

Euston Travelodge London

RIBA STAGE 3 PLUS – STRUCTURAL REPORT MHBC-008-SD-RP102_REV01

REVISION HISTORY

REV.	DATE	PREP.	CHECK	APPR.	DESCRIPTION
00	12/10/2022	CD	GDA	GG	First Release
01	28/10/2022	CD	GDA	GG	Second Release

INDEX OF CONTEXT

- 1. SCOPE OF WORK
- 2. DESIGN CRITERIA
 - 1. REFERENCE DOCUMENTS
 - 2. LOAD ANALYSIS
- 3. EWS-1: COPPER OR ZINC STANDING SEAM PANEL
- 4. CONCLUSIONS

1. SCOPE OF WORK

Travelodge Euston is a mixed-use development. It incorporates the Travelodge Hotel, a retail unit, and residential units. The building is flanked on its northeaster face by Grafton Chambers.

As per report of the RIBA STAGE 1 the design involves only the following typologies:

- 1. Copper alloy standing seam panel EWS-1:
 - 001 50mm outer insulation wall
 - 002 100mm outer insulation wall
- 2. External wall insulation system EWS-2:
 - 001 50mm outer insulation wall
 - 002 25mm outer insulation wall
- 3. Spandrel panel EWS-3

Scope of this document is to investigate the solution (Proposal 1) already provided in RIBA STAGE 3 report and check their feasibility in terms of loads involved and structural analysis.

Since the layers within the proposed solutions of EWS-2 and EWS-3 do not involve a relevant change in terms of weights to the SFS system, it was reported only the stability checks of the EWS-1.

2. DESIGN CRITERIA

2.1 REFERENCE DOCUMENTS

- BS EN 1990: Eurocode 0: Basis of structural design;
- BS-EN 1990: Eurocode 0: Basis of structural design UK National Annex
- BS EN 1991-1-1: Eurocode 1: Actions on structures. General actions Densities, self-weight, imposed loads for buildings;
- BS EN 1991-1-4: Eurocode 1: Actions on structures. General actions Wind actions;
- BS EN 1991-1-4: Eurocode 1: Actions on structures. General actions Wind actions – UK National Annex
- BS EN 1999-1-1: Eurocode 9: Design of Aluminium structures General structures rules.
- BS EN 1993-1-8 : Eurocode 3: Design of joints

2.2 LOAD ANALYSIS

Dead Loads (DL)

Dead loads are considered in according to the table of BS EN 1991-1-1:

- Aluminium
- Steel
- Zinc
- Copper

78.5 kN/m³ 72 kN/m³

27.0 kN/m³

88 kN/m³

Wind Load (WL) Wind Load as per EN 1991-1-4:

Reference heigth:	z = h =	22.00	m
Terrain category:	IV		
Roughness length:	z ₀ =	1.000	m
Minimum height:	z _{min} =	10	m
Maximum height:	z _{max} =	200	m
Fundamental value basic wind velocity:	v _{b,0} =	22.5	m/s
Directional factor:	c _{dir} =	1.00	
Season factor:	c _{season} =	1.00	I
Basic wind velocity:	v _b =	22.5	m/s
Air density:	ρ=	1.23	kg/m ³
Turbulence factor:	k _l =	1.00	I
Terrain factor:	k _r =	0.23	
Orography factor:	c _o =	1.00	1
Turbulence intensity:	I _v =	0.32	
Roughness factor:	c _r =	0.72	
Mean wind velocity:	v _m =	16.3	m/s
Basic velcoity pressure:	q _b =	0.31	kPa
Exposure factor:	c _e =	1.71	
Effective load area:	A _{eff} =	5.00	m²
Peak velocity pressure:	q _p =	0.53	kPa

Table 4.1 — Terrain categories and terrain parameters

	Terrain category	z ₀ m	z_{min} m
0	Sea or coastal area exposed to the open sea	0,003	1
T	Lakes or flat and horizontal area with negligible vegetation and without obstacles	0,01	1
П	Area with low vegetation such as grass and isolated obstacles (trees, buildings) with separations of at least 20 obstacle heights	0,05	2
Ш	Area with regular cover of vegetation or buildings or with isolated obstacles with separations of maximum 20 obstacle heights (such as villages, suburban terrain, permanent forest)	0,3	5
IV	Area in which at least 15 % of the surface is covered with buildings and their average height exceeds 15 m	1,0	10
NO	TE: The terrain categories are illustrated in A.1.		

DESIGN CRITERIA

Pressure coefficients for interior and external wall External pressure coefficients

Zone	А		В		с		D		E	
h/d	Cpe,10	Cpe,1	Cpe,10	Cpe,1	Cpe,10	Cpe.1	Cpe,10	Cpe,1	Cpe, 10	Cpe,1
5	-1,2	-1,4	-0,8	-1,1	-0,5		+0,8	+1,0	-0,7	
1	-1,2	-1,4	-0,8	-1,1	-0,5		+0,8	+1,0	-0,5	
≤ 0,25	-1,2	-1,4	-0,8	-1 <mark>,</mark> 1	-0,5		+0,7	+1,0	-0,3	

Interior pressure coefficients

Cpi = + 0.2

Cpe = - 0.3

Cpe

Wsuc,cpe1 = 0.53 kN/m2 x (-1.4 - 0.2) = -0.85 kN/m2 Wpre,cpe1 = $0.53 \text{ kN/m2} \times (1.0 + 0.3) =$ +0.70 kN/m2 Wsuc,cpe10 = 0.53 kN/m2 x (-1.2 - 0.2) = -0.74 kN/m2 Wpre,cpe10 = $0.53 \text{ kN/m2} \times (0.7 + 0.3) =$ +0.53 kN/m2

for $1 \text{ m}^2 < A < 10 \text{ m}^2$ Cpe = Cpe,1 - (Cpe,1 - Cpe,10) log10 A

Verification Methodology

Aluminum members

For the verifications at Ultimate Limit State (ULS), the code BS EN 1990 §6.4.3.2 provides the combination of actions, as follow:

$$"\sum_{j\geq 1} \gamma_{G,j} G_{k,j} " + "\gamma_p P" + "\gamma_{Q,1} Q_{k,1} " + "\sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i} "$$

The design of the structural members shall be verified with the partial factors actions - γ – from table A1.2(B).

Table A1.2(B) - Design values of actions (STR/GEO) (Set B)

Persistent and transient design situations	Permanent	actions	Leading variable action	Accon variable	ipanying actions (*)	Persistent and transient design situations	Permanent	tactions	Leading variable action (⁴)	Accom variable a	panying actions (*)
	Unfavourable	Favourable		Main (if any)	Others		Unfavourable	Favourable	Action	Main	Others
(Eq. 6.10)	$\gamma_{\rm Gj,sup}G_{\rm kj,sup}$	$\gamma_{\rm Gj,inf}G_{\rm kj,inf}$	7Q.1Qk,1		$\gamma_{Q,i} \psi_{0,i} Q_{k,i}$	(Eq. 6.10a)	$\gamma_{\rm Gj,sup}G_{\rm kj,sup}$	$\gamma_{\rm Gj,int}G_{\rm kj,int}$		70,146,1Qk,1	70.140.1Qr.1
						(Eq. 6.10b)	$5\gamma_{\rm Cj,sup}G_{\rm kj,sup}$	$\gamma_{\rm Gj,inf}G_{\rm kj,inf}$	70,1Qk,1		7Q.i40,1Q1.i
(*) Variable : NOTE 1 Th permanent ac NOTE 2 Th $\beta_{ij,sup} = 1.35$ $\beta_{ij,sup} = 1.35$ $\beta_{ij,sup} = 1.50$ w $\beta_{0,1} = 1.50$ w $\beta_{0,2} = 1.50$ w $\beta_{0,2} = 0.85$ (so 1)	actions are those of the choice between stions only. e γ and ξ values m where unfavourable there unfavourable that $\xi_{\gamma \xi_1 \text{sup}} = 0.85$	considered in Ta 6.10, or 6.10 any be set by the e (0 where fave c (0 where fave x 1,35 \approx 1,15).	uble A1.1 a and 6.10b wi e National anne purable) urrable)	Il be in the !	National annex. ring values for γ	In case of 6.10a and ξ are recomm	and 6.10b, the N rended when using	lational annex g expressions 6.	may in additi 10, or 6.10a a	on modify 6.10	0a to include
NOTE 3 Th action effect materials are NOTE 4 Fo in most comm	e characteristic v. is favourable. Fo involved. r particular verific mon cases and car	alues of all per- ir example, all ations, the valu	manent actions actions origina es for γ_0 and γ_0 the National a	from one so ating from the anay be subo nnex.	urce are multipl e self weight of livided into γ _β ar	ted by $\gamma_{G,sup}$ if the the structure may and γ_{j} and the mode	total resulting ac be considered a el uncertainty fact	tion effect is un s coming from or γ_{SD} . A value of	Infavourable at one source ; of y_{sd} in the rat	nd _{Zoinf} if the t this also applic nge 1,05 to 1,13	total resulting es if different 5 can be used

 $A[m^2]$

DESIGN CRITERIA

The combination factors - Ψ - shall be obtained from Table NA.A1.1, BS EN 1990 - NA

Action	Ψ_0	Ψ_1	Ψ_2
Imposed loads in buildings, category (see EN 1991-1.1)			
Category A: domestic, residential areas	0,7	0,5	0,3
Category B: office areas	0,7	0,5	0,3
Category C: congregation areas	0,7	0,7	0,6
Category D: shopping areas	0,7	0,7	0,6
Category E: storage areas	1,0	0,9	0,8
Category F: traffic area, vehicle weight ≤ 30 kN	0,7	0,7	0,6
Category G: traffic area, 30 kN < vehicle weight ≤ 160 kN	0,7	0,5	0,3
Category H: roofs ^a	0,7	0	0
Snow loads on buildings (see EN 1991-3)			
— for sites located at altitude H > 1 000 m a.s.l.	0,70	0,50	0,20
— for sites located at altitude H ≤ 1000 m a.s.l.	0,50	0,20	0
Wind loads on buildings (see EN 1991-1-4)	0,5	0,2	0
Temperature (non-fire) in buildings (see EN 1991-1-5)	0,6	0,5	0
^a See also EN 1991-1-1: Clause 3.3.2 (1)	1		

Table NA.A1.1 — Values of Ψ factors for buildings

Cladding Elements

For the analysis of the façade members, the following load combinations have been considered according to the standard BS EN 1990 Table NA.A1.1:

For t

The Ultimate Limit State (ULS):

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_p P'' + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
The Serviceability Limit State (SLS).

$$\sum_{j\geq 1} G_{k,j} + P'' + \psi_1 Q_{k,1} + \sum_{i>1} \psi_{2,i} Q_{k,i}$$

For t

the Ultimate Limit State (ULS):

$$\sum_{j\geq 1} \gamma_{G,j} G_{k,j} + \gamma_p P'' + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$
the Serviceability Limit State (SLS).

$$\sum_{j\geq 1} G_{k,j} + P'' + \psi_1 Q_{k,1} + \sum_{i>1} \psi_{2,i} Q_{k,i}$$

or:

Structural Deflections

At both positive and negative applications of the peak test pressure, the maximum deflection shall not exceed:

- 1/90 of the span measured between the points of attachment of the panel.

For the verifications at Serviceability Limit State (SLS), the code BS EN 1990 6.5.3 provides the combination of actions, as follow:

$$"\sum_{j\geq 1} G_{k,j}" + "P" + "Q_{k,1}" + "\sum_{i>1} \psi_{0,i} Q_{k,i}"$$

The combination factors - Ψ - still refer to Table NA.A1.1, BS EN 1990 -NA.

+ "
$$\sum_{i>1} \psi_{0,i} Q_{k,i}$$
"

DESIGN CRITERIA

Materials

The properties of extruded aluminium profiles are taken according to Table 3.2b of BS EN 1999-1-1:

Alloy EN-	Product	Temper	Thick- ness t	f ₀ ¹⁾	<i>f</i> u ¹⁾	A ⁵⁾²⁾	fo,haz ⁴⁾ ,	fu,haz ⁴⁾	HAZ-f	factor ⁴⁾	BC	np
AW	IOIII		mm 1)3)	N/r	nm²	%	N/r	nm²	$ ho_{\rm o,haz}$	$\rho_{\rm u,haz}$	6)	7)
	ET, EP, ER/B	O/ H111, F. H112	$t \le 200$	110	270	12	110	270	1	1	В	5
5083	DT	H12/22/32	<i>t</i> ≤ 10	200	280	6	125	270	0,68	0,96	В	14
	DI	H14/24/34	<i>t</i> ≤ 5	235	300	4	135	2/0	0,57	0,90	Α	18
5454	ET, EP,ER/B	O/H111 F/H112	<i>t</i> ≤ 25	85	200	16	85	200	1	1	В	5
	ET, EP,ER/B	O/H111 F/H112	<i>t</i> ≤ 25	80	180	14	80	180	1	1	В	6
5754	DT	H14/ H24/H34	<i>t</i> ≤ 10	180	240	4	100	180	0,56	0,75	в	16
	EP,ET,ER/B	75	<i>t</i> ≤ 5	120	160	8	50	20	0,42	0,50	В	17
	EP	15	$5 < t \le 25$	100	140	8	50	00	0,50	0,57	В	14
	ET, EP, ER/B	т6	<i>t</i> ≤ 15	140	170	8	60	100	0,43	0,59	Α	- 24
6060	DT	10	$t \le 20$	160	215	12	00	100	0,38	0,47	Α	-16
	EP,ET,ER/B	T64	<i>t</i> ≤ 15	120	180	12	60	100	0,50	0,56	Α	12
	EP,ET,ER/B	T66	<i>t</i> ≤ 3	160	215	8	65 110	0,41	0,51	Α	16	
	EP	100	$3 < t \le 25$	150	195	8	05	110	0,43	0,56	Α	- 18
	EP, ET, ER/B		t<25	110	180	15	05	150	0.96	0,83	В	8
6061	DT	14	<i>t</i> ≤ 20	110	205	16	95	150	0,80	0,73	В	8
0001	EP,ET,ER/B	T6	t<25	240	260	8	115	175	0.48	0,67	Α	- 55
	DT	10	$t \leq 20$	240	290	10	115	115	0,40	0,60	Α	23
	EP,ET,ER/B	т5	<i>t</i> ≤ 3	130	175	8	60	100	0,46	0,57	В	-16
	EP	15	$3 < t \le 25$	110	160	7	00	100	0,55	0,63	В	13
	EP,ET,ER/B	те	<i>t</i> ≤ 25	160	195	8	65	110	0,41	0,56	Α	- 24
6063	DT	10	<i>t</i> ≤ 20	190	220	10	05	110	0,34	0,50	Α	31
	EP,ET,ER/B		<i>t</i> ≤ 10	200	245	8	ļ	.	0,38	0,53	Α	22
	EP	T66	$10 < t \le 25$	180	225	8	75	130	0,42	0,58	Α	21
	DT		$t \le 20$	195	230	10			0,38	0,57	Α	- 28
			<i>t</i> ≤ 5	225	270	8		.	0,51	0,61	Α	25
	EP/O, ER/B	T6	$5 < t \leq 10$	215	260	8	ļ	.	0,53	0,63	Α	24
6005A			$10 < t \le 25$	200	250	8	115	165	0,58	0,66	Α	20
	БР/Ц БТ	Т6	<i>t</i> ≤ 5	215	255	8	ļ	.	0,53	0,65	Α	26
	EI/II, EI	10	$5 < t \le 10$	200	250	8			0,58	0,66	Α	20
6106	EP	T6	t≤10	200	250	8	95	160	0,48	0,64	Α	20

Standard BS EN 1999-1-1 defines the mechanical properties of aluminum:

Density γ = 2700 kg/m3 Elastic modulus E = 70 000 MPa Shear modulus G = 21 000 MPa Coefficient of linear thermal expansion $\alpha T = 23 \times 10-6 1/^{\circ}C$

The partial factors γ_M should be applied to the various characteristic value of the resistance as follows according to BS EN 1999-1-1: • resistance of cross-sections whatever the class is γ_{M1} • resistance of member to instability assessed by member checks is γ_{M1} • resistance of cross-sections in tension to fracture is γ_{M2}

The following value should be used:

• γ_{M2} =1,25

LOCALIZATION: WEST ELEVATION - EUSTON SQUARE

LOCALIZATION: SOUTH-EAST ELEVATION

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION

PROPOSAL 1 - STANDING SEAM AND CORRUGATED SHEET ON CONTINUOUS SUPPORT SYSTEM

In the images below are shown, as an example, the horizonal and vertical sections of EWS-1_001 (85 mm outer insulation)

HORIZONTAL SECTION

MATERIAL LIST

- *A. 2x12.5 Plasterboard on vapour barrier + 5 mm finiture
- *B. 100 mm Metal stud with fullfil insulation + Vapour barrier C. 10 mm Pyrok board * Breather membrane [A2-S1, d0, or better]
- D. Mineral wool insulation [Class A1]
- E. Alu bracket with clip + Alu L-Profile + Class A2 Membrane Layer (1 mm) [A2-S1, d0, or better]
- F. Air cavity
- G. Steel deck 0.7 mm [A2-S1, d0, or better]
- H. Fire cavity barrier with alu brackets as supporting system [A2-S1, d0, or better]

- I. Copper Alloy Standing Seam [A2-S1, d0, or better] + Class A2 Membrane Layer with Metal Deck (1mm)
- J. Steel Bent Plate
- K. Aluminum Sandwich Panel with Mineral Wool
- L. Fire cavity barrier with alu brackets at the Slab Edge [A2-S1, d0, or better]
- M. Brickwork F¹⁰₁₁₀
- N. Mineral Reinforcing Coat
- O. Glass Fiber Reinforcing Mesh
- P. Primer and Render Finish

VERTICAL SECTION

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION

PROPOSAL 1 - STANDING SEAM AND CORRUGATED SHEET ON CONTINUOUS SUPPORT SYSTEM

THE STEEL DECH SHALL HAVE THE FOLLOWING CHARACTERISTICS:

Ultimate section properties to Eurocode

				Broad flange in compression		in compression	65mm bearing on purlin			
Material specification	Design thickness	Weight	Moment capacity	Moment of inertia	Moment capacity	Moment of inertia	Transverse	resistance	Shear capacity	
	mm	kg/m²	kNm/m	cm⁴/m	kNm/m	cm⁴/m	Internal Rw kN/m	End Rw kN/m	kN/m	
0.70mm Steel S280	0.66	6.82	1.59	11.12	1.24	10.08	10.98	5.49	42.08	

		Span								Span (i	metres)							
		condition	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40
	q	Single	8.09	7.28	6.61	5.12	4.01	3.20	2.59	2.12	1.76	1.47	1.24	-	-	-	-	-
280	npose	Double	5.17	4.47	3.91	3.45	3.07	2.75	2.48	2.25	2.05	1.87	1.72	1.59	1.47	1.36	1.26	1.18
iteel S	5	Multi	6.08	5.27	4.62	4.08	3.64	3.27	2.96	2.68	2.45	2.25	2.07	1.91	1.76	1.52	1.32	1.16
mm S	_	Single	8.18	6.63	5.49	4.62	3.94	3.41	2.97	2.62	2.27	1.93	1.65	-	-	-	-	-
0.70	uction	Double	10.51	8.52	7.05	5.93	5.06	4.37	3.81	3.35	2.98	2.66	2.39	2.16	1.97	1.80	1.65	1.52
	S	Multi	12.75	10.34	8.55	7.19	6.13	5.30	4.62	4.06	3.61	3.22	2.90	2.62	2.28	1.99	1.75	1.55

to ctrs of SFS Stud.

Please consider that the span shall follow the ctrs

Span among L supports (metres) = 0.6 m

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION PROPOSAL 1 SUBSTRUCTURE (STATIC SCHEME)

Following is shown the static scheme considered for the verification of the supports (aluminium mullion, aluminium brackets and SFS Stud).

It has been considered the typical span between slabs (2600 mm).

The stratigraphy shown below is related at standing seam and corrugated sheet.

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION PROPOSAL 1 SUBSTRUCTURE (ALUMINIUM MULLION) (6060 T5; thk 2 mm)

FOLLOWING, THE "L" ALUMINIUM MULLION CONSIDERED:

PROFIL ALUMINIUM POUR OSSATURE PRIMAIRE - LONGUEURS 3 OU 6 MÈTRES

Check is OK

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION

PROPOSAL 1 SUBSTRUCTURE (ALUMINIUM BRACKETS) (6005A T6; thk 3 mm)

FOLLOWING, THE ALUMINIUM BRACKETS CONSIDERED:

<u>EWS-1-001</u>

	B U R E A U VERITAS	3194	Équer	re ISOLALU LR 80
L	Dn mini *	Dn maxi *	Cond.	Code
40	63	68	100	611 000
60	73	98	100	611 001
80	93	118	100	611 002
100	113	138	100	611 003
120	133	158	100	611 004
140	153	178	50	611 005
160	173	198	50	611 006
180	193	218	50	611 068
200	213	238	50	611 069
220	233	258	50	611 071
240	253	278	50	611 141

EWS-1-002

	B U R E A U VERITAS	3194	Équerr	e ISOLALU LR 80
L	Dn mini *	Dn maxi *	Cond.	Code
40	63	68	100	611 000
60	73	98	100	611 001
80	93	118	100	611 002
100	113	138	100	611 003
120	133	158	100	611 004
140	153	178	50	611 005
160	173	198	50	611 006
180	193	218	50	611 068
200	213	238	50	611 069
220	233	258	50	611 071
240	253	278	50	611 141

(*) Dn mini / maxi avec cale Thermostop epaisseur 6 n

Bracket Wind load

(*) Dn mini / maxi avec cale Thermostop épaisseur 6 mm

Bracket Wind load

	B U R E A U V E R I T A S	Équerr L	Équerre ISOLALU LR 150			
L	Dn mini *	Dn maxi *	Cond.	Code		
40	63	68	100	611 019		
60	73	98	100	611 007		
80	93	118	100	611 008		
100	113	138	100	611 009		
120	133	158	100	611 010		
140	153	178	50	611 011		
160	173	198	50	611 012		
180	193	218	50	611 146		
200	213	238	50	611 083		
220	233	258	50	611 147		
240	253	278	50	611 149		

	(*) Dn mini /	maxi a	vec cale	Thermostop	épaisseur 6	mm
--	---------------	--------	----------	------------	-------------	----

Bracket Dead load + Wind load

and decade GT

BUREAU VERITAS		Équerre ISOLALU LR 150		
L	Dn mini *	Dn maxi *	Cond.	Code
40	63	68	100	611 019
60	73	98	100	611 007
80	93	118	100	611 008
100	113	138	100	611 009
120	133	158	100	611 010
140	153	178	50	611 011
160	173	198	50	611 012
180	193	218	50	611 146
200	213	238	50	611 083
220	233	258	50	611 147
240	253	278	50	611 149

(*) Dn mini / maxi avec cale Thermostop épaisseur 6 mm

Bracket Dead load + Wind load

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION PROPOSAL 1 SUBSTRUCTURE (ALUMINIUM BRACKETS)

For the verification of the brackets it has been considered the worst case which is the brackets with a 160 mm length.

Bracket Dead Load + Wind Load

Horizontal Force

Vertical Force

 $Fy = 1.5 \cdot PWLS \cdot l \cdot i = 0.5kN$ $Fz = 1.35 \cdot P_{DL} \cdot h \cdot i = 0.3kN$ $Mz = Fy \cdot 20mm = 0.01 \ kNm$ $My = Fz \cdot 20 mm = 0.006 kNm$ $Mt = Fz \cdot 160 mm = 0.05 kNm$

 $W_{z} = (150 \text{ mm} \cdot (3 \text{ mm})^{2})/6 = 225 \text{ mm}^{3}$ $W_v = (3mm \cdot (150mm)^2)/6 = 11250 mm^3$

 $\sigma_{Ed} = Mz/Wz + My/Wy = 45 MPa$

 $\tau_{\rm Ed} = ((3Mt)/(ab^2)) + (\sqrt{F_v^2 + F_z^2}/0.8A) = 112.7 \text{ MPa}$ $\sigma_{max} = \sqrt{(\sigma_{Ed}^{2} + 3 \cdot \tau_{Ed}^{2})} = 200.4 \text{ Mpa}$ $\frac{\sigma_{max}}{\sigma_{max}} = 0.98$ Check is OK σ_{adm}

Section Properties Aluminum Bracket

Use aluminium EN AW 6005A T6 t \leq 5mm 70000MPa 225MPa

 $\sigma_{adm} = f_0 / \gamma_{M1} = 205 MPa$

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION PROPOSAL 1 SUBSTRUCTURE (ALUMINIUM BRACKETS)

For the verification of the brackets it has been considered the worst case which is the brackets with a 160 mm length.

Bracket Wind Load

Section Properties Aluminum Bracket

Use aluminium EN AW 6005A T6 t \leq 5mm 70000MPa 225MPa = 270MPa

 $\sigma_{adm} = f_o / \gamma_{M1} = 205 MPa$

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION PROPOSAL 1 SUBSTRUCTURE (SFS Stud)

The SFS Stud considered has the following characteristic:

D = 100 mm F = 50 mmL = 10 mmt = 1.2 mm

'C sections': Used as studs in wall panels and joists in floor/roof panels.

Section Properties SFS Stud

Since there is no data about the steel grade used, for the calculation we considered the usually worst grade for SFS

Grade S280GD (minimum yield strength = 280 N/mm²)

210000MPa Eal = 120MPa f_0 \equiv 360MPa \equiv 1,00 Y_{M1}

280MPa σ_{adm} Ξ

 $\delta_{max} = 3.66 \text{ mm} < 2400 \text{ mm}/360 = 6.7 \text{ mm}$

Check is OK

EWS-1_001 - 002: 85 - 100 mm OUTER INSULATION PROPOSAL 1 SUBSTRUCTURE (Screws)

Following are shown the calculation of screws:

- Screw between corrugated sheet and "L" aluminium mullion A)
- Screw between "L" aluminium mullion and brackets B)
- Screw between brackets and SFS Stud C)

Screw connection design - Max shear strength	EN 1993-1-8			
Saraw aiza arada	07.6.6	A 50		
Screw size, grade	SI 5.5	A-50		
	D L	0.20		
Effective screw diameter	d _{2max}	4.17	mm	
Shear coemicient	α	0.50	-	
Ultimate tensile strength	t _{ub}	500.00	MPa	
Effective screw area	A	13.65	mm ⁺	
Safety factor	YM2	1.25	-	
Thread pitch	S	1.80	mm	
Shear strength per screw	F _{v,Rd}	2.73	kN	
Max tensile strength - EN 1993-1-8				
Screw head strength coefficient	k ₂	0.90	-	
Tensile strength per screw	F _{t,Rd}	4.91	kN	
Shear and tension combined - EN 1993-1-8				
Design share	F	0.05	LN	01
Design snear	F v,Ed	0.00	KIN LAN	OK
Design axial load	Ft,Ed	0.31	KIN	OK
Utilisation	U	0.06	-	OK
Bearing resistance - EN 1993-1-3				
Plate thickness - thinnest	t	0.70	mm	
Plate thickness - thickest	t ₁	2.00	mm	
Plate ultimate strength	fu	160.00	MPa	
Shear coefficient	α	2.10	-	
Bearing strength	F _{b.Rd}	0.99	kN	
Utilisation	U	0.05	-	ОК
Pull through strength - EN 1993-1-3				
Diameter of head of screw or washer	d _w	8.00	mm	
Pull through strength (static loads)	F _{p,Rd}	0.72	kN	
Pull through strength (dynamic loads - wind)	F _{p,Rd}	0.36	kN	
Utilisation	U	0.86	-	ОК
Pull out strength - EN 1993-1-3				
Support thickness	t _{sup}	2.00	mm	
Support ultimate strength	f _{u,sup}	160.00	MPa	
Pull out strength	F _{o,Rd}	0.88	kN	
Utilisation	U	0.35	-	OK

Screw connection design - Max shear EWS-1_001 - 002: 50 - 100 mm OUTER INSULATION PROPOSAL 1 SUBSTRUCTURE (Screws) Screw size, grade Nominal diameter Effective screw diameter Following are shown the calculation of screws: Shear coefficient Ultimate tensile strength Screw between corrugated sheet and "L" aluminium mullion A) Effective screw area Screw between "L" aluminium mullion and brackets B) Safety factor Thread pitch Screw between brackets and SFS Stud C) Shear strength per screw INSIDE Max tensile strength - EN 1993-1-8 Check Screw B (wind load bracket - worst case) Screw head strength coefficient Tensile strength per screw n (numbers of screws in wind load bracket) = 2 Shear and tension combined - EN 199 The screw shall have the following characteristics Design shear Design axial load Utilisation Bearing resistance - EN 1993-1-3 Rostfrei / Inox / Stainless MFmax Plate thickness - thinnest Plate thickness - thickest Plate ultimate strength OUTSIDE Shear coefficient Ē Ø 5.5mm Bearing strength Utilisation $Ft = (1.5 \cdot PWLS \cdot l \cdot i)/2 = 0.25 \ kN$ (force on Pull through strength - EN 1993-1-3 single screw) Diameter of head of screw or washer =200 mm Pull through strength (static loads) В Pull through strength (dynamic loads - wi Utilisation Pull out strength - EN 1993-1-3 Support thickness Support ultimate strength Pull out strength Utilisation

strength - E	N 1993-1-8			
	ST 5.5	A-50		
	d	5.28	mm	
	d _{2max}	4.17	mm	
	α	0.50	-	
	f _{ub}	500.00	MPa	
	Α	13.65	mm ²	
	YM2	1.25	-	
	s	1.80	mm	
	F _{v,Rd}	2.73	kN	
	k ₂	0.90	-	
	F _{t.Rd}	4.91	kN	
3-1-8		I	I	
	Ev ex	0.25	kN	ОК
	E E	0.00	kN	OK
	I t,Ed	0.09		
	0	0.05	-	UK
	•	2.00		
	۱ ۱	2.00		
	L1	3.00	mm	
	tu	160.00	MPa	
	α	2.10	-	
	F _{b,Rd}	2.84	kN	
	U	0.09	-	ОК
	d _w	8.00	mm	
	F _{p,Rd}	2.05	kN	
nd)	F _{p,Rd}	1.02	kN	
	U	0.00	-	ОК
	t _{sup}	2.00	mm	
	fu sun	160.00	MPa	
	-a'anh			
	Falled	0.88	kN	

UMMING Building Value Through Expertise

AFFEIS

EWS-1_001 - 002: 50 - 100 m PROPOSAL 1 SUBSTRUCTUF	n m OUTER INSULATION RE (Screws)	Screw connection design - Max shear stre Screw size, grade Nominal diameter
Following are shown the calcu A) Screw between corrugate B) Screw between "L" alumir C) Screw between brackets	lation of screws: ed sheet and "L" aluminium mullion nium mullion and brackets and SFS Stud	Effective screw diameter Shear coefficient Ultimate tensile strength Effective screw area Safety factor Thread pitch Shear strength per screw
INSIDE	<u>Check Screw C (dead load + wind load bracket –</u>	Max tensile strength - EN 1993-1-8 Screw head strength coefficient
	worst case) n (numbers of screws in wind load bracket) = 3	Tensile strength per screw Shear and tension combined - EN 1993-1-
	The screw shall have the following characteristics	Design shear Design axial load Utilisation
	Rostfrei / Inox / Stainless A	Bearing resistance - EN 1993-1-3 Plate thickness - thinnest Plate thickness - thickest Plate ultimate strength Shear coefficient
	$Fv = 0.2 \ kN$ (force on single screw) $Ft = 0.8 \ kN$ (force on single screw)	Bearing strength Utilisation Pull through strength - EN 1993-1-3 Diameter of head of screw or washer
		Pull through strength (static loads) Pull through strength (dynamic loads - wind) Utilisation Pull out strength - EN 1993-1-3
		Support thickness Support ultimate strength Pull out strength Utilisation

nath . EN	1993-1-8			
ngui - EN	1333-1-0			
	ST 5.5	A-50		
	d	5.28	mm	
	d2max	4.17	mm	
	a	0.50	-	
		500.00	MPa	
	A	13.65	mm ²	
	Vuo	1 25	-	
	YM2	1.20	mm	
	E. p.	2.73	kN	
	• v,Rd	2.1.0		
	k ₂	0,90	-	
	2			
	Ft Rd	4.91	kN	
	- Çivû			
	F _{v.Ed}	0.20	kN	ОК
	Ft Ed	0.80	kN	OK
	U	0.19	-	OK
	I			
	t	1.20	mm	
	t ₁	3.00	mm	
	fu	160.00	MPa	
	α	2,10	-	
	Fb Rd	1.70	kN	
	U	0.12	-	ОК
	1	1		
	dw	12.00	mm	
	F _{p.Rd}	1.84	kN	
	F _{p.Rd}	0.92	kN	
	U	0.87	-	ОК
	1			
	tsup	1.20	mm	
	fu aun	360.00	MPa	
	Fored	0.82	kN	

UMMING Building Value Through Expertise

4. CONCLUSIONS

Euston Travelodge External Wall Systems have been found to have combustible materials within the construction, therefore the Owner decided to replace any flammable material with a safer an more suitable material.

Scope of this document is to investigate the solution already provided in RIBA STAGE 3 report and check their feasibility in terms of loads involved and structural analysis.

Since the layers within the proposed solutions of EWS-2 and EWS-3 do not involve a relevant change in terms of weights to the SFS system (considering to have a max distance between SFS Stud equal to 600 mm) it was reported only the stability checks of the EWS-1.

The structural performance of the solution proposed for the EWS-1 has been analysed and reported in this document. The solution is feasible in terms of loads involved, and do not affect the stability of the SFS system already installed.

