

9 WOODCHURCH ROAD, WEST HAMPSTEAD, LONDON NW6 3PL

Construction Method Statement for Subterranean Development

10014-MBP-September 2023

CONTENTS

PREAMBLE

1.	PREMISE	3
2.	EXECUTIVE SUMMARY	3
3.	THE SITE AND AREA	3
4.	LOCAL GEOLOGY & HYDROGEOLOGY	5
5.	THE EXISTING SITE	7
6.	THE PROPOSED DEVELOPMENT	8
6.1	BELOW GROUND LEVEL	8
6.2	ABOVE GROUND LEVEL	9
7.	DRAINAGE & SuDS	.10
7.1	BELOW GROUND DRAINAGE – EXISTING	.10
7.1	BELOW GROUND DRAINAGE - PROPOSED	.10
8.	RISKS TO & IMPACT ON SURROUNDING BUILDINGS	.12
9.	CONSTRUCTION METHODS & SEQUENCE	.13
10.	NOISE & NUISANCE	.14
11.	CONCLUSIONS	.15
	 1. 2. 3. 4. 5. 6.1 6.2 7. 7.1 7.1 8. 9. 10. 11. 	1. PREMISE 2. EXECUTIVE SUMMARY 3. THE SITE AND AREA. 4. LOCAL GEOLOGY & HYDROGEOLOGY 5. THE EXISTING SITE 6. THE PROPOSED DEVELOPMENT 6.1 BELOW GROUND LEVEL 6.2 ABOVE GROUND LEVEL 7. DRAINAGE & SUDS 7.1 BELOW GROUND DRAINAGE - EXISTING 7.1 BELOW GROUND DRAINAGE - PROPOSED 8. RISKS TO & IMPACT ON SURROUNDING BUILDINGS 9. CONSTRUCTION METHODS & SEQUENCE 10. NOISE & NUISANCE 11. CONCLUSIONS

APPENDIX A: MBP DRAWING SET 10014 APPENDIX B: MBP CALCULATIONS 10014 APPENDIX C: PROCEDURE FOR MONITORING ADJACENT BUILDINGS APPENDIX D: PROCEDURES FOR CONTROL OF NOISE, DUST & NUISANCE APPENDIX E: LONDON BOROUGH OF CAMDEN BASEMENT IMPACT ASSESSMENT CHECKLIST APPENDIX F: GEA'S DESK STUDY, GROUND INVESTIGATION, BASEMENT IMPACT ASSESSMENT & GROUND MOVEMENT ANALYSIS (SEPARATE DOCUMENT)

Revision	Issued For	Description	Date	Ву
P01	Planning	First Issue	25/07/23	NM
P02	Planning	Report updated following receipt of SI & GMA report.	04/09/23	NM

PREAMBLE

2

This report has been prepared by MBP on the instructions of, and for the sole use and benefit of, the Client.

MBP shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. If the Client wishes to pass copies of the report to other parties for information, the whole of the report should be copied. No professional liability or warranty is extended to other parties by MBP as a result of permitting the report to be copied or by any other cause without the express written agreement of MBP.

Map of London 1868 by Edward Weller

Ordnance Survey map surveyed 1866, published 1874

Ordnance Survey map Revised: 1893, Published: 1895

1. PREMISE

9 Woodchurch Road is a large 2 storey double fronted detached house with loft in West Hampstead, London, built in circa 1880s and as other London Victorian residential developments at the time is of load bearing London stock brick walls supporting timber floor joists and timber roof, boarded and clad with slate tiles. The walls are founded on corbelled masonry footing. The house has been split into flats and bedsits arranged over the three floor levels. A modern single storey extension is present at the rear and is used as a living room for the ground floor flat. The building has a cellar underneath part of the ground floor flat, most likely used originally for storing coal. There is no access to this cellar from inside the house.

The proposed development includes the excavation of a new lower ground floor level underneath the full length of the west side of the house and half of the east side to create a three-bedroom flat with accommodation arranged over the ground and lower ground floor levels. In addition to this, a new two-bedroom house is to be built where the current garage is, between the gable walls of no. 7 and no. 9.

This report describes the likely structural solution for constructing this development, the interaction of the subterranean structure with the local geology and hydrogeology and its impact on surrounding buildings. Construction techniques are highlighted along with particular requirements for temporary works and excavations.

2. EXECUTIVE SUMMARY

This preliminary report addresses some of the planning requirements imposed by London Borough of Camden as described in their published Camden Planning Guidance for Basements, January 2021 and Camden Local Planning Policy A5 for Basements and provides a preliminary set of information for planning stage, in particular:

- The Desk Study can be found in Section 3.
- The ground and water table information can be found in section 4 of this report and in detail as a separate document by GEA in Appendix F.
- Flood Risk is discussed within the Local Geology & Hydrology in section 4.
- A description of the existing structural form can be found in section 5 of this report.
- Our engineering design for the basement is discussed in detail within section 6 of this report and the relevant drawings are contained within Appendix A.
- Drainage & SuDS are discussed in section 7.
- The proposed construction method & sequence and risk & impact to surrounding buildings are described in sections 9 and 8 respectively.

THE SITE AND AREA 3.

The site is located on Woodchurch Road within the London Borough of Camden and although not a listed building it is within the South Hampstead conservation area. It is approximately 710m northeast of Kilburn High Road overground station, 390m south of West Hampstead underground station, 785m west of South Hampstead station and 2.1km northwest of Primrose Hill. The site is roughly rectangular in shape approximately 15.5m by 39m at its widest and longest points.

9 Woodchurch Road was built on grounds that was once part of Kilburn Woods of Kilburn Priory estate which used to extend, in modern terms, from West Hampstead station in the north to Abbey Road in the south and from West End Lane in the west to Priory Road on the east. Kilburn Priory was part of the Manor of Hampstead and was established in 1134 and endowed by Herbert, abbot of Westminster. Following the dissolution of the monasteries in 1536, the estate was sequestered by the crown and in 1547 was granted to John Dudley, Earl of Warwick, who sold it into private ownership. The remains of Kilburn Priory were demolished around 1790, following which the estate was split and changed hands several times with Kilburn Woods eventually passing to Colonel Henry Perry Cotton, of Quex Park, Isle

LB of Camden Conservation Area Map

4

Charles Booth's Poverty Map

of Thanet in 1849 who retained the land until 1874. Plans were first drawn-up in 1855 to develop the estate, which was still mainly farmland and pasture, but were delayed by uncertainty over the course of the railway. The earliest development began in the south, north of the existing London & North Western Railway (LNWR) line with new roads built in 1866 and named after places in Kent near the family's estate; Quex, Birchington and Mutrix Roads. A Roman Catholic Church and Wesleyan and Unitarian chapels were built in Quex Road in 1868-9 and at least 55 houses built on the estate between 1871-1885. Canfield (later Priory) Road was laid out on the boundary between Kilburn Woods and the Maryon Wilson estates and some 45 houses were built there between 1877-1882. Parallel roads were laid out to the north and 56 mostly detached and semi-detached houses were built in Acol Road, Woodchurch Road, Cleve Road and Chislett Road between 1874-1886. Woodchurch road was named after a hamlet bordering Quex Park.

There was a greater proportion of 'fairly comfortable, good ordinary earnings' category in Kilburn in the 1890s than in any other district of Hampstead. The most spacious and therefore high-class area was the Kilburn Woods estate, designated middle-class and well-to-do, with Cleve Road and Chislett Road classed as upper-middle and upper-class, wealthy.

By the end of the 19th century, the estate was very well serviced by the railways, with a station to the north called Finchley Road opened on each of the three lines in 1860 (Hampstead Junction), 1869 (Midland) and 1879 (Metropolitan) respectively. Railway stations were also opened at Kilburn High Road in 1852 by the LNWR and Loudon Road (now South Hampstead) on the Metropolitan Line in 1879.

It was common when the railway network was built to disperse arisings from cutting excavations over adjacent land, which was often poorly compacted and led to settlement problems when that land was developed. West Hampstead and Kilburn High Road stations are approximately 400m north and 450m south of the property respectively which are sufficiently remote from the site that there is unlikely to be arisings beneath ground level due to the construction of these railway lines and stations.

London was heavily bombed during WWII and many areas suffered ordnance damage. Four high explosive bombs were recorded to have fallen during the Blitz on Woodchurch Road, very near to no. 9, and on Acol Road. The LCC Bomb damage map recorded total destruction (black), damage beyond repair (purple) and seriously damaged (pink & dark red) to several buildings on West End Lane. Many properties on Acol Road and Priory Road also suffered blast damage ranging from minor in nature (yellow), general not structural (orange) to seriously damaged (pink & dark red) but 9 Woodchurch Road appear to have escaped damage.

There are a number of mature trees in the front garden of no 7 Woodchurch Road and the rear garden of 9 Woodchurch Road, all of which are capable of influencing and affecting the design of the proposed basement which, in turn, must be detailed to avoid distressing the trees or their roots. Although it is noted that the proposed lower ground floor plan area is a reasonable distance away from surrounding trees, an Arboriculture survey and report is recommended to record the types of trees, their respective root protection area and assess the impact they may have on the proposed new basement.

LCC Bomb Damage Map

мвр

BGS Data of local bedrock geology

5

Nearby MBP Site Investigations

4. LOCAL GEOLOGY & HYDROGEOLOGY

The British Geological Survey Map indicates that the site is underlain by London Clay Formation of clay, silt and sand. A number of nearby investigations provide more detail:

- 1. From an MBP site at Goldhurst Terrace, NW6 (680m-east of the site), two 5m deep window sample boreholes were sunk in September 2019:
 - 0.5m to 0.8m of MADE GROUND over LONDON CLAY FORMATION described as firm weathered brown fissured silty clay with blue grey along fissure surfaces and rare sand partings. Below a depth of between about 2.2m and 2.5m the clay becomes darker brown in colour suggesting medium strength.
 - The boreholes were dry during initial SI, but water was found in both boreholes during monitoring at 0.92m and 1.39m at WS1 and 0.76m and 1.17m at WS2.
- 2. From an MBP site at Loudon Road, NW9 (760m south-east of the site), two cable percussion boreholes to 25m deep sunk in November 2008:
 - 0.4m to 1.5m of MADE GROUND over LONDON CLAY FORMATION described as firm brown, orange brown and pale grey/grevish • brown becoming stiffer with depth, found to a depth of 9m.
 - No ground water encountered apart from groundwater seepage at 4.7m associated with clay stones.
- 3. From an MBP site at Finchley Road, NW3 (0.84m north west of the site), two cable percussion boreholes to 30m deep and two window sample boreholes to 4.5m were sunk in between January and February 2016.
 - 0.2m to 4.7m of MADE GROUND over LONDON CLAY FORMATION described as firm brown laminated clay becoming stiff blue • grey at 7.7m and 9.5m.
- Groundwater was found at one of the boreholes at 3m and at 4.1m in the window samples.
- 4. From a BGS Borehole at Priory road, NW3 (555m South East of the site), sunk in Jan 1983:
 - Om to 1m of MADE GROUND over LONDON CLAY FORMATION described as firm slightly silty brown mottled grey CLAY with extensive close fissuring up to 3m. After which the clay becomes stiffer over the depth approaching 10m.
- No groundwater was enountered during investigation and remain dry during monitoring.

Each of these investigations is within 1km of 9 Woodchurch Road and all are representative of the near-surface geology in the area and can be expected with a high degree certainty at the site.

A site specific soil investigation by GEA was done in April 2023. A single open drive percussive borehole to a depth of 8m and two window sample boreholes to depths of 3m and 3.8m were sunk in the front and rear gardens. The expected ground conditions were encountered in that, beneath a moderate thickness of made ground, the London Clay Formation was found and proved to the maximum depth of investigation. The made ground generally comprised sandy gravelly clay including fragments of brick, concrete and clinker, plus pottery fragments locally and roots and rootlets in the rear garden, and extended to depths of between 0.40 m and 1.00 m. The London Clay initially comprised firm orange-brown mottled light grey silty clay with partings of orange-brown fine sand and fragments of claystone, becoming stiff fissured grey-brown silty clay with blue-grey mottling with depth and was proved to the base of the boreholes and maximum depth of investigation at 8.00 m.

Groundwater was not encountered at the time of the investigation. Standpipes were installed to 5m and groundwater monitoring were carried out 6 weeks after the initial investigation and was found to be dry. In any case, the basement walls including waterproofing and drainage strategy will need to be designed to suit requirements set out in EC7 and BS8102.

GEA's SI report note that the formation level of the proposed basement is expected at 3.4m below existing ground level and should therefore be within the London Clay. Therefore, it should be possible to adopt spread foundations at basement level where they may be designed to apply a net allowable bearing pressure of 150 kN/m². Other recommendations within the preliminary report include the provision of heave protection for the basement slab or suitably reinforced to cope with the upward movements and for provision of temporary supports during excavation works to maintain the stability of the pit and surrounding structures at all times. Significant inflows

The EA zone map of flood risk from rivers or the sea

of any perched groundwater are not anticipated within the basement excavation at this stage, although the contractor should have plans in place to deal with possible inflows from within the made ground.

The Environment Agency's Flood Map for planning indicates that 9 Woodchurch Road lies within flood zone 1, an area that is considered Low Risk, having between less than 1 in 1,000 annual probability of river or sea flooding and therefore does not require a full Flood Risk Assessment (FRA) for planning although one has been prepared by The PES dated 8th March 2023 and is submitted as a separate document as part of the planning application of this site.

In the FRA document, it is noted that the site is within a zone of Very low Risk having less than 0.1% chance of flooding from rivers or the sea, as shown in the EA's flood map below. There is no historical record of fluvial flooding at the site. The EA flood map site also notes that the site has a very low risk of flooding from surface water flooding although it should be noted that areas adjacent Woodchurch Road has been categorised as having a higher risk to surface flooding ranging from low risk (between 0.1% to 1% annual probability) to medium risk (between 1% and 3.3% annual probability). There is no historical record of surface water flooding at 9 Woodchurch Road

There is no recorded risk of flooding from reservoir on site.

The proposed development does not create an increased area of hard standing so the run-off from site to the public storm water sewer will remain the same in volume and flow rate. However, the new below ground drainage system will be fitted with anti-flood valve and designed to cope with local surface flooding as well as required uplift for climate change.

6

The EA zone map of flood risk from surface water

when river levels are normal 🥢 when there is also flooding from rivers

The EA zone map of maximum extent of flooding from reservoirs

Lost rivers of London Map

House viewed from Woodchurch Road

Construction Timeline

Existing ground floor layout

5. THE EXISTING SITE

According to the desk study, the site was originally farmland and part of Kilburn Woods on the Kilburn Priory estate. The woods and farmland were eventually cleared for development as London expanded in the 19th century. Today, there are no remaining traces of the woods or the priory, although some of the local street names, such as Priory Park Road and Woodfield Road serve as reminders of their existence.

The area remained largely undeveloped until the 1860s and 1870s when several railways including the Hampstead Junction, Midlands and the Metropolitan line were established and train stations at Finchley Road, Kilburn High Road and Loudon Road (now South Hamsptead) were opened. 9 Woodchurch Road was built between 1874 and 1886 as part of the Powell-Cotton family estate development. The property is a two-story detached house with rooms in the loft and a cellar under part of the ground floor. Houses in the area are typically set back from the main road with small front gardens and larger rear gardens. The structure is made of London stock bricks, and the front wall has been painted crimson. The symmetrical front elevation includes double-height bay timber sash windows with ornate cornices. The entrance has a portico with Romanesque columns. The structure of the house is of a typical Victorian construction of load bearing masonry walls founded on corbelled masonry footing. The walls support timber floor joists and timber roof. Stability is by means of masonry cross walls. The house has been split into flats and bedsits arranged over the three floor levels. There is a recently built single storey rear extension which houses the living room of the ground floor slat. The new extension is of masonry cavity construction supported on mass concrete strip footings, with a suspended timber ground floor and timber roof. An existing cellar, which is accessed externally through a low door on the east gable wall, is present under part of the ground floor flat. The cellar was most likely used as storage space for coal. The cellar cannot be access from inside the house.

The surrounding buildings are built around the same time as 9 Woodchurch Road and are in a good condition with no evidence of distress or damage to the construction or fabric of the building, such as bulges, cracks, dampness or decay. There is therefore no evidence or suggestion that their construction cannot tolerate the proposed works, both during their execution or when complete.

A site-specific ground investigation has been undertaken by GEA in April 2023 which included a single open drive percussive borehole to 8m depth and two window sample boreholes to 3m and 3.8m deep done in the front and rear gardens on the north and south side of the house which revealed the underlying soils to be made ground on London Clay. The ground site investigation and ground movement analysis report by GEA is submitted separately as part of the planning submission of this site.

OS Map from Planning Portal

Proposed Lower ground floor plan

8

Proposed Cross Section

6. THE PROPOSED DEVELOPMENT

The proposed works involves the excavation of a lower ground floor to form a full height habitable space underneath the full length of the east bay of the house and up to half of the west bay of the house. A new house is also proposed to be built, which will have accommodation on the lower ground and ground floor levels, on the site of the current garage and in between the flank walls of no. 7 and no 9 Woodchurch Road.

The proposed structure involves the existing main house walls to be underpinned with reinforced concrete constructed in maximum 1m lengths in a traditional hit and miss sequence. From the desk study and site visual observations and investigation, it is known that 7 Woodchurch Road already has a lower ground floor which extends the full length of their building with lightwells to the front and a lower ground floor level terrace to the rear. One of the trial pits along the flank wall of no. 7 revealed a corbelled footing at around 1.2m below ground level and therefore it is assumed that this wall has been underpinned to form the lower ground floor at the property. Along this wall, a reinforced concrete liner wall is proposed which like the underpins is to be constructed in a hit and miss sequence. The new lower ground floor will be a reinforced concrete raft slab designed to the allowable bearing pressure of 150kN/m² and suitably reinforced to deal with the net heave pressure. New lightwells are to be formed at the front and rear of the plot which are to be constructed as reinforced concrete retaining walls.

6.1 BELOW GROUND LEVEL

The new lower ground floor, along with the new ground floor slab it will support, will be constructed in reinforced concrete. The proposed formation level of the new basement at its deepest is at 3.4m bgl. Removing soil to accommodate the basement will relieve some of the pressure on the underlying London Clay: However, there will be the weight of the existing and new construction imposed around the perimeter and at new basement slab level and we estimate that this relief will not be significant, will not lead to noticeable swelling of the clay and so will not impact significantly on the surrounding buildings and foundations, which has been our experience empirically and theoretically in similar developments in this area of London. There is currently no survey of the existing services and therefore a survey before works commence will be required to identify, establish and protect if necessary, during the construction process.

At the time of the site investigation the three boreholes remain dry and as yet we have no information of the results of the subsequent monitoring work. If ground water is found, then appropriate control measures will likely be required and suitable contingencies put in place. Advice from a specialist basement waterproofing contractor should be sought regardless in regard to installing the appropriate waterproofing system within the basement and this is expected to be a combination of either Type A (barrier), Type B (structurally integrated) or Type C (Drained) protection against ingress of water, as defined by BS 8102:2009 to be constructed and detailed to achieve a Grade 3 Level of Performance, as defined by BS 8102:2009.

Table 2 Grades of waterproofing protection

Grade	Example of use of structure ^{A)}	Performance level
1	Car parking; plant rooms (excluding electrical equipment); workshops	Some seepage and damp areas tolerable, dep the intended use ^{B)} Local drainage might be necessary to deal wit
2	Plant rooms and workshops requiring a drier environment (than Grade 1); storage areas	No water penetration acceptable Damp areas tolerable; ventilation might be re
3	Ventilated residential and commercial areas, including offices, restaurants etc.; leisure centres	No water penetration acceptable Ventilation, dehumidification or air condition necessary, appropriate to the intended use
A) The reta air c stru	previous edition of this standard referred to ined as its only difference from Grade 3 is th onditioning (see BS 5454 for recommendati ctural form for Grade 4 could be the same o	o Grade 4 environments. However, this grade has not the performance level related to ventilation, dehumidi ons for the storage and exhibition of archival docume r similar to Grade 3.
B) See	bage and damp areas for some forms of cons	struction can be quantified by reference to industry s

- pendent on
- th seepage
- equired
- ning been ification or ents). The
- standards.

10014-MBP 9 WOODCHURCH ROAD, WEST HAMPSTEAD 230904 CONSTRUCTION METHOD STATEMENT

We propose that the new lower ground floor is achieved using traditional underpinning techniques and sequencing to build the walls in stages. A minimum of 48 hours must pass before an adjacent excavation can begin. Although a lengthy process, underpinning by hit-& miss-sequencing is a low-impact technique that permits the maximum space to be achieved and has the least impact on existing constructions, boundaries and the like. Casting the wall in pins controls the extent of soil exposed, avoids extensive temporary works and they can be controlled in size and sequence to reflect and accommodate the condition and capability of the walls they will be built beneath.

The formation of the basement will require the excavation and removal of between 2.8m to 3.4m deep of made ground and clay soils and will result in an unloading of about 60kN/m². Such heave that may occur will mostly, i.e. >50%, happen immediately on excavation and during the works, leaving residual pressure of approximately half the initial unloading that the new construction will need to accommodate. In this case 30kN/m² of heave should be allowed for in the design of the basement structure. Hydrostatic uplift pressure has also been considered and the requirement for tension piles will be confirmed in the detail design stage.

The basement slab will be a thick, reinforced concrete raft cast on a suitable sub-base and will be formed off the underlying London Clay with an allowable bearing resistance of 150kN/m², a construction that will allow bearing pressure to be generated evenly across the plot. The slab will be suitably reinforced to deal with the net uplift pressures.

A detailed and considered temporary works strategy by the contractor is required to ensure the underpinning and retaining walls are adequately supported in the temporary case until the new basement and floor slab are constructed.

6.2 ABOVE GROUND LEVEL

The main house above ground floor level is to be retained and some alterations proposed to the layout of the upper floors which are not covered in this planning application and will not be discussed in detail in this report.

9

273.4m² IMPERMEABLE AREA 68.7m² FRONT PAVING (POTTENTIALLY COULD BE PERMEABLE AREA 263.3m² REAR GARDEN PERMEABLE AREA 605.4m² TOTAL SITE AREA

Existing Ground floor Plan

605.4m² TOTAL SITE AREA

Proposed Ground floor plan

Most Suitable	SuDS technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife Benefit
	Green roofs	1	1	~
	Basins and ponds 1. Constructed wetland 2. Balancing ponds 3. Detection begins	~	*	~
	4. Retention ponds			
	Filter strips and swales	1	~	1
	Infiltration devices 5. Soakaways 6. Infiltration trenches and basins	~	~	
	Permeable surfaces and filter drains 7. Gravelled areas 8. Solid paving blocks 9. Porous paviours	~	~	
Least Suitable	Tanked systems 10. Oversized pipes/ tanks 11. Box storage systems	~		

SuDS hierarchy (from the London SDA Plan Table 1 & Box 1)

7. DRAINAGE & SUDS

In the existing condition, rain and surface water infiltration into the ground are restricted to areas of soft landscaping within the rear and front gardens, although the rates are likely limited by the cohesive London Clay ground beneath the site. The surface runoff from the building, paved drive and garage are likely to drain directly into the combined sewers in the road. The new lower ground floor and single unit house will occupy areas where hard standing or existing structure are already present. It is estimated that the existing impermeable areas created by the garage, front driveway and house is 327m², while the new development's impermeable areas created by the new lower ground floors, lightwells and new single unit house will be 342m² or an estimated increase of 15m² or 5%. However, a significant proportion of the site will remain as soft landscaping. In addition, the low permeability of the underlying London Clay would result in a low recharge in any case and consequently there would be little to no effect on groundwater.

The proposed development will create additional habitable space and therefore will generate an increase in discharge to the public sewer than it has currently. Although not yet designed, it is anticipated that the scale and scope of the development will require a new below ground drainage system to be provided by combining gravity flow from the upper floors and roof with a new pumped flow from the lower ground floor level. The final connection between this system and the public sewer, as highlighted in the London Sustainable Drainage Action Plan, will include an anti-flood or non-return valve to protect the property from surcharges in the public sewers. The system will also be designed to cope with local surface flooding as well as the required uplift for climate change.

The London Borough of Camden's Flood Risk Management Strategy indicates that the site is within Group 3-010 Critical Drainage Area, which the council's Surface Water Management Plan defines as "A discrete geographic area (usually a hydrological catchment) where multiple and interlinked sources of flood risk (surface water, groundwater, sewer, main river and/or tidal) cause flooding in one or more Local Flood Risk Zones during severe weather thereby affecting people, property or local infrastructure." The Technical Note - Flood Risk Assessment report done by The PES dated 8th March 2023 assesses the sources of flooding at the site, identifies the relevant national and local planning policies and guidance for the proposed development and associated on/off site flood risks.

7.1 BELOW GROUND DRAINAGE - EXISTING

A CCTV survey has not yet been done on the property. However, as other properties of this type it is assumed that the existing building collects all the foul and surface water above ground and discharges it into the local sewer network under gravity. Three manholes are present in the front driveway which are assumed to be fed directly by rainwater pipes, RWP, and soil vent pipes, SVP, without any attenuation or water storage.

7.1 BELOW GROUND DRAINAGE - PROPOSED

The redeveloped internal layouts above ground level are assumed to use the existing as well as new network of SVP's and RWP's which will collect and discharge the foul and surface water into the sewer under gravity. The remainder and all the foul and surface water at the new basement level will be collected in separate pumping chambers and then pumped up to the ground floor level to be discharged through the last manhole into the sewer network. There may be ability to incorporate rainwater harvesting before this point to add attenuation to the system.

There will be two types of pump chamber included in the scheme:

Type 1: To collect and manage the Foul Water from the installations below basement level and to collect and manage any Surface Water that passes below the ground floor level. Type 2: To collect and manage any Ground Water that passes into the drained cavity secondary waterproofing system adopted in the

basement construction.

Both these chambers have storage capacity, to attenuate the flow into the sewer system, and operate on a "backup" dual pump arrangement. They are also normally attached to the Building Management Systems, BMS, and included in the alarm system for the

Box 1: London Plan Policy 5:13 Sustainable Drainage

Planning decisions

- A. Development should utilise sustainable urban drainage systems (Sustainable drainage) unless there are practical reasons for not doing so, and should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible in line with the following drainage hierarchy: store rainwater for later use
 - 2 use infiltration techniques, such as porous surfaces in non-clay areas
 - 3 attenuate rainwater in ponds or open water features for gradual release
 - 4 attenuate rainwater by storing in tanks or sealed water features for gradual release
 - 5 discharge rainwater direct to a watercourse
 - discharge rainwater to a surface water sewer/drain
 - 7 discharge rainwater to the combined sewer.

Drainage should be designed and implemented in ways that deliver other policy objectives of this Plan, including water use efficiency and quality, biodiversity, amenity and recreation.

LDF preparation

B. Within LDFs boroughs should, in line with the Flood and Water Management Act 2010, utilise Surface Water Management Plans to identify areas where there are particular surface water management issues and develop actions and policy approaches aimed at reducing these risks.

Combined and separated sewer system (Source: Thames Water/London Sustainable Drainage Action Plan)

property. Both these systems have their own integrated non-return valve flood protection. The sizes of the chambers vary with Type 1 being the largest, and Type 2 being the smallest as any flow through a piled wall and waterproof reinforced concrete liner wall is unlikely.

The figures below indicate the Type 1 and Type 2 chambers that provide a positive pumped device as part of the flood management system.

DELTA MEMBRANE SYSTEMS LTD.

1160 SERIES PUMP CHAMBERS

Overview

 Available in depths 1140mm, 1540mm, 1940mm & 2630mm from stock (3000-5000mm to special order Applications including ground, surface and foul water
 Accepts single & dual, guide rail or free standing 32mm 50mm & 65mm pumps

 Pre-installed 110mm & 160mm boses for inlets
 Additional inlets can be cut to suit with kit provided
 Designed for applications where high hydrostatic pressures
 are noteent are present 110mm bosses for cable duct & vent

 Manufactured from tank grade ICO 1314 virgin polye · Accepts standard 600mm x 600mm cover

The full range of 1160 series chambers

Simple in 110mm p

Type 1 – Typical positive pumping chamber for SVP's and RWP's to be incorporated in the basement.

DELTA MEMBRANE SYSTEMS LTD.

DUAL V3 SUMP (DMS 164)

Overview

A packaged pump station designed to collect ground water via perimeter channel or 110mm pipes (129 detail) and / or clear opening to the top of the chamber. This chamber can also collect orev water from showers and wash hand basins, but not foul from a WC. See Delta Foul V3 sump DMS 165). A typical application would be collecting gro from a 150m² basement and surface water from a 12m² lightwell. The Dual V3 pump station has been specifically designed for below ground applications. The Dual V3 pump station has been specifically designed for below ground applications. The chamber is manufactured from HDPE and able to withstand hydrostatic forces encountered in applications with high water tables. The pump station is delivered as a complete package including chamber all internal pipe work and two powerful V3 pumps. A high level alarm is offered as a recommen ption. It is designed to be installed by cor lectrical skills. We also recommend a batt

Installation

e base. Standard 110mm inlet pipes (if applicable) are co The Dual V3 sump sits on a cor A 1 %7/32mm discharge pipe is run from the chamber to a drain and 50mm cable duct installed with draw cord. The chamber is filled with water to prevent floatation and back filled with concrete to lock into structure." For full installation instructions see "Dual V3 sump - Installation instructions & Technical Details", on our websit Typically a double sealed man hole cover is fitted in the final screed, this can be a tray type cover to accept the final floor finish, le tiles or wood

TYPICAL INSTALLATION SCHEMATIC FOR DUAL V3 PUMP ASSEMBLY	
tor of panets and its entra-unit with the first state of the second state of the secon	

Type 2 – Typical positive pumping chamber for drained cavity waterproofing to be incorporated in the basement.

alled by contractors with competent building, plumbing ar nend a battery backup (DMS 070) in case of power outage HON D

Damage Category	Description of Typical Damage	Approximate Individual Crack Width
Negligible (0)	Hairline cracks	< 0.1 mm
Very Slight (1)	Very slight damage includes fine cracks which can be easily treated during normal decoration, perhaps an isolated slight fracture in building, and cracks in external briefwork visible on close inspection.	l mm
Slight (2)	Slight damage includes cracks which can be easily filled and redecoration would probably be required, several slight fractures may appear showing the inside of the building, cracks which are visible externally and some repointing may be required, and doors and windows may stick.	< 5 mm
Moderate (3)	Moderate damage includes cracks that require some opening up and can be patched by a mason, recurrent cracks that can be masked by suitable linings, repointing of external brickwork and possibly a small amount of brickwork replacement may be required, doors and windows stick, service pipes may fracture, and weather- tightness is often impaired.	5 mm to 15 mm or a number of cracks > 3 mm
Severe (4)	Severe damage includes large cracks requiring extensive repair work involving breaking-out and replacing sections of walls (especially over doors and windows), distorted windows and door frames, noticeably sloping floors, leaning or bulging walls, some loss of bearing in beams, and disrupted service pipes.	15 mm to 25 mm but also depends on the number of cracks
Very Severe (5)	Very severe damage often requires a major repair job involving partial or complete rebuilding, beams lose bearing, walls lean and require shoring, windows are broken with distortion, and there is danger of structural instability.	> 25 mm

Table 1: Severity of Cracking Damage

8. RISKS TO & IMPACT ON SURROUNDING BUILDINGS

The proposed development is a relatively low-level, low-density construction, and will occupy a smaller plan area constructed directly beneath the property's footprint. The new housing unit is also low-level and low-density construction, to be constructed in between the flank walls of no. 7 and no. 9 Woodchurch Road.

The surrounding buildings, which are mainly of Victorian building stock, fall into Group 1a as defined by BS ISO 4866:2010, i.e. Ancient, Historical or Old; the foundations fall in to Classes B and the soil as Type e. From Table B.1 of BS ISO 4866 the surrounding buildings therefore fall within Category 6 and can be considered to have a medium resistance to vibration. From Table B.2 of BS ISO 4866 these buildings fall into Classes, which is deemed to have a medium level of resistance to vibration and, conversely, to require medium protection against vibration for the types of works intended.

- Although the construction will be further below ground level than the existing site level it will not be significantly deeper than the lowest level of the surrounding buildings. In any case, a ground movement analysis has been completed to predict the likely movements as a result of the excavation and is presented in Part 3 of GEA's Desk Study, Ground Investigation, Basement Impact Assessment and Ground Movement Analysis report.
- The site investigation and subsequent monitoring found the site to be dry and so a continuous shallow ground water table is not anticipated beneath the site. In addition, the formation level of the new lower ground floor slab will be on London Clay, which is not capable of supporting groundwater. It will also not be deeper than the existing lower ground floor level at no. 7 Woodchurch Road and the size and the scope of the excavation is relatively small. On this basis, the basement is not expected to interfere with the natural flow of the groundwater.
- The building will be formed off of the stiff underlying London Clay, which has a significant bearing capacity, and the foundations will be designed to reflect the recommended permissible pressures and ensure that settlement remain within tolerable limits.
- Removal of the underlying soils will generate some heave in the underlying London Clay. However, the basement structure and the superstructure load including allowance for tension piles should mitigate the effects of these upward forces.
- The external and internal walls of the detached property can be retained safely and easily following industry-standard practices and, by following a pre-determined sequence which will allow the basement walls to be constructed without detriment to the existing, surrounding construction.
- Excavations for the pins that form the new basement walls can be undertaken using a small excavator, which will be low-impact technique and known not to generate excessive vibration.

A Ground Movement Analysis has been done by GEA, which addressed the potential horizontal and vertical movements which may occur as a result of underpinning and retaining wall installation, basement excavation and loading by new foundations. Nos. 7 and 11 Woodchurch Road to the east and west of the site are the closest structures to the proposed excavation and the analysis assessed the magnitude of ground movement beneath these nearby properties. Part 3 of GEA's report notes that their analysis indicates that damage to no. 7 and 11 Woodchurch Road fall within categories 0 (negligible) or 1 (very slight) where damage can be treated by normal redecoration. They note that the predicted maximum tensile strain along walls E & G is close to the boundary to category 2 damage and for this reason, they recommend that movements are strictly limited to a maximum of 5mm.

To ensure that any damage is limited to category 0 and 1 on The Burland Scale, a controlled and sequenced work process needs to be adopted and a robust temporary support system employed during the works to ensure that lateral movements of the retaining structure are minimised. A monitoring regime, forming the party wall agreement, may be used to keep track and limit movements of the structure and adjacent properties during key stages of the construction. In the permanent case, the retaining wall is to be designed to have lateral restraint provided by the ground floor and new lower ground floor.

Conveyor to Remove Excavation Arisings

Shored excavation for an underpin using timber

Small wagon

9. CONSTRUCTION METHODS & SEQUENCE

The excavation for, and construction of the lower ground floor level will need to be completed without involving or disturbing the surrounding buildings. The sequence of the works for the construction phase of this project will, ultimately, be prepared by the contractor who will undertake the works, but we expect, and will guide them towards a sequence similar to the following:

- Construction of the reinforced concrete underpinning with toe beneath the front, internal and gable walls of the main house and rear extension starting from the middle of each wall at four or locations following a traditional 1 3 5 2 4 hit and miss sequence,
- Construction of temporary 1m length underpinning under the two internal corridor walls,
- Construction of the reinforced concrete liner wall adjacent to the existing basement wall of no. 7 in a hit and miss sequence, ٠
- Backfill each pin when complete, .
- Install new ground floor steel beams, .
- Install new ground floor level metal deck and cast concrete,
- Installation of lateral props between the house walls just above existing ground level where required,
- Excavation down to slab formation level,
- Installation of lateral props between the house walls just above proposed basement level, .
- Installation of new below ground drainage,
- Formation of reinforced concrete basement slab, including thickened slab at edges,
- Remove basement level props, ٠
- Install needling and vertical props to the two internal corridor walls,
- Install new supporting steel beams under the wall and dry pack,
- Remove needling and vertical props and repair masonry at needle locations,
- Demolish the temporary mass concrete underpins, ٠
- Cast any remaining ground floor slab areas, ٠
- Remove ground floor level props. •

Underpinning is done following a hit-&-miss sequence; local props and sheeting will be required to support the excavations. With the conclusion of the perimeter underpins and commencement of excavation works, bracing props will be installed between the walls, and maintained in place until the new lower ground floor slab and liner wall are constructed. Continuity reinforcement between the pins will allow lateral props to be provided at 2-3m c/c rather than to each pin.

Woodchurch Road is a two-way residential road with parking on both sides but will nevertheless accommodate construction traffic. The site has some but limited space within its boundary for temporary material storage and a Contractor's traffic management plan will be necessary to manage construction traffic and deliveries and storage of construction materials on site. The programme of works will be confirmed once the contractor is appointed.

Temporary storage of arisings

Covered Site

Small Excavator used near Boundaries

Amount and type of spoil removed

10. NOISE & NUISANCE

Construction works generally are a source of noise and nuisance which can affect operatives within the site as well as neighbours and passing members of the public. Demolition and excavation works are particular sources of this potential harm so it will be necessary during these works, at 9 Woodchurch Road, for the contractor to mitigate the extent and impact of noise, dust, traffic and vibration.

No	ise:	Generated by the mechanical equipment used to excavate for the new bas
		Mitigated by using electrical equipment where possible and mufflers or atte
		only within agreed and designated hours;
Du	st:	Generated by excavation works and the transfer of arisings from the work
		Mitigated by damping conveyors when in operation, by installing a weathe
		wheels before leaving site;
Tra	affic:	Generated by delivery and removal vehicles travelling to and from site;
		Mitigated by establishing a traffic management plan, by identifying and usi
		vehicle movements to avoid peak traffic periods, by ensuring vehicles are l
Vit	oration:	Generated by use of heavy breakers for sustained periods and by heavy ve
		Mitigated by using light, hand-held and electrical breakers, by avoiding ex
Pro	otection:	Robust hoarding will be erected around the site, front rear and sides, to se
		protection to neighbours and passing public from noise, dust and material

The works will cover around 200m² and excavate to 2.8m to 3.4m over the area, which will generate approximately 609m³ of spoil as follows:

sement; tenuators on diesel engines or generators, by working

ks area to the disposal skip or wagon; erproof cover over the site, by washing-down vehicle

sing routes appropriate to the vehicles, by scheduling low-emission standard;

- vehicles or plant;
- xcessively heavy plant.
- ecure the site from intrusion as well as provide
- l arisings.

MADE GROUND MAIN HOUSE

11. CONCLUSIONS

The proposed development at 9 Woodchurch Road can be achieved using standard construction techniques and materials. The lower ground floor level can be constructed using relatively light techniques, in controlled and pre-determined sequences and without the need for a large open excavation before construction can start and consequent extensive temporary works. Where mechanical means are necessary to construct permanent works, these can be of a type that generates low vibrations to which the surrounding buildings have a form and construction that is robust and resistant to.

- As outlined in previous sections, the construction of the lower ground floor level will not affect the integrity of the surrounding building stock, ٠ will not disturb underlying hydrogeology or overload the near-surface geology.
- The site is on fairly level ground in any case but, notwithstanding this, the construction techniques and sequences proposed minimises the risk • of instability, ground slip and movement.
- There are no critical utilities or infrastructure beneath the site that cannot be relocated easily to accommodate the construction and, the proposed works while it will provide additional habitable space, the increase will not generate great amount of extra load on the local infrastructure.
- The excavation for, and construction of the basement will need to be completed without involving or disturbing the surrounding buildings. ٠ Underpinning will commence from the middle of the walls and will be cast in 1m-sections of mass or reinforced concrete.
- The basement works will not impact any known nearby trees.
- By adopting an underpinning technique and following a hit-&-miss sequence, as described above it will be possible to construct the basement ٠ in a carefully sequenced and managed process without extensive temporary works.
- Any temporary works needed will be designed by the Contractor to current British Standards or Eurocodes. •
- The surrounding roads are wide enough and without tight bends or corners that will hinder or prevent site traffic and will not cause site traffic ٠ to hinder or delay local and residential traffic.

Report Prepared by:

Report Approved by:

Martona

Natalie Martono For MBP Issue: P02

10

Malcolm Brady (Director) Date: 04/09/23 Issued on: 04/09/23

APPENDIX A MBP DRAWING SET 10014

 $\left\| \begin{array}{c} 2 \\ 111 \end{array} \right\|$

- THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS AND ENGINEERS DRAWINGS AND SPECIFICATIONS.
- 2. FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS.
- 3. ALL DIMENSIONS ARE IN MILLIMETRES (mm) UNLESS NOTED OTHERWISE.

DO NOT SCALE FROM THE DRAWING OR THE COMPUTER DIGITAL DATA. ONLY FIGURED DIMENSIONS TO BE USED.

L F: Projects 10000 - 10099 10014 - 9 Woodchurch Road, West Hampstead, London NW6 3PL 11 Drawings 11.1 MBP Structure AutoCAD/099.dwg USER: Natalie Martono FILE SIZE = 0.38

		SCALE 1:50	Om	1m	2m	3m	4m	5m
	Scale @ A1	Date	Drawn	Checked	МВР	Consulting Engine	ers	
	1:50	31/05/23	SF	NM				
	Drawing Status			Revision		1 Lancaster Place		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	S4 - SUITABLI	E FOR STAGE APP	ROVAL	P04		London WC2E 7ED		
	Project Drawing	ID				T 020 7240 1191		
	10014-N	/IBP-XX-B1	-DR-S-	0099		E london@mbp-uk.co	om	
	Project C)riginator Volume Level	Type Role	Number		₩ mbp-uk.com		
e, London, WC2E	7ED	Copyright MBP Lt	d © All rights de	scribed in chapt	ter IV of the C	opyright Designs and Paten	ts Act 1988 have b	een generally asserte

2. FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS.

NOTES:

SPECIFICATIONS.

 $\left\| \begin{array}{c} 2 \\ 111 \end{array} \right\|$

3. ALL DIMENSIONS ARE IN MILLIMETRES (mm) UNLESS NOTED OTHERWISE.

4. DO NOT SCALE FROM THE DRAWING OR THE COMPUTER DIGITAL DATA. ONLY FIGURED DIMENSIONS TO BE USED.

		SCALE 1:50)m	1m	2	m 3	m 4	4m 1	5m		
	Scale @ A1 1:50	Date 31/05/23	Drawn SF	Checked NM	MBP	Consulting	Engineers				
	Drawing Status S4 - SUITABLE FOR STAGE APPROVAL			Revision P02		1 Lancaster Place					
OR PLAN	Project Drawing ID	BP-XX-00-I	DR-S-C	0100		T 020 7240 E london@m W mbp-uk.cc	1191 bp-uk.com				
London, WC2E 7ED	Project Origin	nator Volume Level	Type Role	Number cribed in chapte	er IV of the	Copyright Designs	and Patents Act 19	988 have been g	enerally asserted		

 THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS AND ENGINEERS DRAWINGS AND SPECIFICATIONS.

2. FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS.

3. ALL DIMENSIONS ARE IN MILLIMETRES (mm) UNLESS NOTED OTHERWISE.

4. DO NOT SCALE FROM THE DRAWING OR THE COMPUTER DIGITAL DATA. ONLY FIGURED DIMENSIONS TO BE USED.

L F:Projects110000 - 10099110014 - 9 Woodchurch Road, West Hampstead, London NW6 3PL/11 Drawings111.1 MBP Structure/AutoCAD/110.dwg USER: Natalie Martono FILE SIZE = 0.27

							SCALE 1:50	Om	1m	2m 3m	4m	5m
					Project Title	Scale @ A1	Date	Drawn	Checked MB	P Consulting Engine	pers	
					9 WOODCHURCH ROAD	1:50	31/05/23	SF	NM			
P	P04 04	4/09/23 E C E	DGE THICKENING WIDEN UNDERNEATH COLUMNS AS COORDINATED WITH GEOTECH ENGINEER.	NM		Drawing Status			Revision	1 Lancaster Place		
P	PO3 25	5/07/23 N A B	NOTE ON REQUIREMENT FOR TENSION PILE ADDED (PENDING CONFIRMATION IN FINAL SI REPORT)	NM		S4 - SUITABLE	FOR STAGE APP	ROVAL	P04	London WC2E 7ED		
PO	P02 21	1/07/23 E	EXTENT OF BASEMENT & GROUND FLOOR	NM		Project Drawing ID		T 020 7240 1191				
	P01 14	4/06/23 P	PRELIMINARY ISSUE	NM		10014-MBP-XX-ZZ-DR-S-011			0110	E london@mbp-uk.co	om	
P01 Ret	ev Da	ate D	VORK IN PROGRESS ISSUE Description	мм Ву	SHEET 1				Number	W mbp-uk.com		
MBP Ltd is the trading name of	of Michael	Barclay Pro	ojects Ltd a Limited Company registered in Englan	d and \	 /ales - Reg No 11536891- Registered address 1 Lancaster Place, London, WC2E 7	ED	Copyright MBP Lto	I © All rights de	scribed in chapter IV (of the Copyright Designs and Paten	ts Act 1988 have been	n gener;

- 1. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS AND ENGINEERS DRAWINGS AND SPECIFICATIONS.
- 2. FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS.
- 3. ALL DIMENSIONS ARE IN MILLIMETRES (mm) UNLESS NOTED OTHERWISE.

4. DO NOT SCALE FROM THE DRAWING OR THE COMPUTER DIGITAL DATA. ONLY FIGURED DIMENSIONS TO BE USED.

L F: Projects 10000 - 10099 10014 - 9 Woodchurch Road, West Hampstead, London NWG 3PL 11 Drawings 11.1 MBP Structure AutoCAD 111.dwg USER: Natalie Martono FILE SIZE = 0.46

					SCALE 1:50	Om	1m 	2m 3m	4m 5m
			Project Title	Scale @ A1	Date	Drawn	Checked MB	Consulting Engineers	
			9 WOODCHURCH ROAD	1:50	31/05/23	SF	NM		
P04 04/09/2	23 EDGE THICKENING WIDEN UNDERNEATH COLUMNS AS COORDINATED WITH GEOTECH ENGINEER.	NM		Drawing Status			Revision	1 Lancaster Place	
P03 25/07/2	23 NOTE ON REQUIREMENT FOR TENSION PILE ADDED (PENDING CONFIRMATION IN FINAL SI REPORT)	NM	NVV6 3PL	S4 - SUITABLE	FOR STAGE APP	ROVAL	P04	London WC2E 7ED	
P02 21/07/2	P02 21/07/23 EXTENT OF BASEMENT & GROUND FLOOR ALTERATIONS UPDATED TO SUIT LATEST		Project Drawing I	D		T 020 7240 1191			
P01 14/06/2	ARCHITECT'S LAYOUT. 23 PRELIMINARY ISSUE	NM	PROPOSED CROSS SECTION	10014-M	10014-MBP-XX-77-DB-S-0111			E london@mbp-uk.com	
P01-WIP 01/06/2	23 WORK IN PROGRESS ISSUE	NM	FOR PLANNING						
Rev Date	Description	Ву	SHEET 2	Project Ori	ginator Volume Level	Type Role	Number	w mɒp-uк.com	

- 1. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECTS AND ENGINEERS DRAWINGS AND SPECIFICATIONS.
- 2. FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS.
- 3. ALL DIMENSIONS ARE IN MILLIMETRES (mm) UNLESS NOTED OTHERWISE.
- 4. DO NOT SCALE FROM THE DRAWING OR THE COMPUTER DIGITAL DATA. ONLY FIGURED DIMENSIONS TO BE USED.

L F: Projects 10000 - 10099 10014 - 9 Woodchurch Road, West Hampstead, London NWG 3PL 11 Drawings 11.1 MBP Structure AutoCAD 112.dwg USER: Natalie Martono FILE SIZE = 0.29

					SCALE 1:50	Om	1m 2	2m 3m 4m 5m
			Project Title	Scale @ A1	Date	Drawn	Checked MBP	Consulting Engineers
			9 WOODCHURCH ROAD	1:50	31/05/23	SF	NM	
P04	4 04/09/23 EDGE THICKENING WIDEN UNDERNEATH COLUMNS AS COORDINATED WITH GEOTECH ENGINEER.	NM	LONDON	Drawing Status			Revision	1 Lancaster Place
POS	3 25/07/23 NOTE ON REQUIREMENT FOR TENSION PILE ADDED (PENDING CONFIRMATION IN FINAL SI DEPOD		NW6 3PL	S4 - SUITABLE FOR STAGE APPROV		ROVAL	P04	London WC2E 7ED
PO2	2 21/07/23 EXTENT OF BASEMENT & GROUND FLOOR ALTERATIONS UPDATED TO SUIT LATEST	NM		Project Drawing	ID			T 020 7240 1191
POT	ARCHITECT'S LAYOUT. 1 14/06/23 PRELIMINARY ISSUE	NM		10014-1	/IBP-XX-ZZ	-DR-S-	0112	E london@mbp-uk.com
P01-v Rev	WIP 01/06/23 WORK IN PROGRESS ISSUE Date Description	мм Ву	SHEET 3	Project C	Driginator Volume Level	Type Role	Number	W mbp-uk.com
MBP Ltd is the trading name of N	Vichael Barclay Projects Ltd a Limited Company registered in Englar	and and V	Nales - Reg No 11536891- Registered address 1 Lancaster Place, London, WC2	7ED	Copyright MBP Lto	d © All rights de	scribed in chapter IV of th	e Copyright Designs and Patents Act 1988 have been general

APPENDIX B MBP CALCULATION SET 10014

MBP	Michael Barclay Partnership	Job Title 9 WOODCHURCH ROAD	Job Number 10014	Sheet Number 2	Revision
	consulting engineers	LONDON NW6 3PL			102
	1 Lancaster Place, London, WC2E 7ED	Calculation/sketch Title	Date 25/07/23	Author	Checked
	T 020 7240 1191		25/07/25		MD
	E london@mbp-uk.com				

ESTIMATION OF HEAVE

Volume of excavation to form the new basement has been estimated as below:

Weight of made ground removed = $18 \text{ kN/m}^3 \text{ x} (120+64.3)\text{m}^3$ Weight of clay soil removed Total weight of soils removed

= 3,317 kN $= 20 \text{ kN/m}^3 \text{ x} (264+160.8) \text{m}^3 = 8,496 \text{ kN}$ = 11,813 kN

Allowing for 50% instantaneous relief (short term heave), the residual long term heave is estimated as: 0.5 x 11,813 kN = 5,907 kN

HYDROSTATIC UPLIFT DUE TO GROUND WATER

The three boreholes were found to be dry during the SI and at subsequent monitoring at 6 weeks after SI. Conservatively, allow for water pressure from water at 1m below ground level.

At the front of the property, the formation depth is at 3.4m, therefore there is 2.4m uplift pressure from water.

At the rear of the property, the formation depth is at 2.8m, therefore there is 1.8m uplift pressure from water.

Uplift due to hydrostatic pressure is estimated at:

 $10 \text{ kN/m}^3 \text{ x} (40 \text{ m}^2 \text{ x} 1.8 \text{ m}) + (160 \text{ m}^2 \text{ x} 2.4 \text{m}) = 4,560 \text{ kN}$

MBP	Michael Barclay Partnership consulting engineers	Job Title 9 WOODCHURCH ROAD LONDON NW6 3PL	Job Number 10014	Sheet Number 3	Revision P02
	1 Lancaster Place, London, WC2E 7ED	Calculation/sketch Title	Date 25/07/23	Author NIM	Checked MB
	T 020 7240 1191	TEAVE ASSESSMENT	25/07/25		
	E london@mbp-uk.com				

CHECK AGAINST FLOTATION

The following calculation notes the dead weight of the building, including the new basement structure, which is then compared with the total uplift force.

Wall Load	DL, <mark>kN/</mark> m	LL, kN/m	Length, m	DL, kN	LL, kN
(refer to load take down sheet 0400)	25.5	0	8.5	217	0
	19	θ		0	0
	3	1	5	15	5
	45	5	14	630	70
	37	5	14	518	70
	13	0	2	26	0
	24	0	4.53	109	0
	10	2	2.85	29	6
	10	2	2.65	27	5
	24	0	9.9	238	0
	24	0	10.1	242	0
	95	12	4.77	453	57
	73	12	6.53	477	78
	7	0.1	4	28	0
	41	5	4.3	176	22
	33	5		0	0
	69	17		0	0
	14	0.2		0	0
	48	7	2.85	137	20
	74	13	2.5	185	33
	24	0	1.4	34	0
	26	7	2.85	74	20
	87	16.5	6.53	568	108
	4.5	0.4	9	41	4
	4	1	7	28	7
	3.8	0.3	11	42	3
	8	1	5.5	44	6
	24	0	9.3	223	0
	93	11	11.3	1051	124
				5610	637
Basement Slab Load	DL, kN/m ²	LL, kN/m ²	Area, m ²	DL, kN	LL, <mark>k</mark> N
350mm slab	10.7	1.5	78	835	117
500mm edge thickening	14.3	1.5	121	1730	182
			TOTAL LOAD	8175	936

The total dead weight of the building > max of heave and hydrostatic pressure

8,175 > 5,907 , but

The total dead weight of the building < heave + hydrostatic pressure

8,175 < 10,467

If a 450mm diameter tension pile is assumed to have a 250kN capacity then 10 number piles will be needed.

Therefore, an allowance for tension piles in planning stage is made. However, this is to be confirmed during the detail design stage.

M B P	Michael Barclay Partnership consulting engineers	9 WOODCHURCH ROAD LONDON NW6 3PL	Job Number 10014	Sheet Number 4	Revision
	1 Lancaster Place, London, WC2E 7ED	Calculation/sketch Title HEAVE ASSESSMENT	Date 25/07/23	Author NM	Checked MB
	T 020 7240 1191				
	E london@mbp-uk.com				

ESTIMATED BUILDING DEAD & LIVE LOADS AT BASEMENT LEVEL

Tekla Tedds Michael Barclay Partnership	Project	9 WOODCHI	JRCH ROAD		Job no. 100	014
1 Lancaster Place London	Calcs for	LIGHTWELL RE	TAINING WALL	-	Start page no./Re 5 /	evision P02
wcze /eD	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.17

Retaining wall details	
Stem type	Cantilever
Stem height	hstem = 3050 mm
Stem thickness	tstem = 350 mm
Angle to rear face of stem	$\alpha = 90 \text{ deg}$
Stem density	γ _{stem} = 25 kN/m ³
Toe length	Itoe = 1750 mm
Base thickness	t _{base} = 500 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 2750 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2050 mm
Water density	γw = 9.8 kN/m ³
Retained soil properties	
Soil type	Firm clay
Moist density	$\gamma_{mr} = 18 \text{ kN/m}^3$
Saturated density	$\gamma_{sr} = 18 \text{ kN/m}^3$
Characteristic effective shear resistance angle	φ'r.k = 18 deg
Characteristic wall friction angle	$\delta r.k = 9 \text{ deg}$
Base soil properties	
Soil type	Firm clay
Soil density	γь = 18 kN/m ³
Characteristic effective shear resistance angle	φ'b.k = 18 deg
Characteristic wall friction angle	$\delta_{b.k} = 9 \text{ deg}$
Characteristic base friction angle	δьь.k = 12 deg
Presumed bearing capacity	$P_{\text{bearing}} = 150 \text{ kN/m}^2$
Loading details	
Variable surcharge load	Surcharge = 10 kN/m ²
Vertical line load at 1925 mm	Pg1 = 25.5 kN/m

Tekla Tedds	Project				Job no.	
Michael Barclay Partnership	9 WOODCHURCH ROAD 10014					
1 Lancaster Place	Calcs for				Start page no./R	levision
		LIGHTWELL RI	ETAINING WA	NLL	7	/P02
WC2E /ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date
Line loads		F _{P_v} = P _{G1} :	= 25.5 kN/m			
Total		$F_{total_v} = F_{st}$	em + Fbase + FP	_v + F _{water_v} = 78.4	kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	× $\cos(\delta r.k)$ × Su	urchargeq × heff =	15.5 kN/m	
Saturated retained soil		$F_{sat_h} = K_A$	× $\cos(\delta_{r.k})$ × (γ_{s}	sr - γ w) $ imes$ (hsat + hba	use) ² / 2 = 12.7 k	κN/m
Water		$F_{water_h} = \gamma_w$	× (hwater + dcov	ver + hbase) ² / 2 = 3	1.9 kN/m	
Moist retained soil		$F_{moist} = K_{M}$	$A \times \cos(\delta r.k) \times \gamma$	/mr × ((heff - hsat - h	lbase) ² / 2 + (heff	- hsat - hbase) ×
	(h _{sat} + h _{base})) = 17.4 kN/m					
Base soil	$F_{pass_h} = -K_P \times cos(\delta_{b.k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -5.2 \text{ kN/m}$					′m
Total	Ftotal_h = Fsur_h + Fsat_h + Fwater_h + Fmoist_h + Fpass_h = 72.3 kN/m					N/m
Moments on wall						
Wall stem		Mstem = Fste	m × Xstem = 51.4	4 kNm/m		
Wall base	Mbase = Fbase × Xbase = 27.6 kNm/m					
Surcharge load		Msur = -Fsur	_h × Xsur_h = -25	5.2 kNm/m		
Line loads		$M_P = P_{G1} \times$	p1 = 49.1 kNm	n/m		
Saturated retained soil		Msat = -Fsat_	_h × Xsat_h = -10	.8 kNm/m		
Water		Mwater = -Fw	vater_h × Xwater_h =	= -27.1 kNm/m		
Moist retained soil		Mmoist = -Fm	noist_h × X moist_h =	= -25.4 kNm/m		
Total		M _{total} = M _{ste}	m + Mbase + Ms	ur + MP + Msat + M	lwater + Mmoist = 3	39.5 kNm/m
Check bearing pressure						
Propping force		Fprop_base =	Ftotal_h = 72.3 k	κN/m		
Distance to reaction		$\overline{x} = M_{total} /$	Ftotal_v = 504 n	nm		
Eccentricity of reaction	$e = \bar{x} - I_{base} / 2 = -546 \text{ mm}$					
Loaded length of base	$I_{load} = 3 \times \overline{x} = 1511 \text{ mm}$					
Bearing pressure at toe		$q_{toe} = 2 \times F$	total_v / Iload = 10)3.8 kN/m²		
Bearing pressure at heel		$q_{\text{heel}} = 0 \text{ kN}$	l/m²			
Factor of safety	$FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 1.445$					
	PASS -	Allowable bearin	g pressure ex	xceeds maximur	n applied bear	ring pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.17

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

C30/37
fck = 30 N/mm ²
fck,cube = 37 N/mm ²
fcm = fck + 8 N/mm ² = 38 N/mm ²
$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$
$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837 \text{ N/mm}^2$
γc = 1.50
αcc = 0.85
$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$
h _{agg} = 20 mm

7 Tekla Tedds	Project Job no.								
Michael Barclay Partnership	9 WOODCHURCH ROAD 10014								
1 Lancaster Place	Calcs for				Start page no./R	evision			
	London			LL	8 /	′P02			
WC2E /ED	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date			
	NM	30/08/2023							
Ultimate strain - Table 3.1		εcu2 = 0.003	5						
Shortening strain - Table 3.1		εси3 = 0.003	5						
Effective compression zone heig	ght factor	$\lambda = 0.80$							
Effective strength factor		η = 1.00							
Bending coefficient k1		K1 = 0.40							
Bending coefficient k2		K2 = 1.00 ×	$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$						
Bending coefficient k3	Bending coefficient k ₃			K3 =0.40					
Bending coefficient k4		K4 = 1.00 ×	(0.6 + 0.0014/	έεu2) =1.00					
Reinforcement details									
Characteristic yield strength of r	einforcement	fyk = 500 N/	mm²						
Modulus of elasticity of reinforce	ent	Es = 20000	Es = 200000 N/mm ²						
Partial factor for reinforcing stee	I - Table 2.1N	γs = 1.15	γs = 1.15						
Design yield strength of reinforc	ement	$f_{yd} = f_{yk} / \gamma s$	f _{yd} = f _{yk} / γs = 435 N/mm²						
Cover to reinforcement									
Front face of stem		csf = 40 mm	ı						
Rear face of stem		csr = 50 mm	csr = 50 mm						
Top face of base C _{bt} = 50 mm									
Bottom face of base		Cbb = 75 mr	n						
Loading details - Combination No.1 - KN/m	She	ar force - Combination No.1 - kN/m	Be	nding moment - Combination No.	1 - KNm/m				
					3-5-51				

83.5

78.

77.2

16

Tekla Tedds Michael Barclay Partnership	Project 9 WOODCHURCH ROAD				Job no. 10014	
1 Lancaster Place London	Calcs for	LIGHTWELL RE	TAINING WALL	_	Start page no./Re 9 /	evision P02
WC2E /ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date

Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sr.req} / d = 0.002$
Required compression reinforcement ratio	$\rho' = A_{sr.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	K _b = 0.4
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	min(Ks × Kb × [11 + 1.5 × $\sqrt{(f_{ck} / 1 N/mm^2)}$ × ρ_0 / ρ + 3.2 × $\sqrt{(f_{ck} / 1)}$
	N/mm ²) × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 16
Actual span to depth ratio	h _{stem} / d = 10.4
	PASS - Span to depth ratio is less than deflection control limit

Tekla Tedds	Project Job no.						
Michael Barclay Partnership		9 WOODCH	IURCH ROAD		10	0014	
1 Lancaster Place	Calcs for				Start page no./F	Revision	
		LIGHTWELL RI	ETAINING WA	LL	10) /P02	
	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date	
Crack control - Section 7.3							
Limiting crack width		Wmax = 0.3	mm				
Variable load factor - EN1990 -	Table A1.1	ψ2 = 0.6					
Serviceability bending moment		Msis = 48 kl	Nm/m				
Tensile stress in reinforcement		$\sigma_s = M_{sls} / ($	$A_{sr.prov} \times z) = 17$	72 N/mm ²			
Load duration		Long term					
Load duration factor		$k_t = 0.4$					
Effective area of concrete in ter	ision	Ac.eff = min((2.5 × (h - d), (ł	n - x) / 3, h / 2)			
Maan value of concrete tensile	otropath	$A_{c.eff} = 1043$	500 mm²/m				
Reinferenment retio	strength	$I_{ct.eff} = I_{ctm} =$	= 2.9 N/IIIII ²	0			
Meduler ratio		ρ p.eff = Asr.pr	rov / Ac.eff = 0.01	0			
Nodular Tallo		$\alpha_e = E_s / E_c$	cm = 0.091				
Strain distribution coefficient		$k_1 = 0.8$					
Strain distribution coefficient		$k_2 = 3.4$					
		$k_4 = 0.425$					
Maximum crack spacing - exp.7	.11	Sr.max = k3 ×	$c_{sr} + k_1 \times k_2 \times$	$k_4 \times \phi_{sr} / \rho_{p.eff} = 4$	53 mm		
Maximum crack width - exp.7.8		Wk = Sr.max × max(σ_s – kt × (fct.eff / ρ_p .eff) × (1 + α_e × ρ_p .eff), 0.6 × σ_s) / Es					
		Wk = 0.234	mm		1. ,,	,	
		Wk / Wmax =	0.779				
		PASS	- Maximum cr	rack width is les	ss than limitin	g crack width	
Rectangular section in shear	- Section 6.2						
Design shear force		V = 78.1 ki	N/m				
		$C_{Rd,c} = 0.18$	B / γc = 0.120				
		k = min(1 +	- √(200 mm / d)), 2) = 1.828			
Longitudinal reinforcement ratio	1	$\rho_{I} = \min(A_{\text{sr.prov}} / d, 0.02) = 0.003$					
		Vmin = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	² × f _{ck} ^{0.5} = 0.474	N/mm²		
Design shear resistance - exp.6	5.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	$00 \text{ N}^2/\text{mm}^4 \times \rho_1 \times$	f_{ck}) ^{1/3} , Vmin) × d		
		V _{Rd.c} = 139.5 kN/m					
		$V / V_{Rd.c} = 0$	0.560				
Harizantal rainfaroamant nar		PAS Section (5 - Design sh	ear resistance e	exceeds desig	in snear force	
Minimum area of reinforcement para		tem - Section s		0.001 v t ·) -	250 mm ² /m		
Maximum appoint of reinforcement	-0.9.0.3(1)	$A_{sx.req} = Ma$	$IX(U.23 \times Asr.prov)$, 0.001 × lstem) =	330 mm²/m		
Transverse reinforcement provi	ient – 0.9.0.3(2) ded	$Ssx_max = 40$					
Area of transverse reinforcemen	at provided	Asy prov = π	x dev ² / (4 x sev)	= 565 mm ² /m			
	PASS - Area of	reinforcement	t provided is g	reater than area	a of reinforcer	ment required	
Check base design at toe							
Depth of section		h = 500 mr	n				
Rectangular section in flexure	e - Section 6.1						
Design bending moment combined	nation 1	M = 109.9	kNm/m				
Depth to tension reinforcement		$d = h - c_{bb}$	- φ _{bb} / 2 = 415 r	nm			
		$K = M / (d^2)$	\times fck) = 0.021				
		K' = (2 × η	× αcc/γc)×(1 - λ	× (δ - K1)/(2 × K	2))×(λ × (δ - K1))/(2 × K2))	
		r. = U.2U /	K' > K -	No compressio	n reinforceme	ent is required	
			$K \ge K^{-}$	1.0 00110103310			

Tekla Tedds	Project Job no.							
Michael Barclay Partnership		9 WOODCH	URCH ROAD		10	014		
1 Lancaster Place London	Calcs for	LIGHTWELL RI	ETAINING WAL	L	Start page no./Re	evision /P02		
WC2E 7ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date		
Lever arm		z = min(0.5)	+ 0.5 × (1 - 2 >	$\langle \mathbf{K} / (\mathbf{n} \times \alpha_{cc} / \gamma_c) \rangle$	^{0.5} . 0.95) × d =	: 394 mm		
Depth of neutral axis		$x = 2.5 \times (c)$	(-7) = 52 mm	(,,			
Area of tension reinforcement re	auired	$A = 2.0 \times (0)$	$(f_{vd} \times 7) = 641$	mm²/m				
Tension reinforcement provided	squirea	20 dia bars	$(1)^{(1)} \times 2) = 0 + 1$					
Area of tension reinforcement p	rovided		х фьь ² / (4 х sьь)	– 1571 mm²/m				
Minimum area of reinforcement		Abb.prov = π	$\times \psi_{00} / (+ \times 300)$	- 1071 mm /m	25 mm ² /m			
Maximum area of reinforcement	- exp.9.11		$1 \times (0.20 \times 1000)$	$r_{k}, 0.0013) \times 0 = 0$	23 11111-/111			
Maximum area or remorcement	- 01.9.2.1.1(3)	Abb.max = 0.0	$J4 \times fi = 20000$	- 0 409				
	DASS Area of	roinforcomont	Abb.min) / Abb.prov	v = 0.400	of reinforcom	ont roquirod		
	PASS - Alea Ul	reiniorcement	provided is gi	Lit	or reminor cem	ular single output		
Crack control - Section 7.3						Jaiai onigio oaipat		
Limiting crack width		Wmax = 0.3	mm					
Variable load factor - EN1990 -	Table A1.1	$W_2 = 0.6$						
Serviceability bending moment		Msis = 78.6	kNm/m					
Tensile stress in reinforcement		$\sigma_s = M_{sls} / ($	$A_{bb,prov} \times z) = 12$	26.9 N/mm ²				
Load duration		Long term	,					
Load duration factor		kt = 0.4						
Effective area of concrete in tension		Ac.eff = min(Ac.eff = min(2.5 × (h - d), (h - x) / 3, h / 2)					
			A _{c.eff} = 149375 mm ² /m					
Mean value of concrete tensile	Mean value of concrete tensile strength		f _{ct.eff} = f _{ctm} = 2.9 N/mm ²					
Reinforcement ratio		$\rho_{p.eff} = A_{bb.p}$	$\rho_{p.eff} = A_{bb,prov} / A_{c.eff} = 0.011$					
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	$\alpha_{e} = E_{s} / E_{cm} = 6.091$					
Bond property coefficient		k1 = 0.8	k1 = 0.8					
Strain distribution coefficient		k2 = 0.5	k ₂ = 0.5					
		k3 = 3.4						
		k4 = 0.425						
Maximum crack spacing - exp.7	.11	Sr.max = K3 ×	$c_{\text{bb}} \textbf{+} \textbf{k}_1 \times \textbf{k}_2 \times$	$k_4 \times \phi_{bb} / \rho_{p.eff} = 5$	78 mm			
Maximum crack width - exp.7.8		Wk = Sr.max >	$\propto \max(\sigma_s - k_t \times 0)$	(fct.eff / $ ho_{p.eff}$) $ imes$ (1 +	α e $ imes$ ρ p.eff), 0.6	$5 \times \sigma_s$) / Es		
		wk = 0.22 n	nm					
		$W_k / W_{max} =$	0.734					
		PASS	- Maximum cr	ack width is less	s than limiting	g crack width		
Rectangular section in shear	- Section 6.2							
Design shear force		V = 83.5 kM	N/m					
		$C_{Rd,c} = 0.18$	8 / γc = 0.120					
		k = min(1 +	√(200 mm / d)	, 2) = 1.694				
Longitudinal reinforcement ratio		ρι = min(Ab	o.prov / d, 0.02) =	0.004				
		Vmin = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$\times f_{ck}^{0.5} = 0.423 N_{ck}^{0.5}$	/mm²			
Design shear resistance - exp.6	.2a & 6.2b	VRd.c = max	$(C_{Rd.c} \times k \times (10))$	$0 \text{ N}^2/\text{mm}^4 \times \rho_1 \times f_0$	ck) ^{1/3} , Vmin) $ imes$ d			
		V _{Rd.c} = 189.6 kN/m						
		V / V _{Rd.c} = 0.440						
		PAS	S - Design she	ear resistance ex	ceeds desigr	n shear force		
Secondary transverse reinfor	cement to base	- Section 9.3		24				
Minimum area of reinforcement	- cl.9.3.1.1(2)	Abx.req = 0.2	$A_{bx,req} = 0.2 \times A_{bb,prov} = 314 \text{ mm}^2/\text{m}$					
Transverse reinforcement see	ient – cl.9.3.1.1(dod	$3) Sbx_max = 45$	ov mm @ 200 ⊲/≏					
Area of transverse reinforcement provid			w Δ00 0/0	- 1005 mm ^{2/m}				
Area or mansverse remoncemen		π bx.prov = π	∧ψox⁻/(4+×Sbx)	- 1003 11111-/111				

Tekla Tedds Michael Barclay Partnership	Project 9 WOODCHURCH ROAD			Job no. 100	014	
1 Lancaster Place London	Calcs for LIGHTWELL RETAINING WALL			Start page no./Revision 12 /P02		
WC2E /ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date

Reinforcement details

Tekla Tedds Michael Barclay Partnership	Project 9 WOODCHURCH ROAD			Job no. 100)14	
1 Lancaster Place London	Calcs for WEST GABLE RETAINING WALL			Start page no./Revision 13 /P02		
WC2E 7ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.17

Retaining wall details	
Stem type	Propped cantilever
Stem height	hstem = 3000 mm
Prop height	hprop = 3000 mm
Stem thickness	tstem = 350 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$
Toe length	Itoe = 850 mm
Base thickness	t _{base} = 500 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 2540 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2000 mm
Water density	$\gamma_{w} = 9.8 \text{ kN/m}^{3}$
Retained soil properties	
Soil type	Firm clay
Moist density	γmr = 18 kN/m ³
Saturated density	γsr = 18 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 18 deg
Characteristic wall friction angle	$\delta_{r.k} = 9 \text{ deg}$
Base soil properties	
Soil type	Firm clay
Soil density	γ _b = 18 kN/m ³
Characteristic effective shear resistance angle	φ'b.k = 18 deg
Characteristic wall friction angle	δ _{b.k} = 9 deg
Characteristic base friction angle	δ _{bb.k} = 12 deg
Presumed bearing capacity	$P_{\text{bearing}} = 150 \text{ kN/m}^2$
Loading details	
Variable surcharge load	Surcharge $q = 10 \text{ kN/m}^2$
Vertical line load at 1025 mm	Pg1 = 101 kN/m
	P _{Q1} = 12 kN/m

General arrangement - sketch pressures relate to bearing check

Calculate retaining wall geometry

Base length Saturated soil height Moist soil height Length of surcharge load - Distance to vertical component Effective height of wall - Distance to horizontal component Area of wall stem - Distance to vertical component Area of wall base - Distance to vertical component **Using Coulomb theory** Active pressure coefficient

Bearing pressure check

Vertical forces on wall Wall stem Wall base
$$\begin{split} &\text{lbase} = \text{lte} + \text{tstem} = 1200 \text{ mm} \\ &\text{hsat} = \text{hwater} + \text{dcover} = 2000 \text{ mm} \\ &\text{hmoist} = \text{hret} - \text{hwater} = 540 \text{ mm} \\ &\text{lsur} = \text{lneel} = 0 \text{ mm} \\ &\text{xsur_v} = \text{lbase} - \text{lneel} / 2 = 1200 \text{ mm} \\ &\text{heff} = \text{hbase} + \text{dcover} + \text{hret} = 3040 \text{ mm} \\ &\text{xsur_h} = \text{heff} / 2 = 1520 \text{ mm} \\ &\text{Astem} = \text{hstem} \times \text{tstem} = 1.05 \text{ m}^2 \\ &\text{xstem} = \text{ltee} + \text{tstem} / 2 = 1025 \text{ mm} \\ &\text{Abase} = \text{lbase} \times \text{tbase} = 0.6 \text{ m}^2 \\ &\text{xbase} = \text{lbase} / 2 = 600 \text{ mm} \\ \\ &\text{KA} = \sin(\alpha + \phi' \text{r.k})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{\text{r.k}}) \times [1 + \sqrt{[\sin(\phi' \text{r.k} + \delta_{\text{r.k}}) \times \sin(\phi' \text{r.k} - \beta) / (\sin(\alpha - \delta_{\text{r.k}}) \times \sin(\alpha + \beta))]]^2} = 0.483 \end{split}$$

$$\begin{split} & \mathsf{K}_{\mathsf{P}} = \sin(90 - \phi'_{\mathrm{b},k})^2 \, / \, (\sin(90 + \delta_{\mathrm{b},k}) \times [1 - \sqrt{[\sin(\phi'_{\mathrm{b},k} + \delta_{\mathrm{b},k}) \times \sin(\phi'_{\mathrm{b},k}) \, / } \\ & (\sin(90 + \delta_{\mathrm{b},k}))]]^2) = \textbf{2.359} \end{split}$$

$$\label{eq:Fstem} \begin{split} F_{stem} &= A_{stem} \times \gamma_{stem} = \textbf{26.3 kN/m} \\ F_{base} &= A_{base} \times \gamma_{base} = \textbf{15 kN/m} \end{split}$$

Tekla Tedds	Project Job no.					01.4
Michael Barclay Partnership		9 WOODCH			10	014
1 Lancaster Place London	Calcs for	WEST GABLE R	ETAINING WA	ALL	Start page no./Revision 15 /P02	
WC2E 7ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date
				•	-	•
Line loads		$F_{P_v} = P_{G1} +$	+ Pq1 = 113 kN	l/m		
Total		F _{total_v} = F _{ste}	$m + F_{base} + F_{P_{-}}$	v + Fwater_v = 154	. 3 kN/m	
Horizontal forces on wall						
Surcharge load		$F_{sur_h} = K_A$	$(\cos(\delta r.k) \times Su)$	rchargeq × heff =	14.5 kN/m	
Saturated retained soil		$F_{sat_h} = K_A$	$<$ COS(δ r.k) \times (γ sı	$-\gamma_w$) × (h _{sat} + h _{ba}	_{se})² / 2 = 12.2 k	N/m
Water		$F_{water_h} = \gamma_w$	\times (hwater + d _{cove}	er + h _{base}) ² / 2 = 3	0.7 kN/m	
Moist retained soil		$F_{moist} = K_{A}$	$\mathbf{x} \times \mathbf{COS}(\delta \mathbf{r}.\mathbf{k}) \times \gamma \mathbf{r}$	mr $ imes$ ((heff - hsat - h	_{base})² / 2 + (h _{eff} ·	hsat - hbase) ×
	(h _{sat} + h _{base})) = 12.8 kN/m					
Base soil	$F_{pass_h} = -K_P \times cos(\delta_{b,k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -5.2 \text{ kN/m}$				m	
Total	Ftotal_h = Fsur_h + Fsat_h + Fwater_h + Fmoist_h + Fpass_h = 65 kN/m				n	
Moments on wall						
Wall stem		Mstem = Fster	m × Xstem = 26.9	kNm/m		
Wall base	$M_{base} = F_{base} \times x_{base} = 9 \text{ kNm/m}$					
Surcharge load		$M_{sur} = -F_{sur}$	h × Xsur_h = -22	kNm/m		
Line loads		MP = (PG1 +	• Pq1) × p1 = 11	I 5.8 kNm/m		
Saturated retained soil		Msat = -Fsat_	h × X sat_h = -10 .	2 kNm/m		
Water		Mwater = -Fwa	ater_h $ imes$ Xwater_h =	= -25.5 kNm/m		
Moist retained soil		Mmoist = -Fm	oist_h × Xmoist_h =	- 17.8 kNm/m		
Total		Mtotal = Mster	m + Mbase + Msu	r + MP + Msat + M	water + Mmoist = 7	6.1 kNm/m
Check bearing pressure						
Propping force to stem		Fprop_stem = (Ftotal v × Ibase / 2	2 - Mtotal) / (hprop -	+ t _{base}) = 4.7 kN/	′m
Propping force to base		Fprop base = I	Ftotal h - F prop ste	m = 60.3 kN/m	,	
Moment from propping force		Mprop = Fprop	$_{\rm stem} \times (h_{\rm prop} +$	t _{base}) = 16.4 kNm	ı/m	
Distance to reaction		$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}} -$	⊢ Mprop) / Ftotal v	r = 600 mm		
Eccentricity of reaction		$e = \overline{x} - I_{base}$	/ 2 = 0 mm			
Loaded length of base		lload = Ibase =	1200 mm			
Bearing pressure at toe	$\mathbf{q}_{\text{tot}} = \mathbf{F}_{\text{total v}} / \mathbf{b}_{\text{ase}} \times (1 - 6 \times \mathbf{e} / \mathbf{b}_{\text{ase}}) = \mathbf{128.5 \text{ kN/m}^2}$					
Bearing pressure at heel	$G_{\text{heel}} = F_{\text{total } v} / [\text{hase} \times (1 + 6 \times e / [\text{hase})] = 128.5 \text{ kN/m}^2$					
Factor of safety		FoS _{bp} = P _{be}	aring / max(qtoe,	q _{heel}) = 1.167		
,	PASS	Allowable bearin	g pressure ex	ceeds maximur	n applied bear	ing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.17

Concrete details - Table 3.1 - Strength an	d deformation characteristics for concrete
--	--

Concrete strength class	C30/37
Characteristic compressive cylinder strength	fck = 30 N/mm ²
Characteristic compressive cube strength	fck,cube = 37 N/mm ²
Mean value of compressive cylinder strength	fcm = fck + 8 N/mm ² = 38 N/mm ²
Mean value of axial tensile strength	$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837 \text{ N/mm}^2$
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	αcc = 0.85

Tekla Tedds Michael Barclay Partnership	Project 9 WOODCHURCH ROAD				Job no. 1(0014			
1 Lancaster Place London	Calcs for	WEST GABLE F	ST GABLE RETAINING WALL			Start page no./Revision 16 /P02			
WC2E 7ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date			
Design compressive concrete s	strength - exp.3	3.15 $f_{cd} = \alpha_{cc} \times f$	_{ck} / γc = 17.0 Ν	J/mm ²					
Maximum aggregate size		h _{agg} = 20 m	nm						
Ultimate strain - Table 3.1		εcu2 = 0.00	35						
Shortening strain - Table 3.1		Ecu3 = 0.00	35						
Effective compression zone hei	Effective compression zone height factor		$\lambda = 0.80$						
Effective strength factor	Effective strength factor		η = 1.00						
Bending coefficient k1	Bending coefficient k1		K1 = 0.40						
Bending coefficient k2	Bending coefficient k2		$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$						
Bending coefficient k3		K3 =0.40	K3 =0.40						
Bending coefficient k4		K4 = 1.00 >	$K_4 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$						
Reinforcement details									
Characteristic yield strength of	reinforcement	f _{yk} = 500 N	/mm²						
Modulus of elasticity of reinforc	ement	Es = 20000	Es = 200000 N/mm ²						
Partial factor for reinforcing stee	el - Table 2.1N	γs = 1.15	γs = 1.15						
Design yield strength of reinford	Design yield strength of reinforcement		f _{yd} = f _{yk} / γs = 435 N/mm ²						
Cover to reinforcement									
Front face of stem		csf = 40 mr	c _{sf} = 40 mm						
Rear face of stem		c _{sr} = 50 mr	n						
Top face of base		Cbt = 50 mr	n						
Bottom face of base		Cbb = 75 m	m						
Provening									
Loading deta	ills - Combination No.1 - KN/m ²	Shear force - Combination No.1	- kN/m Bending mon	nent - Combination No.1 - kNm/m					

Tekla Tedds Michael Barclay Partnership	Project 9 WOODCHURCH ROAD				Job no. 10014	
1 Lancaster Place Calcs fo London WC2E 7ED Calcs by	Calcs for WEST GABLE RETAINING WALL			Start page no./Revision 17 /P02		
	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date

	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{c})) ^{0.5} , 0.95) × d = 276 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 36 \text{ mm}$
Area of tension reinforcement required	$A_{sfM.req} = M / (f_{yd} \times z) = 100 \text{ mm}^2/\text{m}$
Tension reinforcement provided	16 dia.bars @ 200 c/c
Area of tension reinforcement provided	AsfM.prov = $\pi \times \phi$ sfM ² / (4 × SsfM) = 1005 mm ² /m
Minimum area of reinforcement - exp.9.1N	AsfM.min = max($0.26 \times f_{ctm} / f_{yk}$, 0.0013) × d = 437 mm ² /m
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sfM.max} = 0.04 \times h = 14000 \text{ mm}^2/\text{m}$
	max(AsfM.reg, AsfM.min) / AsfM.prov = 0.434

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sfM.req} / d = 0.000$
Required compression reinforcement ratio	$\rho' = A_{sfM.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	Kb = 1
Reinforcement factor - exp.7.17	$K_{s} = min(500 \text{ N/mm}^{2} / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1)})$
	N/mm ²) × ($\rho_0 / \rho - 1$) ^{3/2}], 40 × K _b) = 40
Actual span to depth ratio	h _{prop} / d = 10.3
	PASS - Span to depth ratio is less than deflection control limit

Michael Barclay Partnership	9 WOODCHURCH ROAD			Job no. 10014			
1 Lancaster Place London	Calcs for WEST GABLE RETAINING WALL				Start page no./Revision 18 /P02		
WC2E 7ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved	
Crack control - Section 7.3							
Limiting crack width		Wmax = 0.3	mm				
Variable load factor - EN1990 -	Table A1.1	$W_2 = 0.6$					
Serviceability bending moment		Msis = 7.5 k	Nm/m				
Tensile stress in reinforcement		$\sigma_s = M_{sls} / ($	$A_{sfM.prov} \times Z) =$	27.2 N/mm ²			
Load duration		Long term	, ,				
Load duration factor		kt = 0.4					
Effective area of concrete in ten	sion	Ac.eff = min(2.5 × (h - d), (h - x) / 3, h / 2)			
		Ac.eff = 104	583 mm²/m				
Mean value of concrete tensile s	strength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²				
Reinforcement ratio		$\rho_{p.eff} = A_{sfM.}$	prov / Ac.eff = 0.0	010			
Modular ratio		$\alpha_{e} = E_{s} / E_{cm} = 6.091$					
Bond property coefficient		k1 = 0.8					
Strain distribution coefficient		k2 = 0.5					
		k3 = 3.4					
		k4 = 0.425					
Maximum crack spacing - exp.7	.11	$s_{r.max} = k_3 \times$	$C_{sf} + k_1 \times k_2 \times k_2$	$k_4 \times \phi_{sfM} / \rho_{p.eff} =$	419 mm		
Maximum crack width - exp.7.8		Wk = Sr.max >	< max(σs – kt ×	\times (fct.eff / $\rho_{p.eff}$) \times (1	+ $\alpha_{e} \times \rho_{p.eff}$), 0.	$.6 \times \sigma_s) / E_s$	
		Wk = 0.034	mm				
		Wk / Wmax =	0.114				
		PASS	- Maximum c	crack width is les	ss than limitin	ıg сгаск w	
Check stem design at base of	stem						
Depth of section		h = 350 mr	n				
Rectangular section in flexure	Section 6.1						
Design bending moment combin	nation 1	M = 27.9 k	Nm/m				
Depth to tension reinforcement		d = h - c _{sr} - ϕ_{sr} / 2 = 292 mm					
		$K = M / (d^2)$	\times fck) = 0.011				
		K' = (2 × η	× αcc/γc)×(1 - λ	$\lambda \times (\delta - K_1)/(2 \times K_2)$	2))×(λ × (δ - Κ1))/(2 × K2))	
		K = 0.207	K' > K -	No compressio	n reinforceme	nt is reau	
l ever arm		z - min(0.5)	$x = 0.5 \times (1 - 2)$	$\times K / (n \times q_{\infty} / v_{0})$)) ^{0.5} 0 95) × d	– 277 mm	
Depth of neutral axis		$x = 2.5 \times 10^{-10}$	(-7) = 37 mm		,, , 0.00j ^ u		
Depth of field and	auired	$A = 2.5 \times (c)$	(fual ∨ 7) – 231	mm²/m			
Area of tension reinforcement re		16 dia hars	@ 200 c/c				
Area of tension reinforcement re Tension reinforcement provided							
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement p	rovided	As $n = \pi$	< dsr ² / (4 × ς _α ,)	= 1005 mm ² /m			
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement p	rovided - exp 9 1N	$A_{\text{sr.prov}} = \pi \Rightarrow$	<	= 1005 mm ² /m	440 mm²/m		
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement p Minimum area of reinforcement Maximum area of reinforcement	rovided - exp.9.1N	$A_{sr.prov} = \pi \Rightarrow$ $A_{sr.min} = ma$ $A_{sr.max} = 0.0$	<	= 1005 mm ² /m f_{yk} , 0.0013) × d = f_{yk} mm ² /m	440 mm²/m		
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement p Minimum area of reinforcement Maximum area of reinforcement	rovided - exp.9.1N : - cl.9.2.1.1(3)	$A_{sr,prov} = \pi >$ $A_{sr,min} = ma$ $A_{sr,max} = 0.0$ $max(\Delta_{sr,max})$		= 1005 mm ² /m fyk, 0.0013) × d = 0 mm ² /m y = 0.437	440 mm²/m		
Area of tension reinforcement re Tension reinforcement provided Area of tension reinforcement p Minimum area of reinforcement Maximum area of reinforcement	rovided - exp.9.1N t - cl.9.2.1.1(3) PASS - Area of	Asr.prov = π > Asr.min = ma Asr.max = 0.0 max(Asr.req, f reinforcement	<pre>< \$\$\psi^2 / (4 × Ssr) x(0.26 × fctm / ')4 × h = 14000 Asr.min) / Asr.pro provided is 6</pre>	= 1005 mm ² /m f _{yk} , 0.0013) × d = 0 mm ² /m v = 0.437 greater than area	440 mm²/m	ment requ	

Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sr.req} / d = 0.001$
Required compression reinforcement ratio	$\rho' = A_{sr.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_{s} = min(500 \text{ N/mm}^{2} \text{ / } (f_{yk} \times A_{sr.req} \text{ / } A_{sr.prov}), \text{ 1.5}) = \textbf{1.5}$

7 Tekla Tedds	Project Job no.							
Michael Barclay Partnership	9 WOODCHURCH ROAD				10	014		
1 Lancaster Place London	Calcs for	Calcs for WEST GABLE RETAINING WALL			Start page no./Re	evision /P02		
WC2E 7ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date		
Limiting span to depth ratio - ex	 n716a	min(K _s × K _t	× [11 + 1.5 × γ	$(f_{ck} / 1 N/mm^2) \times$	$00/0+32\times1$	(f _{ck} / 1		
	5.7.10.4	$N/mm^2) \times ($	$\infty / \alpha = 1)^{3/2} 40$	(10k) - 40	pu/pio.z ^			
Actual span to depth ratio		$h_{\text{prop}} / d = 1$	0.3	(x + x) = 10				
		PASS	- Span to dept	h ratio is less th	an deflection	control limit		
Crack control Section 7.2								
Limiting crack width		Waxay = 0.3	mm					
Variable load factor - EN1990 -	Table A1 1	$w_{max} = 0.5$						
Serviceshility bending moment		ψ2 – 0.0 Maia – 18 ki	Nm/m					
Tensile stress in reinforcement		$\sigma_0 = M_{olo} / ($	$\Delta_{\rm er} = (2 \times 7) - 64$	7 N/mm ²				
Load duration		L ong term						
Load duration factor		$k_t = 0.4$						
Effective area of concrete in ten	sion	$A_{c,eff} = min($	25×(h-d) (h	-x)/3 h/2				
		$A_{c,eff} = 104$	$500 \text{ mm}^2/\text{m}$	x) / 0, 11 / 2/				
Mean value of concrete tensile	strenath	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²					
Reinforcement ratio		Op.eff = Asr.pr	ov / Ac.eff = 0.010)				
Modular ratio		$\alpha_{\rm e} = {\rm E_s} / {\rm E_c}$	m = 6.091					
Bond property coefficient		$k_1 = 0.8$						
Strain distribution coefficient		k ₂ = 0.5						
		k₃ = 3.4						
		k4 = 0.425						
Maximum crack spacing - exp.7	.11	Sr.max = k3 ×	$c_{sr} + k_1 \times k_2 \times k_2$	$4 \times \phi_{sr} / \rho_{p.eff} = 45$	3 mm			
Maximum crack width - exp.7.8		Wk = Sr.max >	× max(σs – kt × (fct.eff / $\rho_{p.eff}$ × (1 +	$\alpha_{e} \times \rho_{p.eff}$), 0.6	×σs) / Es		
		Wk = 0.088	mm					
		Wk / Wmax =	Wk / Wmax = 0.293					
		PASS	- Maximum cra	ack width is less	s than limiting	crack width		
Rectangular section in shear	- Section 6.2							
Design shear force		V = 57.4 kM	N/m					
		$C_{Rd,c} = 0.18$	8 / γc = 0.120					
		k = min(1 +	√(200 mm / d)	, 2) = 1.828				
Longitudinal reinforcement ratio		ρι = min(Asi		0.003				
		Vmin = 0.035	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	$\times f_{ck}^{0.5} = 0.474 N_{ck}^{0.5}$	/mm²			
Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (10))$	$0 \text{ N}^2/\text{mm}^4 \times \rho \times \text{for}^4$	$(k)^{1/3}, Vmin) \times d$			
		VRd.c = 139	. 5 kN/m		, , ,			
		$V / V_{Rd.c} = 0$	0.412					
		PAS	S - Design she	ear resistance ex	ceeds desigr	shear force		
Check stem design at prop								
Depth of section		h = 350 mr	n					
Rectangular section in shear	- Section 6.2							
Design shear force		V = 12 kN/i	m					
		$C_{Rd,c} = 0.18$	3 / γc = 0.120					
		k = min(1 +	√(200 mm / d).	2) = 1.828				
Longitudinal reinforcement ratio		$\rho = \min(A_{e})$	$(1.000 / d_0 0.02) =$	= 0.003				
		$V_{\rm min} = 0.03^{\mu}$	$5 \text{ N}^{1/2}/\text{mm} \times k^{3/2}$	$\times f_{ck}^{0.5} = 0.474 \text{ N}$	/mm²			
Design shear resistance - eye 6	22 & 6 2h	$V_{\text{Dd}_{2}} = m_{2}$	$r(C_{\rm Pd} \sim k \sim 10^{\circ})$	$0 \text{ N}^2/\text{mm}^4 \times \alpha \times f$,,,)1/3 ,,,,,) ∨ A			
Design shear resistance - exp.0	.20 0 0.20		-5 kN/m		⊼, vmin/×u			
		V NULU - 133						

7 Tekla Tedds	Project Job no.						
Michael Barclay Partnership	9 WOODCHURCH ROAD				100	014	
1 Lancaster Place	Calcs for			Start page no./Revision			
London	VEST GABLE F	ST GABLE RETAINING WALL			20 /P02		
WC2E 7ED	Calcs by NM	Calcs date 30/08/2023	Checked by	Checked date	Approved by	Approved date	
			0.086				
			U.UOU S - Design she	ar resistance ev	roods dosiar	shoar forco	
Horizontal reinforcement par	allel to face of s	tem - Section 9	9 6		CCCUS UCSIGI		
Minimum area of reinforcement	- cl 9 6 3(1)		$ax(0.25 \times A_{sr, prov})$	$0.001 \times t_{stem} = 3$	50 mm²/m		
Maximum spacing of reinforcer	ent = cl 9 6 3(2)	Sex max = 40	0 mm				
Transverse reinforcement provi	ded	12 dia bars	s @ 200 c/c				
Area of transverse reinforceme	nt provided	As prov = π	$\times \phi_{sx^2} / (4 \times S_{sx}) =$	= 565 mm²/m			
	PASS - Area of	reinforcement	t provided is gr	eater than area	of reinforcem	ent required	
Chack base design at too			5				
Depth of section		h = 500 mr	m				
	0						
Rectangular section in flexure	e - Section 6.1	M - 57 1 k	Nm/m				
Design bending moment combined		WI = 57.1 K	$\frac{1}{1}$	~			
Depth to tension reinforcement		$\mathbf{u} = \mathbf{n} - \mathbf{c}_{\mathbf{b}\mathbf{b}}$	$-\psi_{00}/2 = 417$ III	111			
		$K = IVI / (d^2)$	\times Tck) = U.U11				
		$\mathbf{K}^{*} = (2 \times \eta)$	$\times \alpha_{cc}/\gamma_{C} \times (1 - \lambda)$	$(\delta - K_1)/(2 \times K_2)$)×(λ × (ð - K1)/((2 × K 2))	
		K = 0.207		lo comprossion	roinforcomor	t is required	
Lever arm		$z = \min(0 F)$	K 2 K - N	$\mathbf{K} / (n \times \alpha_{ee} / \alpha_{e})$	$(0.5 \ 0.95) \times d =$	306 mm	
Depth of peutral axis		z = 1111(0.00)	d – z) – 52 mm		, 0.33) × u –	330 mm	
Area of tansion reinforcement r	auirod	$\mathbf{X} = 2.5 \times (0$	(1 - 2) = 32 mm	mm^2/m			
Area or tension reinforcement required		Abb.req = IVI	$7 (1y_0 \times 2) = 332 1$	1111-7111			
Lension reinforcement provided			= 200 C/C	- 1005 mm ² /m			
Area of tension reinforcement provided		Abb.prov = π	× ψbb- / (4 × Sbb)		20 mm2/m		
Minimum area of reinforcement	- exp.9.1N	Abb.min = Ma	$AX(U.26 \times 1 \text{ ctm} / 1 \text{y})$	$(, 0.0013) \times 0 = 0$	28 mm²/m		
Maximum area of reinforcemen	(- CI.9.2.1.1(3)	Abb.max = 0 .	$04 \times n = 20000$	mm²/m			
	DASS Area of	roinforcomon	, Abb.min) / Abb.prov t provided is ar	= U.023	of roinforcom	ont required	
	1 733 - 7100 01	Territoreemen	r provided is gr	Lit	orary item: Rectang	jular single output	
Crack control - Section 7.3							
Limiting crack width		Wmax = 0.3	mm				
Variable load factor - EN1990 -	Table A1.1	ψ2 = 0.6					
Serviceability bending moment		MsIs = 41.9	kNm/m				
Tensile stress in reinforcement		σ_s = M _{sis} / ($(A_{bb,prov} \times z) = 10$	5.3 N/mm ²			
Load duration		Long term					
Load duration factor		$k_t = 0.4$					
Effective area of concrete in ter	sion	Ac.eff = min	(2.5 × (h - d), (h	- x) / 3, h / 2)			
		Ac.eff = 149	292 mm²/m				
Mean value of concrete tensile	strength	$f_{ct.eff} = f_{ctm} =$	= 2.9 N/mm²				
Reinforcement ratio		$\rho_{p.eff} = A_{bb.p}$	orov / Ac.eff = 0.007	7			
Modular ratio		$\alpha_{e} = E_{s} / E_{o}$	cm = 6.091				
Bond property coefficient	Bond property coefficient		k1 = 0.8				
Strain distribution coefficient	Strain distribution coefficient		k2 = 0.5				
		k3 = 3.4	k ₃ = 3.4				
		k ₄ = 0.425					
Maximum crack spacing - exp.7	.11	Sr.max = k3 >	$\mathbf{C}_{\mathrm{bb}} + \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_2$	$4 \times \phi_{\text{bb}} / \rho_{\text{p.eff}} = 6$	59 mm		
Maximum crack width - exp.7.8		Wk = Sr.max 3	$\times \max(\sigma_s - k_t \times (1 + s_s))$	fct.eff / ρ p.eff) × (1 +	$\alpha_{e} \times \rho_{p.eff}$), 0.6	$\times \sigma_s$) / Es	
		Wk = 0.208	mm				

Archael Barclay Partnership	Project 9 WOODCHURCH ROAD			Job no. 10014 Start page no /Revision			
1 Lancaster Place	Calce for						
London	W	WEST GABLE RETAINING WALL			21 /P02		
WC2E 7ED	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	NM	30/08/2023	chicollou by		, pprovod by		
	· · ·	Wk / Wmax =	0.694		•	•	
		PASS	- Maximum c	rack width is les	ss than limiting	g crack width	
Rectangular section in shear	- Section 6.2						
Design shear force		V = 134.4 k	V = 134.4 kN/m				
	C _{Rd,c} = 0.18 / γc = 0.120						
		k = min(1 +	√(200 mm / d), 2) = 1.693			
Longitudinal reinforcement ration	D	рі = min(Аы	o.prov / d, 0.02) :	= 0.002			
		Vmin = 0.035	5 N ^{1/2} /mm × k ^{3/}	² × fck ^{0.5} = 0.422 1	V/mm ²		
Design shear resistance - exp.	6.2a & 6.2b	$V_{\text{Rd.c}}$ = max($C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{\text{ck}})^{1/3}$, v_{min}) × d					
		V _{Rd.c} = 176	kN/m				
		$V / V_{Rd.c} = 0$).764				
PASS - Design shear resistance exceeds design she				n shear force			
Secondary transverse reinfo	rcement to base	- Section 9.3					
Minimum area of reinforcemen	t – cl.9.3.1.1(2)	$A_{bx.req} = 0.2$	× Abb.prov = 20	1 mm²/m			
Maximum spacing of reinforcement – cl.9.3.1.1(3)		b) Sbx_max = 450 mm					
Transverse reinforcement provided		12 dia.bars @ 200 c/c					
Area of transverse reinforcement provided		$A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 565 \text{ mm}^2/\text{m}$					
	PASS - Area of	reinforcement	provided is c	reater than area	a of reinforcen	nent required	

APPENDIX C PROCEDURE FOR MONITORING ADJACENT BUILDINGS

The contractor will monitor the adjacent structures and party walls for movements throughout the principal demonstration & construction works and, in the event of any movements exceeding the agreed target levels the method of works will be reviewed and altered as necessary.

- The proposed monitoring points will be agreed with the contractor
- The Green/Amber trigger level will be 5mm
- The Amber/Red trigger level will be 10mm

The monitoring regime and frequency proposed is:

Activity	Frequency of monitoring
Site set up	Bi-Weekly
Demolition & Excavation	Weekly
Underpinning & Ground Works	Weekly
Principal Construction Works	Bi-Weekly

Target monitoring will monitor the party walls and front and rear elevations with an accuracy of +/- 2mm. The results of the monitoring are to be recorded and issued by email to the project engineer, CA and engineers for the adjoining properties, on the day that the results are taken. The results are to be presented both in table and graphical form with the graphs for each point plotting the readings taken against time. The following actions will be taken if the trigger levels are exceeded:

Trigger Level	Action
Green/Amber	Immediately notify the engineers.
	Increase frequency of monitoring to a daily basis.
Amber/Red	Contractor to stop all works and immediately notify the engineer
	Contractor and project engineer to put forward proposals, such a
	propping, to limit further movement to an acceptable level.

rs. as additional

APPENDIX D PROCEDURES FOR CONTROL OF NOISE, DUST & NUISANCE

To control the disturbance due to noise and vibrations, all works on site will be restricted to the hours of Monday to Friday 8am to 6pm, Saturdays 8am to 1pm. Works that create excessive noise and/or vibration are prohibited, as are any works on Sundays and the bank holidays. The contractor employed to undertake the work will be a member of the Considerate Constructor Scheme. As the site does not appear in the designated neighbourhood areas of London, the basement developers need to consult with the neighbours affected by basement development. Where affected neighbours would like no noisy construction work to take place on Saturday developers should agree to this as part of their construction management plan.

Appropriate measures will be taken to keep dust pollution to a minimum. These measures are compliant with Camden Planning Guidance -Basements dated 2021. Such measures will include the use of water to suppress dust and soil being excavated from basement level, covers for conveyors and skips, and barriers installed around dusty activities that are undertaken externally.

All work will be carried out in accordance with BS 5228-1:2009 and BS 5228-2:2009. All works will employ Best Practicable Means as defined by section 72 of the Control of Pollution Act 1972 to minimise the effects of noise and vibration. All means of managing and reducing noise and vibration which can be practicably applied at reasonable cost will be implemented.

The following measures will be taken:

- Consultation/ communication with neighbours/affected others prior to the start of the works.
- Use only of modern, quiet and well-maintained equipment, all of which will comply with the EC Directives and UK regulations set out in BS 5228-1:2009
- Use of electrically powered hand tools rather than air powered tools and a compressor will be used for to the minimum extent . practicable
- Avoidance of unnecessary noise (such as engines idling between operations or excessive engine revving, no radios, no shouting)
- Use of screws and drills rather than nails for fixing hoarding.
- Careful handling of materials, so no dropping off materials from an excessive height (no more than 2m) into skip etc.
- Ensuring that the conveyor is well maintained with rollers in good working order and well oiled.
- Collection /delivery times will be as given in the CTMP

Collection/delivery vehicles will not loiter/wait in the area before the allowed times

- No site run-off of water or mud until the water has been left to settle and is free from particles
- During Demolition:
- Special Care to ensure the site is closed-over
- Dust suppression with water if necessary if needed (recommended)
- Cutting equipment to use water suppressant or local extraction & ventilation

If measures to control dust are unsuccessful works will be stopped and alternative methods proposed and implemented

A detailed CTMP will be prepared by the contractor undertaking the works

APPENDIX E

BIA CHECKLIST USING THE LONDON BOROUGH OF CAMDEN PLANNING GUIDANCE – BASEMENTS JAN 2021 AS REFERENCE

Screening – the screening process (land stability, groundwater flow, surface flow and flooding) is to	
determine whether there is any need for a full BIA	included as
	separate document
	by others
Scoping – the identification of the potential impact of the proposed scheme this is done through the	Included
geological, hydrogeological and hydrological study	
Site investigation and study – desk study, field investigation, monitoring, reporting and interpretation	Included
ground movement potential impact on neighbouring properties, if there is a risk of subsidence this should	
be described using the Burland Scale	
Impact Assessment – evaluating the direct and indirect implications including Flood risk Assessment,	Included
Landscaping, watercourses, Historical Ground information through OS Maps, identification of Aquifers,	
Puilding Pagulations — the submission of building regulations is required with the full details of works	Novt phono dotail
Building Regulations – the submission of building regulations is required with the full details of works	Next priase – detail
	uesign
Detailed site-specific analysis of hydrological and geotechnical local ground conditions	Considered
Analysis of how the excavation of the basement may impact on the water table and any ground water	Considered
flow, and whether perched water is present	
Details of how flood risk, including risk from groundwater and surface water flooding has been addressed	Considered
in the design, including details of any proposed mitigation measures	
Details of measures proposed to mitigate any risks in relation to land instability	Considered
A comprehensive non- technical summary document of the assessments	Included
Identify the location of the development in relation to an aquifer or a water course	Included
Impact on flooding and drainage including measures to reduce the risk of flooding to the proposed	Considered
basement and neighbouring properties	
Appropriate basement construction methods to maintain structural stability of the statutory listed host	Considered
building and neighbouring statutory listed properties	
Details of noise, disruption and vibrations to neighbouring properties would be minimised during the	Considered
construction process	
Programme duration	Considered
Construction vehicles' routing and movements, The number and types of construction vehicles. Site	Considered
access and egress arrangements	

APPENDIX F GEA'S DESK STUDY, GROUND INVESTIGATION, BASEMENT **IMOPACT ASSESSMENT & GROUND MOVEMENT ANALYSIS** (SEPARATE DOCUMENT)