day)	3					
Noc	<u>le 5 Design Modifi</u>	iers (Hydrograpl	<u>h)</u>							
Overrides Design Area x Overrides Design Additional Inflow x	Depression Stor Depression Storage Applies to Al	e Depth (mm)	80 Evapo- 5	transpiration (mm/day)	3					
<u>Nc</u>	de 6 Online Hydro	o-Brake [®] Contro	<u>II</u>							
Flap Valve x		Objective		e upstream storage						
Replaces Downstream Link \checkmark		ump Available	\checkmark							
Invert Level (m) 76.42		oduct Number		-1000-1000-1000						
Design Depth (m) 1.000 Design Flow (l/s) 1.0		t Diameter (m) Diameter (mm)	0.075 1200							
	Will Node D		1200							
1	lode 6 Carpark Sto	orage Structure								
Base Inf Coefficient (m/hr) 0.0000) In	vert Level (m)	76.307	Slope (1:X) 165.0						
Side Inf Coefficient (m/hr) 0.0000	D Time to half	empty (mins)		Depth (m) 0.750						
Safety Factor 2.0		Width (m)		f Depth (m)						
Porosity 0.95		Length (m)	13.500							

	Subteno Limited	File: Proposed Drainage.pfd	Page 3
Subteno	Crafton House	Network: Storm Network	Daleham Gardens
	Mentmore Way, Poringland	Nathan Rowe	Stage 3 Drainage Design
Engineering Consultants	NR14 7XP	17/04/2023	

Node 6 Link Surround Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Link	2.000
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	76.307	Surround Shape	(Trench)
Safety Factor	2.0	Time to half empty (mins)		Diameter (mm)	750

	Subteno Limited	File: Proposed Drainage.pfd	Pag
Subteno	Crafton House	Network: Storm Network	Dal
	Mentmore Way, Poringland	Nathan Rowe	Sta
Engineering Consultants	NR14 7XP	17/04/2023	

nge 4 aleham Gardens age 3 Drainage Design

Results for 1 year Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	80.522	0.022	1.8	0.0100	0.0000	ОК
15 minute winter	2	10	77.675	0.025	2.7	0.0080	0.0000	ОК
15 minute winter	3	10	77.153	0.053	4.5	0.0277	0.0000	ОК
15 minute winter	4	11	77.055	0.057	5.0	0.0106	0.0000	ОК
240 minute winter	5	168	76.493	0.093	0.3	0.0897	0.0000	ОК
240 minute winter	6	168	76.493	0.186	1.5	4.3353	0.0000	ОК
15 minute summer	6_OUT	1	76.267	0.000	0.0	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	1.8	1.441	0.099	0.0142	
15 minute winter	2	1.001	3	2.7	0.742	0.058	0.0305	
15 minute winter	3	1.002	4	4.4	0.759	0.245	0.0578	
15 minute winter	4	1.003	6	4.9	0.838	0.278	0.0599	
30 minute winter	5	2.000	6	1.0	0.105	0.026	0.2897	
240 minute winter	6	Hydro-Brake®	6_OUT	0.7				5.3

Results for 30	year Critical Storm Du	ration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	80.535	0.035	4.4	0.0160	0.0000	ОК
15 minute winter	2	10	77.688	0.038	6.6	0.0124	0.0000	ОК
15 minute winter	3	10	77.191	0.091	10.8	0.0480	0.0000	ОК
15 minute winter	4	11	77.096	0.098	12.1	0.0183	0.0000	ОК
180 minute winter	5	172	76.733	0.333	0.9	0.3208	0.0000	SURCHARGED
180 minute winter	6	172	76.733	0.426	3.9	11.5648	0.0000	SURCHARGED
15 minute summer	6_OUT	1	76.267	0.000	0.8	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	4.4	1.845	0.243	0.0271	
15 minute winter	2	1.001	3	6.5	0.896	0.141	0.0608	
15 minute winter	3	1.002	4	10.7	0.916	0.596	0.1167	
15 minute winter	4	1.003	6	12.0	1.036	0.676	0.1180	
15 minute winter	5	2.000	6	3.7	0.258	0.094	0.5761	
30 minute winter	6	Hydro-Brake [®]	6_OUT	0.8				7.5

Page 6 Daleham Gardens Stage 3 Drainage Design

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.82%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	10	80.549	0.049	8.0	0.0226	0.0000	ОК
15 minute winter	2	10	77.702	0.052	11.9	0.0169	0.0000	ОК
240 minute winter	3	224	77.405	0.305	3.7	0.1601	0.0000	FLOOD RISK
240 minute winter	4	224	77.405	0.407	4.2	0.0765	0.0000	FLOOD RISK
240 minute winter	5	224	77.405	1.005	1.3	0.9675	0.0000	FLOOD RISK
240 minute winter	6	224	77.405	1.098	5.9	23.0934	0.0000	SURCHARGED
15 minute summer	6_OUT	1	76.267	0.000	0.8	0.0000	0.0000	ОК

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1.000	2	7.9	2.151	0.442	0.0424	
15 minute winter	2	1.001	3	11.9	0.944	0.257	0.0948	
15 minute winter	3	1.002	4	18.8	1.071	1.052	0.1762	
15 minute winter	4	1.003	6	21.2	1.208	1.196	0.1736	
15 minute winter	5	2.000	6	6.1	0.344	0.155	0.6345	
240 minute winter	6	Hydro-Brake [®]	6_OUT	1.0				20.0

APPENDIX 5 – GROUND MOVEMENT AND DAMAGE IMPACT ASSESSMENT