

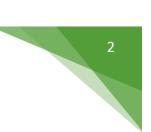
Ground Source Heat Pump System Design

52 Avenue Road,

London,

NW8 6HP

for


52 Avenue Road Ltd

Private & Confidential

Version 4.0

16 August 2023

Contents

1.	Intr	oduction3
2.	Gen	eral Requirements4
2.	1	Roles & Responsibilities4
2.	2	Quality & Standards4
3.	Geo	logy5
3.	1	Summary of Anticipated Geology5
3.	2	Groundwater Assessment & Classification6
3.	3	Estimated Thermal Properties6
3.	4	Mines & Coal Authority Permissions6
3.	5	Other Hazards
3.	6	Barriers to Construction7
3.	7	EA Licencing
4.	Clos	ed Ground Loop Design
4.	1	Borehole Specification
4.	2	System Hydraulic Design9
4.	3	Closed Ground Loop Heat Pump Selection9
4.	4	Coefficient of Performances10
	4.4.	1 Individual COP and SEER10
	4.4.	2 Combined COP and SEER11
4.	5	Borehole Illustration Schematics
5.	Drill	ling Oversight13
5.	1	Inspection of Drilling Logs
5.	2	Inspection of Grout Specification13
5.	3	Soil Sample Inspection13
5.	4	Grout & Sample Analysis13
6.	Geo	logical Maps & Supporting Evidence14

1. Introduction

We have pleasure in providing the Ground Source Heat Pump System Design for the following project,

Project Number	15176596			
Customer Name	52 Avenue Road Ltd.			
Project Address	52 Avenue Road, London, NW8 6HP			
Building Type & Number	12 Residences, Communal Area			
	V1 31/03/2023			
Building Load Schedule & Date	V2 16/05/2023			
Hourly Loads Totals on Ambient	Loop			
Peak Heating Load	115.7 kW			
Annual Heating Load	428,291 kWh			
Peak Cooling Load	87 kW			
Annual Cooling Load	103,100 kWh			
Borehole Geometry	Vertical			
Borehole Layout	Plotted Arrays			
Heat Pump Manufacturer	Carrier			
Heat Pump Model	3 X 30WG 60			
	V1.0 Issue for Comment			
Version Notes	V2.0 Design Refinement			
Version Notes	V3.0 COP Data Added			
	V4.0 Comments Addressed			
Author	Ellis Laird			
	Design Engineer			
	el@geniusenergylab.com			
Reviewer	Chris Davidson – BSc ARCS AIOP CGD (IGSHPA &			
	AEE)			
	Chairman & Technical Director			
	cd@geniusenergylab.com			
Ground Loop Modelling Period	20 years (MCS Minimum)			
Contains British Geological Survey materials © UKRI 2022				
The Service Agreement published at				
https://www.geniusenergylab.com/serviceagreement applies to this document				
Note:				
Any estimations regarding building loads provided by Genius Energy Lab are to be used as				
a guide only, it is the client's responsibility to provide accurate load information in order				
for a design to be warranted.				

2. General Requirements

2.1 Roles & Responsibilities

Organisation or Individual	Role
ТВС	Client Name
ТВС	Main Contractor
Max O'Brien	Project Manager
Chris Davidson, GeniusEnergyLab	Ground Source System Designer
Duncan Rae, GeniusEnergyLab	Geological Lead
Emily Proud, GeniusEnergyLab	Engineering Lead
GLDesign Version 10 Premier Edition	Ground Loop Design Software & Provider
As Appointed by Main Contractor	Drilling Contractor
As appointed by Main Contractor	Sub-Contractor (Internal Works)

2.2 Quality & Standards

During the design and installation of this project all responsible parties shall observe the most up to date versions of the following quality and standards publications which are specifically applicable to ground source heat pump installations and the project:

Publishing Body	Reference & Title
Environment Agency	Environmental good practice guide for
	ground source heating and cooling
IGSHPA	General Code of practice for closed loop
	installations
Microgeneration Certification Scheme (MCS)	MIS 3005: Heat Pump Systems
GSHPA	Vertical Borehole Standard
BDA	Code of Safe Drilling Practice
	Guidance on Managing the Risk of
	Hazardous Gases when Drilling or Piling
	Near Coal

Further publications and standards such as, but not limited to, those pertaining to Health & Safety, Risk Assessments, Method Statements and general on-site work will be applicable and are not excluded by this statement.

3. Geology

3.1 Summary of Anticipated Geology

GeniusEnergyLab has made the following desktop assessment of the anticipated geological conditions at the site. As ever actual conditions can and will vary from those predicted and significant variances should be reported to the designer as soon as possible to assess the need for redesign.

Formation	Classification		Conductivity W/mK	Thickness m	Depth bgl m
London Clay Formation	Slightly calcareous, silty to very silty CLAY, clayey silt and sometimes silt, with some layers of sandy clay		1.8	73	73
Lambeth Group	CLAY, some silty or sar with some sands an gravels		2.2	14	87
Thanet Sand	Homogeneous, bioturbated, glauconitic silty fine-grained SAND with sandy silt,		2.1	3	90
Chalk Group	CHALK with Flints		1.7	180	270
Gault Formation and Upper Greensand	SAND and SANDSTONE, fine-grained, silt, glauconitic, shelly. CLAY or MUDSTONE, glauconitic in part, with a sandy base.		2.4	52	322
Notes					
Local Borehole Re	•	213 m			
Site Height Relative to Datum			45 m OD		
Confidence in Geological Assessment			Good		

3.2 Groundwater Assessment & Classification

Local records indicate the following groundwater conditions are likely at the project location,

Anticipated Groundwater Depth	70 m
Expected Rest Water Level	70 m
Risk of Artesian Conditions	Low
Notes on Artesian Conditions	No artesian conditions plotted on regional groundwater level map
Source Protection Zone	Yes - Zone II
Surface Aquifer Classification	None
Bedrock Aquifer Classification	Principal
Aquifer Vulnerability	Low
Soluble Rock Risk	No
Drilling Requirements	None
Confidence in Groundwater Assessment	Excellent

3.3 Estimated Thermal Properties

By comparing the expected ground conditions with tabulated values, we have arrived at the following estimated Thermal Properties,

Quantity	Estimated Value
Thermal Conductivity	1.80 W⋅mK ⁻¹ to 195m
Thermal Diffusivity	0.09 m ² ·day ⁻¹
Undisturbed Ground Temperature	11.3 °C
Conductivity Test	Required

3.4 Mines & Coal Authority Permissions

A search of the available records has indicated that the site has the following mining history and requirements,

Historic Mining Activity & Type	None
Coal Authority Reporting Area	No
Historic Coal Mining	No
Likely Depth to Seams	N/A
Development High Risk Area	No
Proximity to Mine Access	None
Historic Surface Works	None
Notes	None

3.5 Other Hazards

A search of the available records has indicated that the site may be subject to the following hazards,

Hazard Type		
Unexploded Ordnance Risk	Moderate	
Notes	A UXO Survey is recommended	

3.6 Barriers to Construction

With the information available and the analysis undertaken there appear to be no Geological or Hydro-Geological barriers to construction at the required depths.

3.7 EA Licencing

According to 'The Environment Agency's approach to groundwater protection', February 2018 Version 1.2, closed loop systems are not regulated and do not require a permit. There is no requirement to discuss this closed loop system with the EA.

4. Closed Ground Loop Design

4.1 Borehole Specification

A1 Residence 1 to 12, Communal Areas 30 195 m 6 m, As Per "4.4 Borehole Illustration Schematics" Single 40mm Total Borehole Requirement 5,850 m Status Global Requirements 5,850 m Single 40mm • All bores to be finished with a thermally enhanced grout Minimum conductivity of grout material to be 1.78 W·mK ¹ Ambient System Design Temperatures – Values in Italics are Design Points Heat Pump Load for Heating EWT 15.0°C Heat Pump Load for Heating EWT 25.0°C LWT 20.0°C Heat Pump Load for Cooling EWT 25.0°C LWT 20.0°C Hourly EWT Temperature Over a Year Tourly Date Tourly Date	Array Ref	Properties	No of Bores	Depth	Min Spacing	U-Tube
Global Requirements All bores to be minimum diameter to allow pipe placement All bores to be finished with a thermally enhanced grout Minimum conductivity of grout material to be 1.78 W·mK⁻¹ Ambient System Design Temperatures – Values in Italics are Design Points Heat Pump Source <i>EWT 0.0 °C</i> <i>LWT -3.7 °C</i> Heat Pump Load for Heating <i>EWT 15.0 °C</i> <i>LWT 20.0 °C</i> Heat Pump Load for Cooling <i>EWT 25.0 °C</i> <i>LWT 20.0 °C</i> Hourly EWT Temperature Over a Year Meat Pump Everage EWT <i>Hourly Data</i> 	A1	12, Communal	30	195 m	Borehole Illustration	-
 All bores to be minimum diameter to allow pipe placement All bores to be finished with a thermally enhanced grout Minimum conductivity of grout material to be 1.78 W·mK⁻¹ Ambient System Design Temperatures – Values in Italics are Design Points Heat Pump Source EWT 0.0 °C LWT -3.7°C Heat Pump Load for Heating EWT 15.0°C LWT 20.0°C Heat Pump Load for Cooling EWT 25.0°C LWT 20.0°C Hourly EWT Temperature Over a Year 		· · ·	ment		5,850 m	
 All bores to be finished with a thermally enhanced grout Minimum conductivity of grout material to be 1.78 W·mK⁻¹ Ambient System Design Temperatures – Values in Italics are Design Points Heat Pump Source EWT 0.0 °C LWT -3.7°C Heat Pump Load for Heating EWT 15.0°C LWT 20.0°C Heat Pump Load for Cooling EWT 25.0°C LWT 20.0°C Hourly EWT Temperature Over a Year 						
Heat Pump Source EWT 0.0 °C LWT -3.7°C Heat Pump Load for Heating EWT 15.0°C LWT 20.0°C Heat Pump Load for Cooling EWT 25.0°C LWT 20.0°C Hourly EWT Temperature Over a Year Image EWT Image EWT	AllMir	bores to be finished nimum conductivity	d with a thern of grout mat	nally enhance erial to be 1.7	ed grout 78 W∙mK ⁻¹	
Heat Pump Load for Heating EWT 15.0°C LWT 20.0°C Heat Pump Load for Cooling EWT 25.0°C LWT 20.0°C Hourly EWT Temperature Over a Year Image EWT Hourly Data						.
Heat Pump Load for Cooling EWT 25.0°C LWT 20.0°C Hourly EWT Temperature Over a Year						
Hourly EWT Temperature Over a Year		-				
30 Hourly Data 25 - 26 - 20 -				.5.0 C	2007 20.0	
		· · · · · · · · · · · · · · · · · · ·		ourly Data		
	20 - - - - - - - - - - - - - - - - - - -					

4.2 System Hydraulic Design

Array	Configuration	Dreserties	Pressure Drop		
Ref	Comguration	Properties	Evaporator	Condenser	
A1 Manifold		Residence 1 to 12, Communal Areas	180.5 kPa	155.5 kPa	
Pipework B	Breakdown				
Borehole			PE100 SDR11 - 40 / 32.3		
Borehole t	o Sub Manifolds	PE100 3	DRII - 40 / 32	.5	
Sub Manifo Plant Roor	old to Main Manifold in Main n	PE100 SD11 - 125 / 102.2			
Runs to He	eat Pumps	PE100 SDR11 - 63 / 50.9			
Anti-Freez	e Requirements				
Fluid		Propylene Glycol			
Concentra	tion	22%			
Approxima	te Ground Loop Volume	13,100 litres			
Approxima	ite Anti-Freeze Requirement	3,000 litres			

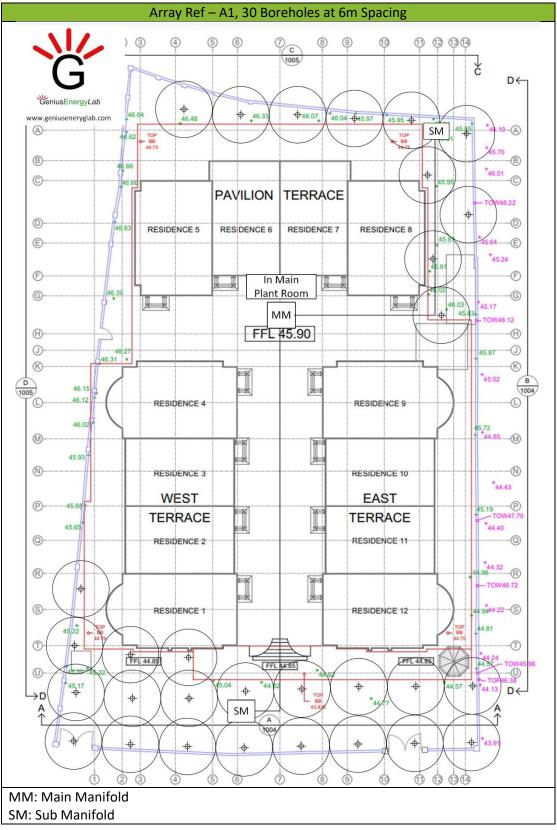
4.3 Closed Ground Loop Heat Pump Selection

Quantity	Value
Evaporator Side	
Peak Flow Rate	6.2 l/s
Pressure Drop	185 kPa
Refrigerant	R-410A
Condenser Side	
Peak Flow Rate	5.6 l/s
Pressure Drop	160 kPa
Refrigerant	R-410A
Provisional Selection	Value
Make	Carrier
Model	30WG 60
Quantity	3

4.4 Coefficient of Performances

4.4.1 Individual COP and SEER

Estimated COP of Specified Heat Pumps at 20 °C EWT						
Heat Pump	LWT	Service	Estimated COP	COP Graph		
WI 14TU	45 °C	House Heating	5.9	Coefficient of performance (incl. proportion of pump output) 10 8 35		
	65 °C	House Hot Water	3.0	6 4 5 10 15 20 25 30 Heat source inlet temperature ["C]		
WI 18TU	65 °C	Communal Hot Water	3.8	Coefficient of performance (incl. proportion of pump output)		
WI 65TU	50°C	Communal Heating/Pool Heating	5.2	Coefficient of performance (incl. proportion of pump output) 10 9 8 7 6 5 4 5 10 15 20 25 30 Heat source inlet temperature ["C]		
SEER of Spec			8.5			
RWEYQ14T9 RWEYQ1079		House Cooling Communal Cooling	7.9			
		from Design Software				
Heating			6.4			
Cooling			9.1			



4.4.2 Combined COP and SEER

Estimated Combined COP of Specified Heat Pumps and GSHP					
Heat Pump	LWT	Service	Combined COP of Two Systems		
WI 14TU	45 °C	House Heating	4.2		
	65 °C	House Hot Water	3.0		
WI 18TU	65 °C	Communal Hot Water	3.4		
WI 65TU	50°C	Communal Heating/ Communal Pool Heating	3.9		
Estimated Combined SEER of Specified VRF and GSHP					
RWEYQ14T9		House Cooling	4.4		
RWEYQ1079		Communal Cooling	4.2		

4.5 Borehole Illustration Schematics

5. Drilling Oversight

5.1 Inspection of Drilling Logs

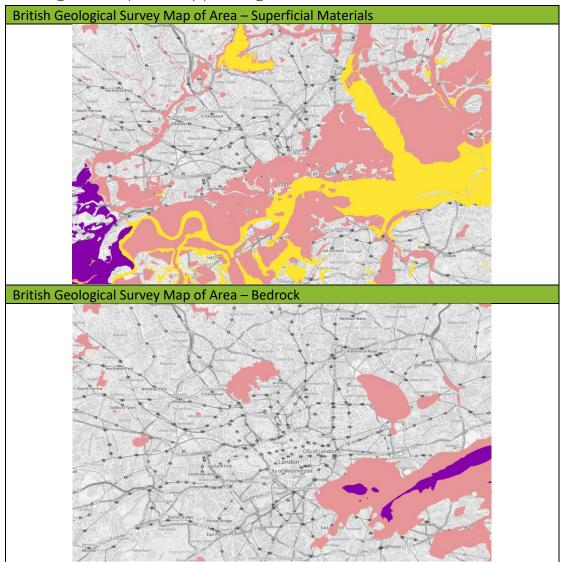
Drilling logs will be kept by the Drilling Contractor in compliance with the standards noted in section 2 above. These will be provided to the Main Contractors Project Manager and Ground Source System Designer as requested in printed type format. These logs will be used to highlight any risk of variation as required to satisfy the Ground Source System Designer that the system design as outlined above is valid. Upon discovery of any significant variation from the first borehole subsequent drill logs may be requested in a similar manner. If at any time during the drilling operation the drilling contractor believes that successful completion to specified depth is at risk or if any other significant situation should arise the Main Contractor Project Manager will be notified immediately.

5.2 Inspection of Grout Specification

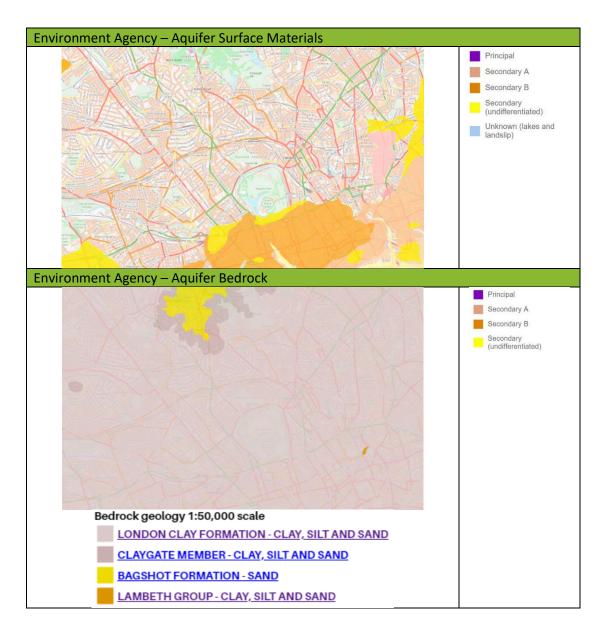
Upon request by the Main Contractor Project Manager the Drilling Contractor will provide a representative sample of the thermally enhanced grout as being used in the actual installation. This sample may be used to physically test the thermal conductivity of the grout mix being employed to verify it meets or exceeds the specification above.

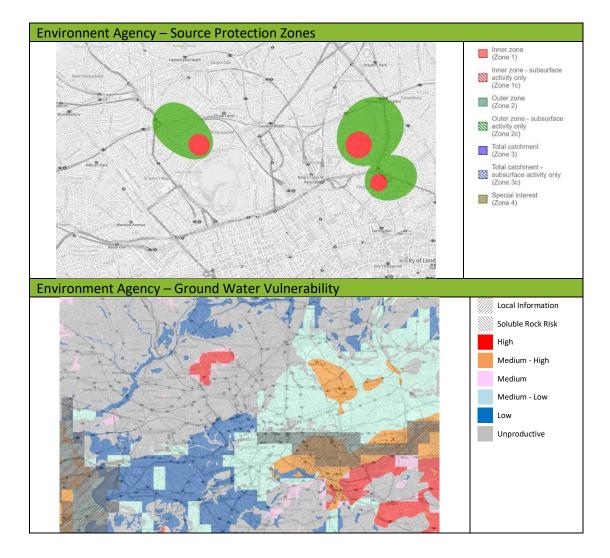
5.3 Soil Sample Inspection

In some circumstances the Main Contractor Project Manager may request the Drilling Contractor to provide representative samples of soil, drilling arisings or samples to verify the drilling log samples above.


5.4 Grout & Sample Analysis

Analysis of soil samples and / or grout samples will be carried out to the appropriate standards by the Main Contractor or Ground Source System Designer.




6. Geological Maps & Supporting Evidence

