Euston Travelodge London

# MAFFEIS Mengineering

#### RIBA STAGE 3 PLUS-THERMAL REPORT MHBC-008-SD-RP101\_REV01



# **REVISION HISTORY**

| REV. | DATE       | PREP. | CHECK | APPR. | DESCRIPTION    |
|------|------------|-------|-------|-------|----------------|
| 00   | 12/10/2022 | SA    | SZ    | GG    | First Release  |
| 01   | 28/10/2022 | SA    | SZ    | GG    | Second Release |



#### **INDEX OF CONTEXT**

- 1. SCOPE OF WORK
- 2. DESIGN CRITERIA
  - 1. REFERENCE DOCUMENTS
  - 2. BOUNDARY CONDITION
- 3. EWS-1: COPPER ALLOY STANDING SEAM PANEL
- 4. EWS-2: EXTERNAL WALL INSULATION SYSTEM
- 5. EWS-3: SPANDREL PANEL
- 6. CONCLUSIONS



# 1. SCOPE OF WORK

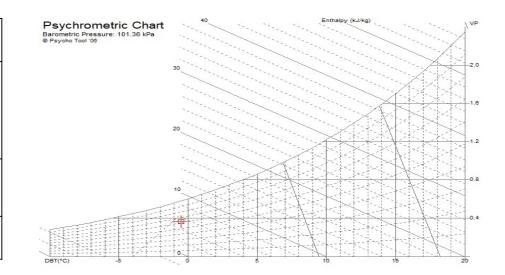
Travelodge Euston is a mixed-use development. It incorporates the Travelodge Hotel, a retail unit, and residential units. The building is flanked on its northeaster face by Grafton Chambers.

As per report of the RIBA STAGE 1 the design involves only the following typologies:

- 1. Copper alloy standing seam panel EWS-1:
  - 001 50mm outer insulation wall
  - 002 100mm outer insulation wall
- 2. External wall insulation system EWS-2:
  - 001 50mm outer insulation wall
  - 002 25mm outer insulation wall
- 3. Spandrel panel EWS-3

During a building inspection, combustible material and missing or loose fire cavity barriers have been found in the external walls. Since the building is not compliant with the Fire Regulations, it must undergo remedial works to make it compliant with the current Fire Regulations. Approved document L (Conservation of fuel and power) sets the limit that a renovated thermal element must comply; the existing external wall thermal element that is being renovate should:

a) meet the limitation of 0,3 W/m<sup>2</sup>K


Scope of this document is to investigate the solution already provided in RIBA STAGE 3 report and check their feasibility in terms of thermal response.



## 2. DESIGN CRITERIA

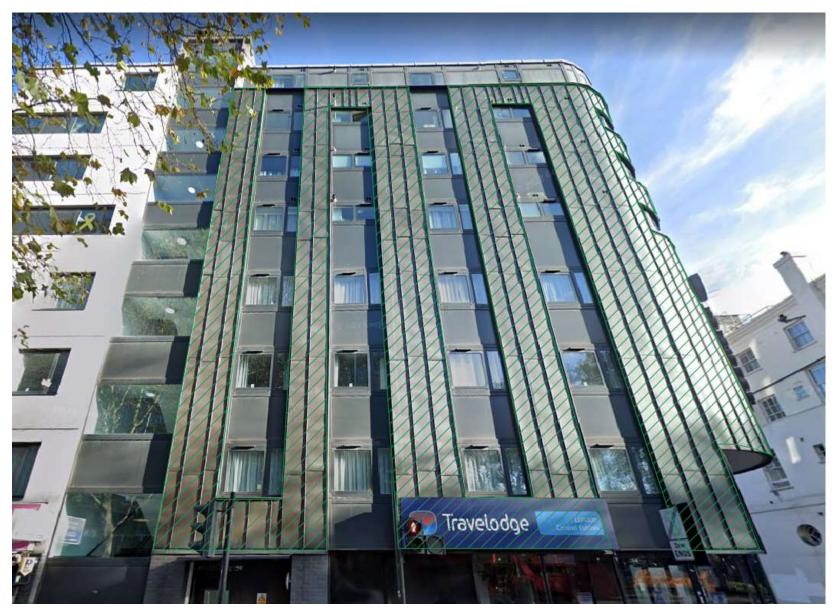
#### 2.1 Reference Documents

| BS EN ISO 1035  | Building materials. Thermal conductivities and vapour permeabilities.                                                                                                              |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BD EN ISO 13788 | Hygrothermal performance of building components and<br>building elements -<br>Internal surface temperature to avoid critical surface<br>humidity and interstitial<br>condensation. |
| BS EN ISO 6946  | Building components and building elements — Thermal resistance and thermal transmittance.                                                                                          |
| BS EN ISO 12631 | Thermal performance of curtain walling. Calculation of thermal transmittance.                                                                                                      |



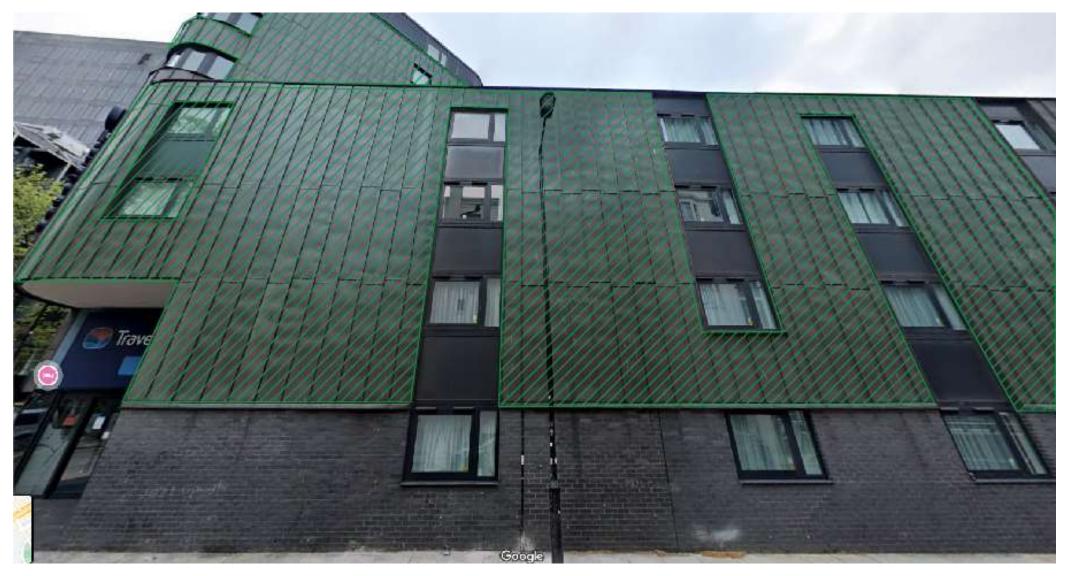
#### 2.2 Boundary Conditions

- T-indoor: 20 °C
- T-outdoor: -9°C
- RH-indoor: 50%
- RH-outdoor: 60%
- T-dew-point: 9.5 °C


# **P**LONDON WEA CENTER, UNITED KINGDOM (WMO: 037780)

| Lat:51           | 52N<br>ting and Hu |               | 0.12W<br>n Design Co |       | ev:23          | 4       | StdP: 101.0 | )5   | ]    | Time zone:0.0 | 0        |      | Period | 82-92   |
|------------------|--------------------|---------------|----------------------|-------|----------------|---------|-------------|------|------|---------------|----------|------|--------|---------|
| 9.63 800m etc    |                    | The first had |                      |       | idification DI | MCDB at | nd HR       |      | (    | Coldest month | n WS/MCI | OB   | MCWS/I | PCWD to |
| Coldest<br>Month | Heating DB         |               | ÷                    | 99.6% |                | 99%     |             | 0.4% |      |               | 1% 99.6% |      | 6 DB   |         |
| Month            | 99.6%              | 99%           | DP                   | HR    | MCDB           | DP      | HR          | MCDB | WS   | MCDB          | WS       | MCDB | MCWS   | PCWD    |
| 2                | -2.6               | -1.0          | -6.7                 | 2.2   | -0.5           | -5.4    | 2.4         | 0.7  | 14.0 | 9.5           | 13.0     | 6.4  | 5.8    | 40      |

| Extreme A         | Extreme Annual Design Conditions |     |          |           |           |          |           |      |           |             |              |           |       |       |       |
|-------------------|----------------------------------|-----|----------|-----------|-----------|----------|-----------|------|-----------|-------------|--------------|-----------|-------|-------|-------|
| Extreme Annual WS |                                  | E   |          | Extreme A | Annual DB |          |           |      | n-Year Re | turn Period | Values of Ex | xtreme DB |       |       |       |
| EXU               | Extreme Annual WS                |     | - Max WB | Me        | ean       | Standard | deviation | n=5  | years     | n=10        | years        | n=20      | years | n=50  | years |
| 1%                | 2.5%                             | 5%  | IVIAX WD | Min       | Max       | Min      | Max       | Min  | Max       | Min         | Max          | Min       | Max   | Min   | Max   |
| 11.7              | 10.3                             | 9.4 | 24.4     | -3.2      | 30.0      | 3.1      | 2.5       | -5.5 | 31.9      | -7.3        | 33.3         | -9.0      | 34.8  | -11.3 | 36.6  |




LOCALIZATION: WEST ELEVATION - EUSTON SQUARE





# LOCALIZATION: SOUTH-EAST ELEVATION



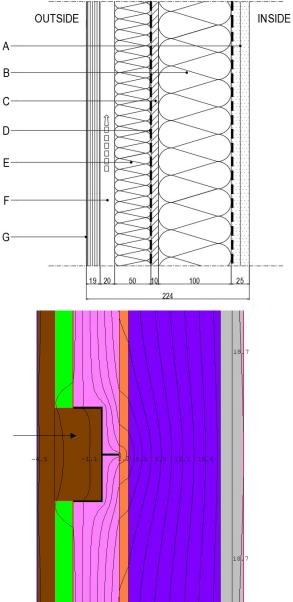


#### EWS-1\_001: 50 mm OUTER INSULATION CURRENT BUILT-UP SECTION

# TRANSMITTANCE OF THE CENTER OF THE PANEL (FROM RIBA STAGE 3):

|   | Material                                      | Thickness | Thermal conductivity | Thermal resistance |
|---|-----------------------------------------------|-----------|----------------------|--------------------|
|   | Material                                      | [mm]      | [W/mK]               | [m²K/W]            |
|   | Internal Heat Transfer Resistance             | -         | -                    | 0.13               |
| А | Plasterboard                                  | 25        | 0,21                 | 0,12               |
| В | Glass Wool Insulation eqivalent including SFS | 100       | 0,079                | 1,27               |
| С | Pyrok Board                                   | 10        | 0,23                 | 0,04               |
| D | Breather Membrane                             | 1         | 0,2                  | 0,01               |
| Е | Mineral fibre board*                          | 50        | 0,035                | 1,43               |
| F | Cavity                                        | 20        |                      | 0,18               |
| G | Plywood                                       | 20        | 0,13                 | 0,15               |
|   | External Heat Transfer Resistance             | -         | -                    | 0,04               |
|   |                                               | U-value = | 0,                   | 31 W/m²K           |

This calculation doesn't take into account the wooden battens and the steel brackets which would have a significant impact. That is why a thermal simulation has been made to asses the realistic performance of the panel.


#### CURRENT BUILD-UP PERFORMANCE INCLUDING BATTENS

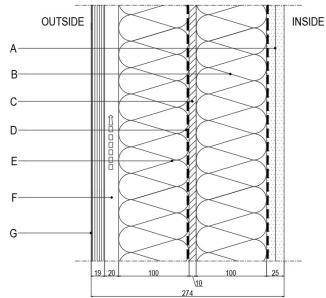
| Element    | Description                  | U or Psi  | S     | A or L | UA    |
|------------|------------------------------|-----------|-------|--------|-------|
| [-]        | [-]                          | [W/mK]    | [m]   | [m²]   | [W/K] |
| TJ + 50 mm | Wooden Button Impact+bracket | 0,02      | 0,100 | 1,20   | 0,029 |
| Panel      | Center of panel              | 0,31      | 0,000 | 0,36   | 0,112 |
|            |                              | U-value = |       | 0.39   | W/m²K |



- Wooden batten is considered through the horizontal sides of each module.
  - The brackets are considered as one per each side of the panel, as the spacing of the SFS system. The equivalent conductivity is calculated to be inculded in the simulation.

The addition of the wooden batten and the bracket to the thermal analysis




Building Value Through Expertise

AFFEIS Mengineering

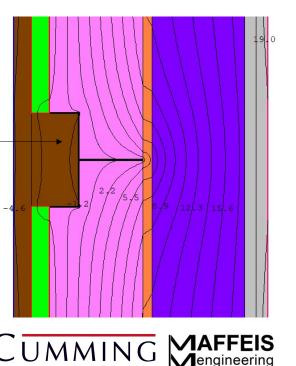
#### EWS-1\_001: 100 mm OUTER INSULATION CURRENT BUILT-UP SECTION

# TRANSMITTANCE OF THE CENTER OF THE PANEL (FROM RIBA STAGE 3):

|   | Material                                         | Thickness<br>[mm] | Thermal conductivity<br>[W/mK] | Thermal resistance<br>[m²K/W] |
|---|--------------------------------------------------|-------------------|--------------------------------|-------------------------------|
|   | Internal Heat Transfer Resistance                | -                 | -                              | 0.13                          |
| Α | Plasterboard                                     | 25                | 0,21                           | 0,12                          |
| В | Glass Wool Insulation eqivalent including<br>SFS | 100               | 0,079                          | 1,27                          |
| С | Pyrok Board                                      | 10                | 0,23                           | 0,04                          |
| D | Breather Membrane                                | 1                 | 0,2                            | 0,01                          |
| E | Mineral fibre board*                             | 100               | 0,035                          | 2,86                          |
| F | Cavity                                           | 20                |                                | 0,18                          |
| G | Plywood                                          | 20                | 0,13                           | 0,15                          |
|   | External Heat Transfer Resistance                | -                 | -                              | 0,04                          |
|   |                                                  | U-value =         | 0,2                            | 1 W/m²K                       |



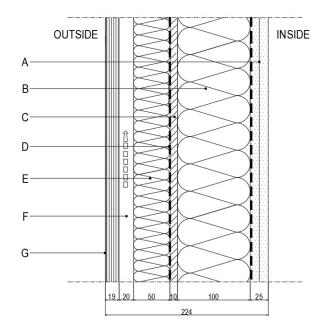
This calculation doesn't take into account the wooden battens and the steel brackets which would have a significant impact. That is why a thermal simulation has been made to asses the realistic performance of the panel.


#### CURRENT BUILD-UP PERFORMANCE INCLUDING BATTENS

| Element     | Description                  | U or Psi  | S     | A or L | UA    |
|-------------|------------------------------|-----------|-------|--------|-------|
| [-]         | [-]                          | [W/mK]    | [m]   | [m²]   | [W/K] |
| TJ + 100 mm | Wooden Button Impact+bracket | 0,04      | 0,100 | 1,20   | 0,04  |
| Panel       | Center of panel              | 0,21      | 0,000 | 0,36   | 0,076 |
|             |                              | U-value = |       | 0,33   | W/m²K |

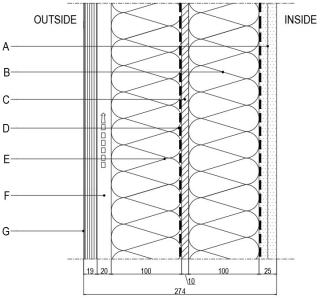


- Wooden batten is considered through the horizontal sides of each module.
- The brackets are considered as one per each side of the panel, as the spacing of the SFS system. The equivalent conductivity is calculated to be inculded in the simulation.


The addition of the wooden batten and the bracket to the thermal analysis



**Building Value Through Expertise** 

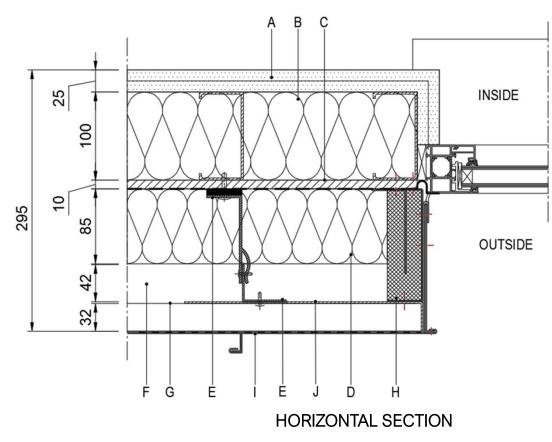

# EWS-1\_001: 50 mm OUTER INSULATION TRANSMITTANCE OF THE PANEL INCLUDING THE BATTENS

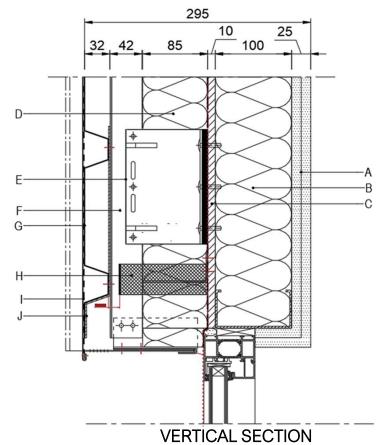
|   | Matarial                                         | Thickness         | Thermal conductivity | Thermal resistance |
|---|--------------------------------------------------|-------------------|----------------------|--------------------|
|   | Material                                         | [mm]              | [W/mK]               | [m²K/W]            |
|   | Internal Heat Transfer Resistance                | -                 | -                    | 0.13               |
| А | Plasterboard                                     | 25                | 0,21                 | 0,12               |
| В | Glass Wool Insulation eqivalent including<br>SFS | 100               | 0,079                | 1,27               |
| С | Pyrok Board                                      | 10                | 0,23                 | 0,04               |
| D | Breather Membrane                                | 1                 | 0,2                  | 0,01               |
| Е | Mineral fibre board*                             | 50                | 0,035                | 1,43               |
| F | Cavity                                           | 20                |                      | 0,18               |
| G | Plywood                                          | 20                | 0,13                 | 0,15               |
|   | External Heat Transfer Resistance                | -                 | -                    | 0,04               |
|   |                                                  | U-value =         | 0,31                 | W/m²K              |
|   |                                                  | U-value + bracket | 0.39                 | W/m²K              |



#### EWS-1\_002: 100 mm OUTER INSULATION TRANSMITTANCE OF THE PANEL INCLUDING THE BATTENS

| Material                                        | Thickness         | Thermal conductivity | Thermal resistance |
|-------------------------------------------------|-------------------|----------------------|--------------------|
| Material                                        | [mm]              | [W/mK]               | [m²K/W]            |
| Internal Heat Transfer Resistance               | -                 | -                    | 0.13               |
| A Plasterboard                                  | 25                | 0,21                 | 0,12               |
| B Glass Wool Insulation eqivalent including SFS | 100               | 0,079                | 1,27               |
| C Pyrok Board                                   | 10                | 0,23                 | 0,04               |
| D Breather Membrane                             | 1                 | 0,2                  | 0,01               |
| E Mineral fibre board*                          | 100               | 0,035                | 2,86               |
| F Cavity                                        | 20                |                      | 0,18               |
| G Plywood                                       | 20                | 0,13                 | 0,15               |
| External Heat Transfer Resistance               | -                 | -                    | 0,04               |
|                                                 | U-value =         | 0,21                 | W/m²K              |
|                                                 | U-value + bracket | 0.33                 | W/m²K              |





Building Value Through Expertise

AFFEIS engineering

#### EWS-1\_001: 85 mm OUTER INSULATION

PROPOSAL 1 - STANDING SEAM AND CORRUGATED SHEET ON CONTINUOUS SUPPORT SYSTEM





#### STRATIGRAPHY

A - 2x12.5 PLASTERBOARD ON VAPOUR BARRIER

B - 100 MM METAL STUD WITH FULLFIL INSULATION + VAPOUR BARRIER

C - 10 MM PYROK BOARD + BREATHER MEMBRANE (CLASS A1)

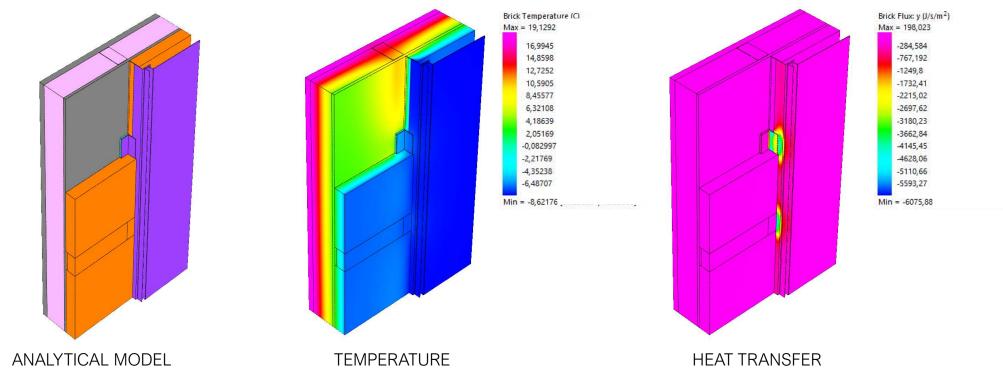
D – MINERAL WOOL INSULATION (CLASS A1)

- E ALU BRACKET WITH CLIP + ALU L-PROFILE
- + CLASS A2 MEMBRANE (1 MM)

F – AIR CAVITY

G – STEEL DECK 0.7MM

H – FIRE CAVITY BARRIER WITH ALU BRACKETS


I- COPPER ALLOY STANDING SEAM

J- STEEL BENT PLATE



#### EWS-1\_001: 85 mm OUTER INSULATION

PROPOSAL 1 - STANDING SEAM AND CORRUGATED SHEET ON CONTINUOUS SUPPORT SYSTEM FINITE ELEMENT MODELLING AND RESULTS

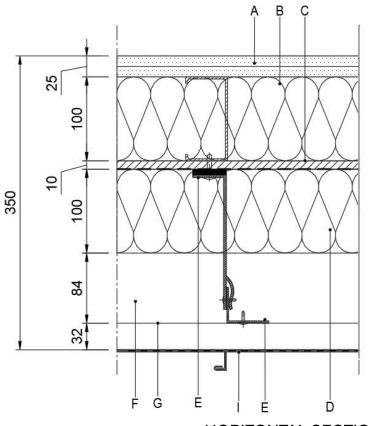


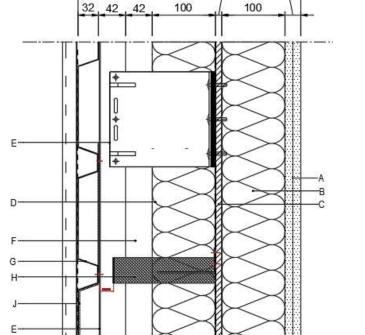
NOTE: Since only the external finish is varying between the proposal 1-2 and both are metallic, the same performance is expected for both solutions.

| Color | Material     | Conductivity [W/mK] |
|-------|--------------|---------------------|
|       | Cavity       | 0,22                |
|       | Aluminum     | 160                 |
|       | Mineral wool | 0,035               |
|       | Glass wool   | 0,04                |
|       | Steel        | 50                  |
|       | Spacer       | 0,2                 |
|       | Boards       | 0,3                 |

\* Some elements have been hidden to show bracket location

#### NO SURFACE CONDENSATION EXPECTED


| phi    | 5.00 | W     |
|--------|------|-------|
| А      | 0,60 | m2    |
| phi/m2 | 8,33 | W/m2  |
|        |      |       |
| U      | 0,29 | W/m²K |


| Approved document L c | riteria: |
|-----------------------|----------|
| а                     | ОК       |



#### EWS-1\_002: 100 mm OUTER INSULATION

PROPOSAL 1 - STANDING SEAM AND CORRUGATED SHEET ON CONTINUOUS SUPPORT SYSTEM





VERTICAL SECTION

350

10

25

HORIZONTAL SECTION

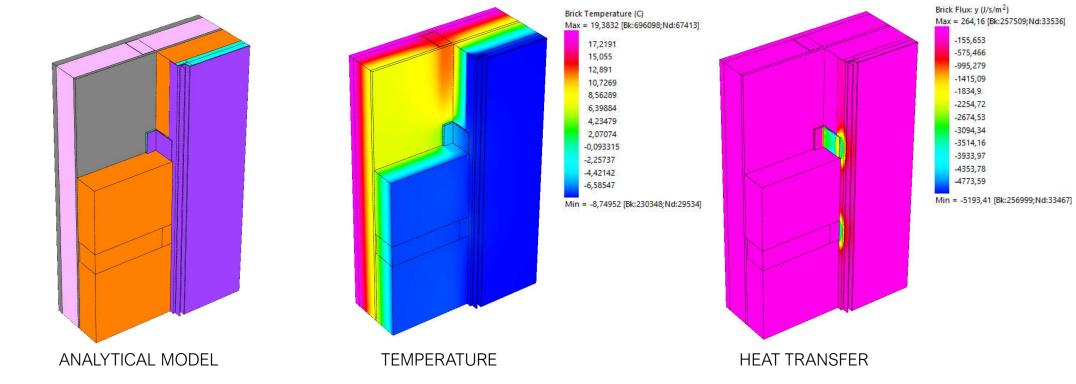
# STRATIGRAPHY

A - 2x12.5 PLASTERBOARD ON VAPOUR BARRIER

B - 100 MM METAL STUD WITH FULLFIL

INSULATION + VAPOUR BARRIER

C - 10 MM PYROK BOARD + BREATHER MEMBRANE (CLASS A1)


D – MINERAL WOOL INSULATION (CLASS A1)

- E ALU BRACKET WITH CLIP + ALU L-PROFILE
- + CLASS A2 MEMBRANE (1 MM)
- F AIR CAVITY
- G STEEL DECK 0.7MM
- H FIRE CAVITY BARRIER WITH ALU BRACKETS
- I- COPPER ALLOY STANDING SEAM
- J- STEEL BENT PLATE



#### EWS-1\_002: 100 mm OUTER INSULATION

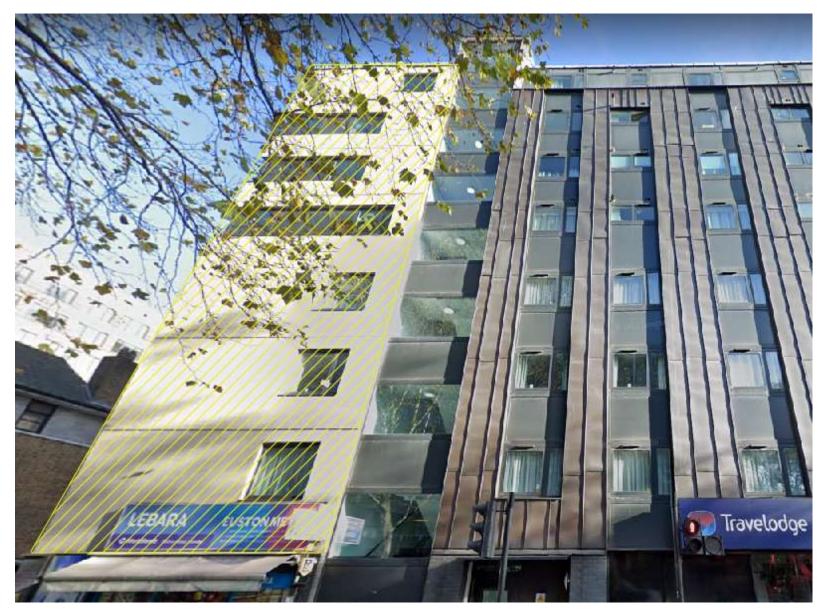
PROPOSAL 1 - STANDING SEAM AND CORRUGATED SHEET ON CONTINUOUS SUPPORT SYSTEM FINITE ELEMENT MODELLING AND RESULTS



NOTE: Since only the external finish is varying between the proposal 1-2 and both are metallic, the same performance is expected for both solutions.

| Color | Material     | Conductivity [W/mK] |
|-------|--------------|---------------------|
|       | Cavity       | 0,22                |
|       | Aluminum     | 160                 |
|       | Mineral wool | 0,035               |
|       | Glass wool   | 0,04                |
|       | Steel        | 50                  |
|       | Spacer       | 0,2                 |
|       | Boards       | 0,3                 |

\* Some elements have been hidden to show bracket location


#### NO SURFACE CONDENSATION EXPECTED

| phi    | 4.79 | W     |
|--------|------|-------|
| А      | 0,60 | m2    |
| phi/m2 | 7.98 | W/m2  |
|        |      | -     |
| U      | 0,28 | W/m²K |

| Approved document L | criteria: |
|---------------------|-----------|
| а                   | OK        |



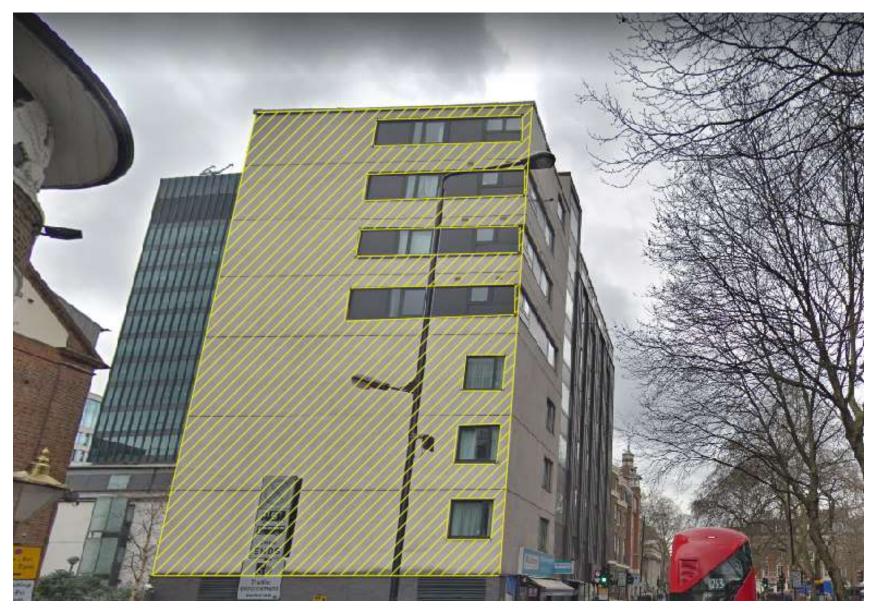
LOCALIZATION: WEST ELEVATION - EUSTON SQUARE





# LOCALIZATION: NORTH-WEST ELEVATION





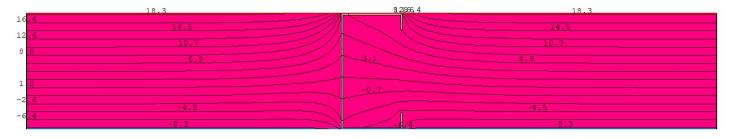

# LOCALIZATION: EAST ELEVATION





LOCALIZATION: NORTH-WEST ELEVATION – WELLESLEY PLACE






#### CALCULATION ON SFS EQUIVALENT CONDUCTIVITY

To evaluate the behaviour of the discontinuities within the layers, an equivalent thermal conductivity is determined, the spacing between battens is assumed as 600mm.

Battens: Steel Insulation: Glass wool \*

 $\lambda = 50 \text{ W/mK}$ Nool \*  $\lambda = 0,04 \text{ W/mK}$ 



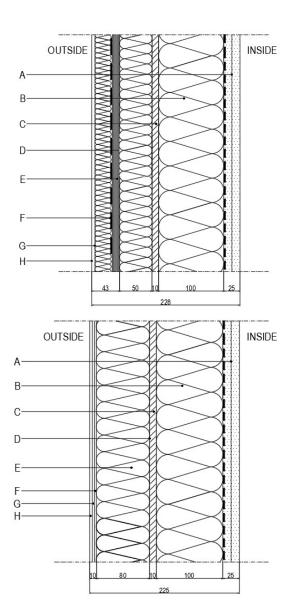
|           | U-factor<br>W/m2-K | delta T<br>C | Length<br>mm | Rotation |             |   | Heat Flow<br>W | Heat Flux<br>W/m2 |
|-----------|--------------------|--------------|--------------|----------|-------------|---|----------------|-------------------|
| boundary1 | 0.6962             | 29.0         | 600          | N/A      | Projected X | ~ | 12.1134        | 20.1890           |

 $\lambda eq = s/R$ 

s = 0.1 m R = 1/U – (1/he) – ( 1/hi) = 1.26 m²K/W

#### $\lambda_{eq} = 0.079 \text{ W/mK}$

\* According to "ARUP-AFE-278472-REP-001 DRAFT 31.03".




#### EWS-2\_001: 50 mm OUTER INSULATION CURRENT BUILT-UP

|   | Material                                      | Thickness<br>[mm] | Thermal conductivity<br>[W/mK] | Thermal resistance<br>[m²K/W] |
|---|-----------------------------------------------|-------------------|--------------------------------|-------------------------------|
|   | Internal Heat Transfer<br>Resistance          | -                 | -                              | 0.13                          |
| А | Plasterboard                                  | 25                | 0,21                           | 0,12                          |
| В | Glass Wool Insulation eqivalent including SFS | 100               | 0,079                          | 1,27                          |
| С | Pyrok Board                                   | 10                | 0,23                           | 0,04                          |
| D | Breather Membrane                             | 1                 | 0,2                            | 0,01                          |
| Е | Mineral Wool Insulation *                     | 50                | 0,035                          | 1,43                          |
| F | Plywood sheating                              | 10                | 0,13                           | 0,08                          |
| G | Polystyrene Insulation *                      | 25                | 0,035                          | 0,71                          |
| Н | Acrylic Render                                | 5                 | 0,2                            | 0,03                          |
|   | External Heat Transfer<br>Resistance          | -                 | -                              | 0,04                          |
|   |                                               | U-value =         | 0,27                           | W/m²K                         |

#### EWS-2\_001: 80 mm OUTER INSULATION PROPOSED SOLUTION

|       | Material                                                                                   | Thickness<br>[mm] | Thermal conductivity<br>[W/mK] | Thermal resistance<br>[m²K/W] |
|-------|--------------------------------------------------------------------------------------------|-------------------|--------------------------------|-------------------------------|
|       | Internal Heat Transfer<br>Resistance                                                       | -                 | -                              | 0.13                          |
| А     | Plasterboard                                                                               | 25                | 0,21                           | 0,12                          |
| В     | Glass Wool Insulation<br>eqivalent including SFS                                           | 100               | 0,079                          | 1,27                          |
| С     | Pyrok Board                                                                                | 10                | 0,23                           | 0,04                          |
| D     | Breather Membrane                                                                          | 1                 | 0,2                            | 0,01                          |
| Е     | Mineral fibre board                                                                        | 80                | 0,035                          | 2,29                          |
| F-G-H | Mineralic reinforcing coat +<br>glass fibre reinforcing mesh<br>+ primer and render finish | 10                | 0,5                            | 0,02                          |
|       | External Heat Transfer<br>Resistance                                                       | -                 | -                              | 0,04                          |
|       |                                                                                            | U-value =         | 0.26                           | W/m²K                         |

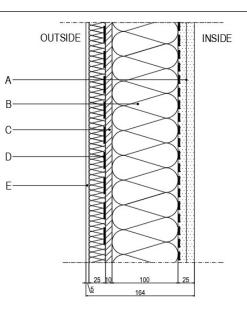


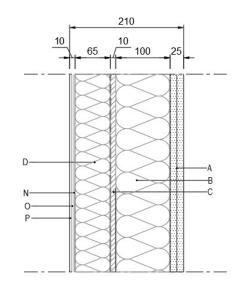
 Appoved document L citeria:

 a
 OK

The solutions proposed does not affect negatively the facades thermal performances while maintaining the geometry of the current built-up sections.

\* According to "ARUP-AFE-278472-REP-001 DRAFT 31.03".





EWS-2\_002: 25 mm OUTER INSULATION CURRENT BUILT-UP

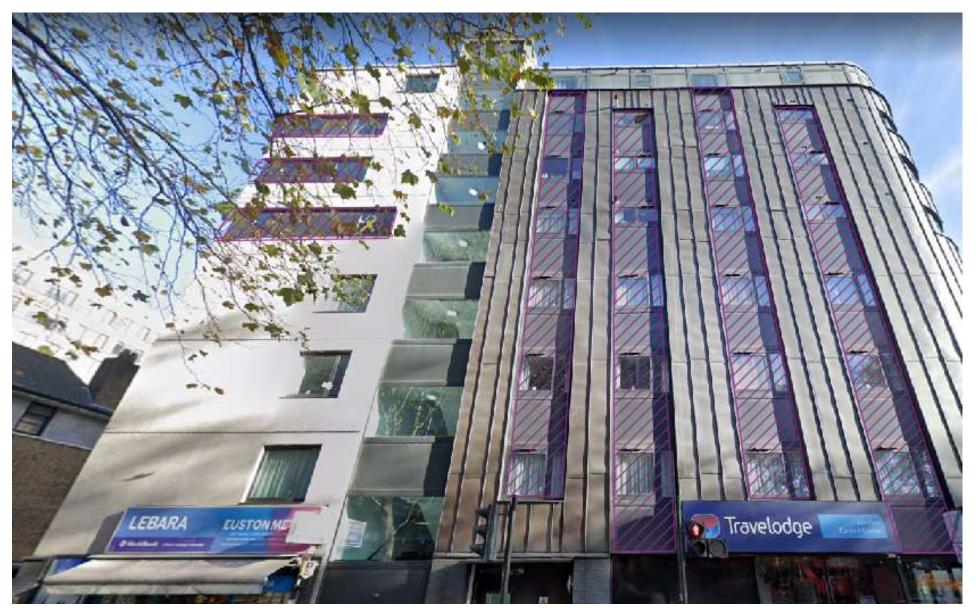
|   | Material                                          | Thickness<br>[mm] | Thermal conductivity<br>[W/mK] | Thermal resistance<br>[m²K/W] |
|---|---------------------------------------------------|-------------------|--------------------------------|-------------------------------|
|   | Internal Heat Transfer<br>Resistance              | -                 | -                              | 0.13                          |
| А | Plasterboard                                      | 25                | 0,21                           | 0,12                          |
| В | Glass Wool Insulation<br>equivalent including SFS | 100               | 0,079                          | 1,27                          |
| С | Pyrok Board                                       | 10                | 0,23                           | 0,04                          |
| D | Breather Membrane                                 | 1                 | 0,2                            | 0,01                          |
| Е | Polystyrene Insulation *                          | 25                | 0,035                          | 0,71                          |
| F | Acrylic Render                                    | 5                 | 0,2                            | 0,03                          |
|   | External Heat Transfer<br>Resistance              | -                 | -                              | 0,04                          |
|   |                                                   | U-value =         | 0.45                           | W/m²K                         |

#### EWS-2\_002: 65 mm OUTER INSULATION PROPOSED SOLUTION

|       | Material                                                                                   | Thickness<br>[mm] | Thermal conductivity<br>[W/mK] | Thermal resistance<br>[m²K/W] |
|-------|--------------------------------------------------------------------------------------------|-------------------|--------------------------------|-------------------------------|
|       | Internal Heat Transfer<br>Resistance                                                       | -                 | -                              | 0.13                          |
| А     | Plasterboard                                                                               | 25                | 0,21                           | 0,12                          |
| В     | Glass Wool Insulation<br>eqivalent including SFS                                           | 100               | 0,079                          | 1,27                          |
| С     | Pyrok Board                                                                                | 10                | 0,23                           | 0,04                          |
| D     | Breather Membrane                                                                          | 1                 | 0,2                            | 0,01                          |
| Е     | Mineral fibre board                                                                        | 65                | 0,035                          | 1.86                          |
| F-G-H | Mineralic reinforcing coat +<br>glass fibre reinforcing mesh<br>+ primer and render finish | 10                | 0,5                            | 0,02                          |
|       | External Heat Transfer<br>Resistance                                                       | -                 | -                              | 0,04                          |
|       |                                                                                            | U-value =         | 0,30                           | W/m²K                         |

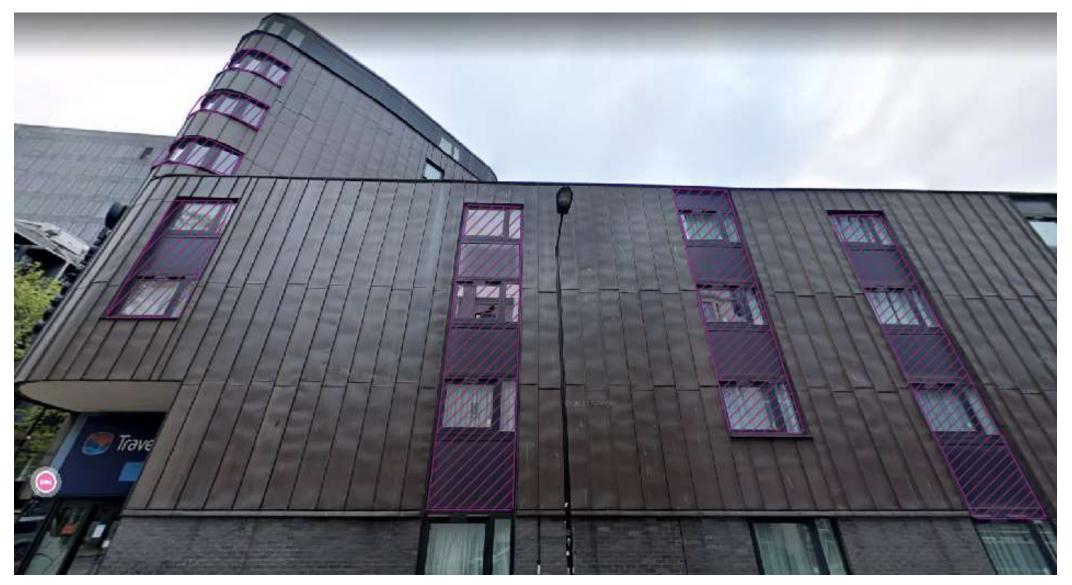





| Appoved document L cite | eria: |
|-------------------------|-------|
| а                       | OK    |

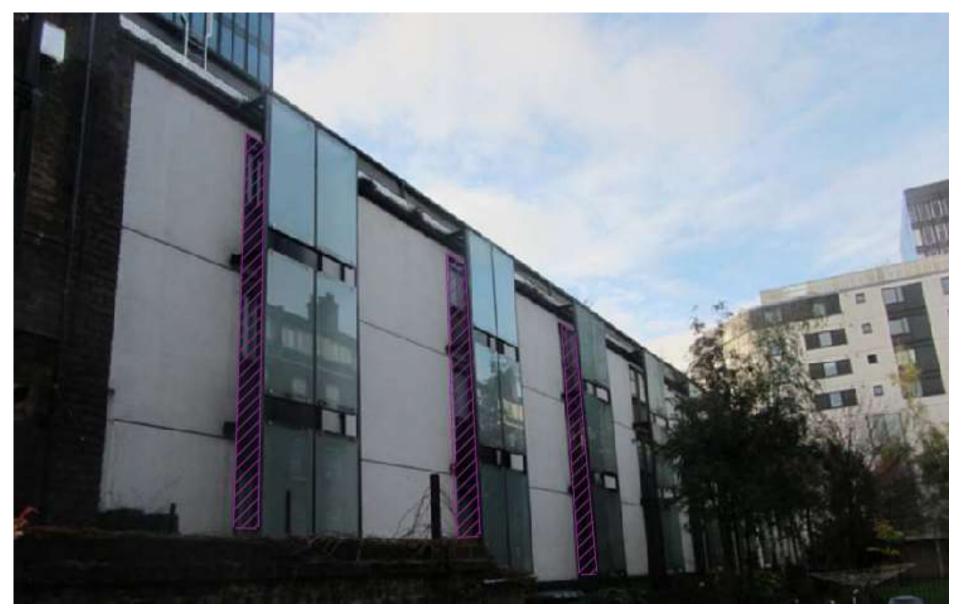
The solutions proposed does not affect negatively the facades thermal performances while maintaining the geometry of the current built-up sections.

\* According to "ARUP-AFE-278472-REP-001 DRAFT 31.03".




LOCALIZATION: WEST ELEVATION - EUSTON SQUARE






# LOCALIZATION: SOUTH-EAST ELEVATION






LOCALIZATION: NORTH-WEST ELEVATION






# LOCALIZATION: EAST ELEVATION

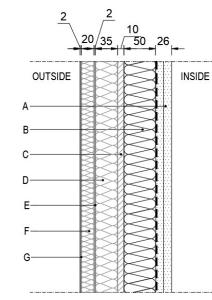




LOCALIZATION: NORTH-WEST ELEVATION – WELLESLEY PLACE






# 5. EWS-3: SPANDREL PANEL

| <b>EW</b><br>CUI | <b>S-3</b><br>RRENT BUILT-UP                     |                   |                                |                               |     |
|------------------|--------------------------------------------------|-------------------|--------------------------------|-------------------------------|-----|
|                  | Material                                         | Thickness<br>[mm] | Thermal conductivity<br>[W/mK] | Thermal resistance<br>[m²K/W] | OUT |
|                  | Internal Heat Transfer<br>Resistance             | -                 | -                              | 0.13                          | A   |
| А                | Plasterboard                                     | 25                | 0,21                           | 0,12                          | В   |
| В                | Glass Wool Insulation<br>eqivalent including SFS | 50                | 0,079                          | 0,63                          | c—  |
| С                | Pyrok Board                                      | 10                | 0,23                           | 0,04                          | D   |
| D                | Cavity                                           | 35                | -                              | 0,18                          | F   |
| Е                | Aluminum sheet                                   | 2                 | 160                            | 0,00                          | C   |
| F                | Polystyrene Insulation **                        | 20                | 0,035                          | 0,57                          | F   |
| G                | Aluminium sheet                                  | 2                 | 160                            | 0,00                          | G   |
|                  | External Heat Transfer<br>Resistance             | -                 | -                              | 0,04                          |     |
|                  |                                                  | U-value =         | 0,63                           | W/m²K                         |     |

# 

# EWS-3 PROPOSED SOLUTION

|   | Material                                         | Thickness<br>[mm] | Thermal conductivity<br>[W/mK] | Thermal resistance<br>[m²K/W] |
|---|--------------------------------------------------|-------------------|--------------------------------|-------------------------------|
|   | Internal Heat Transfer<br>Resistance             | -                 | -                              | 0.13                          |
| А | Plasterboard                                     | 25                | 0,21                           | 0,12                          |
| В | Glass Wool Insulation<br>eqivalent including SFS | 50                | 0,079                          | 0,63                          |
| С | Pyrok Board                                      | 10                | 0,23                           | 0,04                          |
| D | Mineral Wool Insulation                          | 35                | 0,035                          | 0,86                          |
| Е | Aluminum sheet                                   | 2                 | 160                            | 0,00                          |
| F | Mineral Wool Insulation                          | 20                | 0,035                          | 0,57                          |
| G | Aluminum sheet                                   | 2                 | 160                            | 0,00                          |
|   | External Heat Transfer<br>Resistance             | -                 | -                              | 0,04                          |
|   |                                                  | U-value =         | 0 44                           | W/m²K                         |



| Approved document L criteria: |  |    |
|-------------------------------|--|----|
| а                             |  | OK |

The solutions proposed does not affect negatively the facades thermal performances while maintaining the geometry of the current built-up sections.

The above performance does not include losses due to the curtain wall aluminium framing.

\*\* According to "Sandberg Report 67102c - Analysis of Insulation Samples - Travelodge Euston Central".



# 6. CONCLUSIONS

**Euston Travelodge** External Wall Systems have been found to have combustible materials within the construction, therefore the Owner decided to replace any flammable material with a safer an more suitable material.

Thermal performance of proposed External Wall Systems for Euston Travelodge is determined through 3D and 1D thermal transmittance calculations.

Approved document L (Conservation of fuel and power) sets the limit that a renovated thermal element must comply. Some elements do not comply with limiting values, but the proposed solution are always at least as performing as the existing ones. In a later stage is must be confirmed that as part of this fire renovation the limiting values can be neglected.

