61 REDINGTON ROAD HAMPSTEAD

SURFACE FLOW AND FLOODING BASEMENT IMPACT ASSESSMENT

MR & MRS BURNS

DOCUMENT REFERENCE: 22023-RP-FRA-01 | C03

Water Environment Limited 6 Coppergate Mews 103 Brighton Road Surbiton London KT6 5NE

Tel: 020 8545 9720

www.WaterEnvironment.co.uk

Author:

Surface Flow and Flooding Basement Impact Assessment

Water Environment was commissioned by Mr & Mrs Burns to investigate the risks and assess the consequences of flooding on the site at 61 Redington Road as well as to develop a Sustainable Drainage Strategy for the proposed development.

Fiona de Mauny
MA MEng (Cantab)
C.WEM MCWIEM

Jole Many

WATER | ENVIRONMENT

Checker: MSc DIC, BSc (Hons) Geol MCIWEM

Guy Laister

Approver: MScEng BScEng (Civil) CEng CEnv C.WEM MCIWEM

Director

auster

for and on behalf of Water Environment Limited

Document Version History

Rev	Date	Comments	Auth	Chck	Appr
P01	24/03/2022	First issue for design team comment	FdM	LS	GL
C01	01/04/2022	Issue for planning	FdM	LS	GL
C02	22/04/2022	Revision for updated plans	FdM	CB	GL
C03	04/05/2023	Revision for updated plans	AMG	FdM	GL

Copyright © Water Environment Limited. No part of this document may be distributed, copied, adapted or transmitted in any form, without prior permission from Water Environment Limited.

CONTENTS

No	on-Technical Summary	v
Ab	breviationsv	ii
1	Introduction	1
	General Information	1
	Scope of Study	1
	Authors	1
	Sources of Information	2
2	Description of Development	3
	Location	3
	Existing Site	3
	Proposed Development	4
3	Desk Study – Surface Flow and Flooding	5
	Geology	5
	Hydrogeology	5
	Historical Records of Flooding	6
	Flooding from Rivers and the Sea	6
	Flooding from Surface Water	7
	Flooding from Sewers	8
	Flooding from Groundwater	8
	Flooding from Other Sources	9
	Climate Change	0
	Impact on Flood Risk Elsewhere	0
		1
4	Screening – Surface Flow and Flooding1	2
	Surface Water and Flooding	2
_	Non-Technical Summary of Screening Process	2
5	Scoping – Surface Flow and Flooding1	3
6	SuDS Assessment	4
	Policy1	4
	Site Runoff Characteristics	4
	Sustainable Drainage Principles	4
	Discharge Strategy	6
_	Proposed Surface Water Drainage System	0
7	Impact Assessment – Surface Flow and Flooding	8
Ap	opendix A : Desk Study References	
Ap	opendix B : Site Specific Data	
Ap	opendix C : Existing and Proposed Drawings	

Appendix D : Calculations

List of Figures

Figure 1: Location of proposed development	3
Figure 2: British Geological Survey Recorded Geology	5
Figure 3: Hampstead Area Catchment Analysis	7
Figure 4: Gov.UK Risk of Flooding from Surface Water map	8
Figure 5: Gov.UK Risk of Flooding from Reservoirs map	9
Figure 6: SuDS Hierarchy	15

List of Tables

able 1: Summary of proposed SuDS with reference to SuDS hierarchy	16
able if building of proposed bubb with reference to bubb merarchy minimum	10

NON-TECHNICAL SUMMARY

The proposed development is located at number 61 Redington Road, Hampstead, as shown on the location plan below.

The current property is arranged over four floors, including a lower ground floor, and is currently subdivided into three separate residential properties. The proposed development involves internally refitting the property, which would be returned to a main dwelling with a single one-bedroom flat at lower ground floor. The proposals involve the excavation of the lower ground floor by approximately 1.3m at the rear and approximately 2m to the front. The lower ground floor will also be extended to the rear (horizontally) by approximately 4m. The excavation extends a further approximately 3.5m for the proposed terrace area.

The following assessments are presented within this report:

- Surface Flow and Flooding Desk Study
- Surface Flow and Flooding Basement Impact Screening
- Surface Flow and Flooding Basement Impact Assessment Scoping
- Additional Evidence/Assessments
 - Flood Risk Assessment
 - Surface Water Drainage and SuDS Assessment
- Surface Flow and Flooding Basement Impact Assessment

This assessment does not include consideration of Groundwater Flow or Land Stability, which will be provided by others and, together with this report, will provide an overarching Basement Impact Assessment in accordance with Camden Basement guidance. The assessment is prepared by Water Environment Limited. Water Environment staff are skilled in the assessment of flood risk and groundwater, and are members of the Institution of Civil Engineers (ICE) and the Institute of Water and Environmental Management (CIWEM). All Water Environment Directors and Associates are Chartered Members of the ICE or CIWEM or both.

A Flood Risk Assessment has been conducted and concluded that there are no significant risks of flooding to the site from any source, and that the proposed development will not affect the risk of flooding elsewhere.

The Basement Impact Assessment (BIA) has identified negligible flood risk for the proposed development.

The assessment has identified the following potential hydrological impacts:

- Potential change in runoff rates due to an increase in the proportion of hard paved surfaces • on the site. This requires a SuDS strategy to ensure there is no impact on downstream runoff flows or water quality.
- Potential changes in runoff due to climate change over the lifetime of the development. This requires a SuDS strategy to ensure there is no impact on downstream runoff flows or water quality.

A SuDS assessment has been conducted and concluded that, although surface water runoff rates will increase following development without mitigation, they can be attenuated to current, present day rates and discharged to existing connections. The detailed design of the drainage system should be undertaken in accordance with the recommendations in this BIA.

The BIA concludes that subject to compliance with recommendations detailed herein, the residual impacts on the wider hydrological environment are negligible.

CIFE WATER | ENVIRONMENT

ABBREVIATIONS

Acronym	Definition
AOD	Above Ordnance Datum
BGL	Below Ground Level
BGS	British Geological Survey
BIA	Basement Impact Assessment
DEFRA	Department for Environment Food and Rural Affairs
DTM	Digital Terrain Model
EA	Environment Agency
FEH	Flood Estimation Handbook
FRA	Flood Risk Assessment
LASOO	Local Authority SuDS Officer Organisation
LBC	London Borough of Camden
Lidar	Light Detection and Ranging
LLFA	Lead Local Flood Authority
LPA	Local Planning Authority
NPPF	National Planning Policy Framework
PFRA	Preliminary Flood Risk Assessment
PPG	Planning Practice Guidance
SFRA	Strategic Flood Risk Assessment
SuDS	Sustainable Drainage Systems
SWMP	Surface Water Management Plan

1 INTRODUCTION

General Information

- 1.1 The purpose of this assessment is to consider the effect on surface flow and flooding of the proposed basement extension at 61 Redington Road in Hampstead, London, NW3 7RP.
- 1.2 The existing property at 61 Redington Road is arranged over four floors including an existing lower ground floor (the basement). The property contains three separate residential units, each unit arranged over two or more floors. The proposal is to convert the building to form one family dwelling and a self-contained flat at lower ground floor level. This will involve excavation at basement level to increase floor to ceiling height, and rear extensions to enhance the appearance of the rear elevation.
- 1.3 As a result of the proposals, the current lower ground floor extent will increase, and will extend further below ground.

Scope of Study

- 1.4 The approach follows the procedure adopted by the London Borough of Camden (LBC) for the assessment of basements and lightwells. This report covers the 'Surface Flow and Flooding' elements of the basement impact assessment and is divided into four stages: Desk Study; Screening; Scoping; and Impact Assessment. The structure of this assessment is guided by Camden Basement guidance¹ and the Basement Impact Assessment (BIA) pro forma.
- 1.5 Whilst this report does include consideration of geology and below ground flows as part of the overall assessment of flood risk, the formal 'Subterranean (groundwater) Flow' and 'Land Stability' sections of the BIA will be completed by others.
- 1.6 The study includes a Flood Risk Assessment (FRA) and Sustainable Drainage Systems (SuDS) Assessment as part of the report. The scope of the FRA (see Chapter 3) and SuDS Assessment (see Chapter 6) is as follows:
 - To provide a flood risk assessment for the site compliant with the guidelines set out in the National Planning Policy Framework (NPPF) and associated Planning Practice Guidance (PPG);
 - To assess the risk and implications of flooding on the site including flooding from tidal, fluvial, groundwater, surface water runoff and artificial sources;
 - To provide advice on the site design that will ensure safe operation of the site in any flood event;
 - To consider the pre- and post-development drainage systems and calculate pre- and postdevelopment runoff rates and volumes based on standard methodologies; and
 - To provide advice and guidance on the management of surface water runoff at the site to
 ensure the risk of surface water flooding on the site and on nearby sites does not increase
 post-development.

Authors

1.7 Water Environment Limited has over 18 years of experience of consulting engineering in the water sector including flood risk assessment and drainage system design. Water Environment

¹ London Borough of Camden, Camden Planning Guidance: Basements, January 2021

staff are skilled in the assessment of flood risk and groundwater, and are members of the Institution of Civil Engineers (ICE) and the Institute of Water and Environmental Management (CIWEM). All Water Environment Directors and Associates are Chartered Members of the ICE or CIWEM or both.

CIFE WATER | ENVIRONMENT

1.8 Water Environment Limited is supplying the assessment covering Surface Water and Flooding for the Basement Impact Assessment.

Sources of Information

- 1.9 Baseline data have been drawn from the following sources:
 - Current and historical Ordnance Survey mapping;
 - Geological mapping and hydrogeological data taken from the British Geological Survey Geology of Britain, BGS Hydro and open data Web Map Services;
 - Site ground investigation undertaken on 28th February 2022 by Ground and Water;
 - Hydrological information from the Flood Estimation Handbook (FEH) web service;
 - Flood risk mapping from the UK government Environmental Open Data Web Map Services and environmental information from DEFRA's Magic Map;
 - LiDAR ground level information data from the Environment Agency;
 - LBC Strategic Flood Risk Assessment² (SFRA), Preliminary Flood Risk Assessment³ (PFRA) and Floods in Camden Report⁴;
 - LBC Planning Guidance (CPG) Basements⁵, Local Plan Policy A5 and Camden Geological, Hydrogeological and Hydrological Study⁶ (GHHS); and
 - LBC Audit Process Terms of Reference.

² URS, London Borough of Camden SFRA, July 2014

³ Drain London/London Borough of Camden, Preliminary Flood Risk Assessment, v0.2, April 2011

⁴ London Borough of Camden, Floods in Camden Report of the Floods Scrutiny Panel, June 2003

⁵ London Borough of Camden, Camden Planning Guidance: Basements, January 2021

⁶ London Borough of Camden, Camden geological, hydrogeological and hydrological study – Guidance for subterranean development, Issue 01, November 2010

2 DESCRIPTION OF DEVELOPMENT

Location

2.1 The proposed development is located on Redington Road in Hampstead. The property is located on the western side of the road opposite the junction with Templewood Avenue as shown in Figure 1.

Figure 1: Location of proposed development

2.2 The site is located to the west of Hampstead. The red line boundary coincides with the property boundary, and the site is bounded by other residential properties on all sides, with Redington Road to the front (northeast).

Existing Site

- 2.3 The site is currently occupied by the property at 61 Redington Road. The existing accommodation is arranged over four floors, including lower ground floor, and is currently subdivided into three separate residential properties.
- 2.4 MIJA Survey Limited undertook a topographic survey of the site in December 2021. The survey shows that the site slopes away from the road with maximum site levels of 98.89m AOD in the northern corner. Spot levels at the drive entrances show that there is a slope up to the property boundary from the road of around 100 mm before levels fall away.
- 2.5 The garage driveway falls to a lower ground level of 96.34m AOD, which is approximately 1.4m below the driveway entrance level of 97.83m AOD. There is a slot drain at the garage entrance to collect surface water runoff. The driveway is enclosed by retaining walls, and the remainder of the front garden is at a level of between 98.47m AOD and 98.89m AOD. The front garden is mostly gravel and paving.

2.6 The survey shows steps leading up into the property at ground floor level with the top step at 98.81m AOD. Paving leads along the north-western edge of the property, providing access to the rear garden, at a level falling from 98.29m AOD to 96.75m AOD. A rainwater downpipe directs roof runoff into a gully.

(1 —

WATER | ENVIRONMENT

- 2.7 To the rear of the property, ground levels fall from 96.56m AOD at the rear of the house to 95.86m AOD in the southern corner of the garden. The majority of the rear garden is laid to lawn, however there is an area of paving adjacent to the house on the southern side. Steps lead down from this paving to the lower-ground floor level.
- 2.8 The building survey indicates that at present the lower ground floor finished floor level varies from 96.14m AOD to the rear and 97.03m AOD to the front of the building. The ground floor level is 98.95m AOD, with first and second floor at 102.27m AOD and 105.42m AOD respectively.

Proposed Development

- 2.9 The proposed development involves an internal refit of the building such that the property would be sub-divided into two- a main family dwelling and single flat. The flat would be fully contained within the basement; with access from the side of the house at lower-ground floor level (95.85m AOD). The proposed development reduces the number of residential units on site from three to two.
- 2.10 The proposals include extension of the basement to the rear and would deepen the basement such that the finished floor levels would be 95.40m AOD to the rear and 95.40m AOD to the front. This would require a lowering of the existing basement by approximately 800mm, with the final base of the structure being at approximately 94.80m AOD.
- 2.11 The footprint of the building would also be extended to the rear at lower ground floor, with the first and second floors being extended over the existing building footprint.

WATER | ENVIRONMENT

3 DESK STUDY – SURFACE FLOW AND FLOODING

Geology

3.1 According to the 1:50,000 scale BGS mapping, the site appears to be located above the Claygate Member. The lower boundary of the Bagshot Sand lies uphill, 100m to the northwest, while the lower boundary of the Claygate Member is 100m to the southeast. The geology beneath the Claygate Member is London Clay. The geology is shown in Figure 2.

Figure 2: British Geological Survey Recorded Geology

- 3.2 There are no recorded superficial deposits at the site or nearby.
- 3.3 Whilst the BGS mapping provides an excellent resource for understanding the likely geology and general geological sequence within an area, this is not intended to be site specific and therefore on-site ground investigation is necessary to provide further information on the geology encountered directly beneath the site.
- 3.4 A site ground investigation was undertaken on 28th February 2022 and comprised of one borehole and two window samples. The ground investigation found that the geology at the site was Made Ground over London Clay, and did not encounter the Claygate Member at the site location. A 300mm thick layer of Head Deposits was encountered. The borehole did not encounter the deeper formations at the end depth of 8.45m BGL. All sub-surface strata were classified as CLAY.

Hydrogeology

3.5 The BGS 1:625,000 hydrogeological mapping defines the Bagshot Sand (as part of the Bracklesham/Barton Group) as a moderately productive aquifer, and the Claygate Member (as part of the Thames Group) as rock with essentially no groundwater.

- 3.6 The GHHS Figure 8 indicates that the site lies over a Secondary A Aquifer. The extent of this aquifer is defined by the areas where the Claygate Member and Bagshot Sand are the shallowest rock formations. The Claygate Member is defined as "Clay, Silt and Sand" and may be permeable in locations where the sand is dominant. According to the GHHS, Hampstead is one of these locations.
- 3.7 According to DEFRA's Magic Map, the Secondary A Aquifer is a minor bedrock aquifer with medium vulnerability (the aquifer has high vulnerability to the north and east). The Aquifer is not designated as a groundwater body under the Water Framework Directive (WFD), and there are no associated groundwater Source Protection Zones (SPZ).
- 3.8 No groundwater was encountered during the site ground investigation, which was undertaken following a month in which 153% of the average February rainfall was recorded across the UK⁷. The borehole and trial pits found that the site is located over London Clay. Despite published geological and hydrogeological mapping, the Claygate Member and Bagshot Sand were not encountered during the site specific ground investigation. Seepage was noted within the borehole in the London Clay at around 6m BGL, and within a foundation excavation trial pit at around 0.7m BGL, but these are not considered to form part of any groundwater body.

Historical Records of Flooding

3.9 According to the available datasets, the site is not recorded as having flooded in the past from any source.

Flooding from Rivers and the Sea

- 3.10 The site is located within Flood Zone 1. The nearest fluvial watercourse with associated Flood Zone Mapping is the River Brent, located nearly 3km to the north-west. This is also the nearest classified river under the WFD.
- 3.11 The closest surface watercourses to the site are the stream on West Heath, which flows in a northerly direction and is located 600m north of the site, and the streams that feed Hampstead Ponds, which flow east and then south, from a point 1.2km to the north-east of the site. The catchment watersheds for these watercourses pass along West Heath Road, approximately 300m north of the site, and along Hampstead Grove and Holly Hill, west of Heath Street, approximately 700m east of the site. The site is therefore not at risk of flooding from these streams.
- 3.12 According to the Flood Estimation Handbook (FEH) web mapping service, the site lies towards the head of the natural catchment that reaches 0.5km² in size at West Hampstead fire station. The site is approximately 750m north of this location. Nineteenth century historical mapping from Vision of Britain shows a stream rising slightly to the west of this location, south of Mill Lane near where Sumatra Road now lies. The watershed is a further 300m north of the site.
- 3.13 Although Figure 11 of the GHHS shows the head of a historical tributary of the Tyburn running along the south side of the current location of Redington Road, there is not currently any watercourse at this location. The site lies close to the watershed of this catchment and is not at significant risk of flooding from this source.
- 3.14 The natural drainage catchments were extracted by analysing the Environment Agency 2m LiDAR for the area and are presented in Figure 3. The analysis agrees well with Figure 14 of the GHHS (for the Golders Hill Chain and Hampstead Chain catchments) and confirms the assessment that

⁷ https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/summaries/uk_monthly_climate_summary_202202a.pdf

there is no risk of flooding from fluvial sources due to the location of the site close to the natural catchment watershed for the area.

🛛 💳 WATER | ENVIRONMENT

Figure 3: Hampstead Area Catchment Analysis

3.15 The site is not at risk of flooding from rivers or the sea.

Flooding from Surface Water

- 3.16 Flooding from surface water arises during intense rainfall events when flood waters are unable to infiltrate into the ground or discharge into local ditches or artificial drainage infrastructure. In an urban environment, the risk of flooding from surface water and from overloaded sewers is closely related, and both are included in the relevant surface water flooding datasets. Flooding events are typically of short duration (unless there is a drainage system blockage), but can be severe.
- 3.17 According to the GHHC Figure 15 historical mapping figure, the site is not recorded as being on a road that has flooded in the past or is at potential risk of surface water flooding. Templewood Avenue and Templewood Gardens are recorded to have flooded in 2002, however, Redington Road was not flooded, and this is consistent with the gradients in the area which would direct flow towards the natural valley base as shown in Figure 3. The site is not in a Critical Drainage Area.
- 3.18 The Gov.UK Risk of Flooding from Surface Water (RoFSW) map, presented in Figure 4, shows that the site, including Redington Road, is not at risk of flooding from surface water in the 0.1% annual exceedance rainfall event. Whilst flooding is shown within roads to the south of the site, including Templewood Gardens and to the rear of properties on Templewood Avenue, and at the junction of Redington Road and Redington Gardens, due to local topography the site itself is not shown to be at risk.

3.19 Access to land at less than 0.1% annual chance of flooding is available north along Redington Road or Templewood Avenue, and in multiple directions thereafter including east into Hampstead.

🛛 💳 WATER | ENVIRONMENT

3.20 Taking account of all sources of information, it is concluded that the site is not at significant risk of flooding from surface water.

Figure 4: Gov.UK Risk of Flooding from Surface Water map

Flooding from Sewers

- 3.21 Sewer flooding generally results in localised short term flooding caused by intense rainfall events overloading the capacity of sewers. Typically, flooding would be expected to be similar and scale and hydraulics to surface water flooding.
- 3.22 Thames Water has confirmed that there have been no records of flooding at 61 Redington Road as a result of surcharging public sewers. The asset location information indicates that there is a public combined sewer running south-east along Redington Road, at a depth of 5.32m at the junction with Templewood Avenue. The invert level of this pipe is 91.98m AOD, over 3.4m below the lower ground floor finished floor level in the proposed extension of 95.40m AOD. A surcharge depth of at least 3.5m would be required to present a risk of flooding to the basement from sewers.
- 3.23 The proposed development is not at significant risk of flooding from sewers.

Flooding from Groundwater

3.24 The site ground investigation found that the site is located on Made Ground over a thin layer of Silt Head Deposits over London Clay. The geology at the site is generally impermeable. Groundwater was not encountered although seepage was observed at shallow depths in the London Clay. The site investigation was undertaken following prolonged heavy rainfall in the

preceding month, with three named storms passing in the preceding week. The seepage is not likely to be the result of the presence of a significant body of groundwater.

🛛 💳 WATER | ENVIRONMENT

- 3.25 The proposed basement is not at significant risk of flooding due to groundwater within the subsurface strata. However, as recommended in the geotechnical report, the basement should be protected from ingress of perched groundwater from the surrounding unproductive strata, which is a standard precaution in basement construction.
- 3.26 The site lies around 100m from the potential spring line that occurs at the base of the Bagshot Sand. The site is downhill in relation to the potential spring line, and therefore groundwater emerging from the base of the Bagshot Sand could be expected to pass the site. However, slopes in the area are such that this would generally be expected to flow overland without ponding, either being collected into highway or local drainage, or following the pathways indicated by the RoFSW map.
- 3.27 The proposed development is not at significant risk of flooding from groundwater.

Flooding from Other Sources

3.28 According to the Gov.UK long term reservoir flood extents, presented in Figure 5, the site is not at risk of flooding as a result of reservoir failure on either a dry day or in combination with fluvial flooding.

Figure 5: Gov.UK Risk of Flooding from Reservoirs map

3.29 The site lies outside the catchment areas of the various ponds on Hampstead Heath as shown in Figure 3. In addition, with the exception of the pond at Vale of Health, all of the ponds lie at a lower elevation than the general site level of 95m AOD. The Vale of Health pond is at 105m AOD, however any overtopping would pass east towards Hampstead Ponds and would not flow towards the site.

3.30 Likewise, there is a waterbody in the area surrounded by Whitestone Walk, Heath Street and West Heath Road that contains a waterbody (Whitestone Pond). This is at a level of 133m AOD, and is located on the watershed. The LiDAR analysis suggests that if this pond overtopped water would flow west to the West Heath catchment, or potentially east towards Vale of Health. The LiDAR suggests it is extremely unlikely this pond would discharge southwest towards the site, due to the watershed on the south side of West Heath Road, however if it did, the flow path would travel down Heysham Lane and Redington Gardens, crossing Redington Road 100m southeast of the site, where ground levels are around 3m lower. Due to the local gradients, it is not considered that the site is at significant risk of flooding from Whitestone Pond.

U 두 WATER | ENVIRONMENT

- 3.31 There are no other surface waterbodies in the area that could present a risk of flooding due to overtopping or embankment failure.
- 3.32 There are no other sources of flooding that present a risk to the site.

Climate Change

3.33 The projected impacts of climate change are likely to cause long term variations in the probability and risk of flooding. Risk of flooding from groundwater is generally likely to be reduced due to reduced winter rainfall and a move to more intense summer storms which cannot infiltrate into the ground, but risks from other sources are likely to increase. This will affect the site in terms of the likelihood of flooding from surface water and this has been taken into consideration throughout this assessment in accordance with the latest government guidance.

Impact on Flood Risk Elsewhere

- 3.34 In order for there to be a potential impact on the risk of flooding elsewhere, there must be a shared pathway between any potential off-site receptor and the proposed development site. Since the site is not at significant risk of flooding from rivers, surface water, sewers, groundwater or artificial waterbodies, there is no evidence of any pathway for a direct impact on flood risk elsewhere to occur as a result of development occupying flood storage or obstructing flood flows.
- 3.35 The only means for impacts on flood risk to occur is therefore where the source of flooding could be affected by the proposed development. In this case, the only sources that could be affected are surface water during intense rainfall event by increasing rates and volumes of direct runoff, or the creation of a groundwater flood risk due to obstruction of groundwater movement.
- 3.36 There is a potential for peak surface water runoff flows and volumes of runoff from the site to increase where proposed development increases the impermeable areas on the site or reduces the critical drain time. According to the topographic survey, the existing impermeable area on the site is 366m², formed of 241m² roof area and 125m² paved area. Following the proposed development, the combined area of roof and lightwell will occupy 304m². The driveway will remain, with a reduced area of 47m² due to the proposed change in the location of the garage entrance. The paving to the side of the house will be extended across the front of the property and to a ground level terrace area to the rear of the property, occupying 101m², and a lower-ground level terrace is proposed, occupying a total area of 58m². Consequently, the total area of impermeable surfaces on the site will increase to 510m², an increase of 39%.
- 3.37 It is a requirement of CBC policy that all development includes sustainable drainage systems (SuDS) to ensure that rates of runoff from the site are not increased following development. As a result of compliance with this policy, there will be no adverse impact on the sewer network or downstream flood risk as a result of the proposals. In addition, national policy dictates that development should consider the effects of future climate change within the proposals.

WATER | ENVIRONMENT

3.38 The proposed development is not expected to generate any additional risk of groundwater flooding, since the increased depth of the basement does not result in any change in the strata that the basement would occupy. Both the existing basement and proposed basement extension are expected to be wholly within London Clay. Further, the site ground investigation found no evidence of significant groundwater flows in the sub-surface strata.

Summary of Flood Risk

- 3.39 The site is not at significant risk of flooding from any source.
- 3.40 The proposed basement extension will not increase the risk of groundwater flooding elsewhere due to the underlying ground conditions on site, which consist of non-water bearing strata, as shown by the site ground investigation.
- 3.41 There is a risk that the development could affect the risk of flooding downstream due to increased rates of runoff arising from increased proportions of man-made surfaces on the site and the future effects of climate change. It is therefore necessary to undertake a drainage assessment for the proposed development.

WATER | ENVIRONMENT

4 SCREENING – SURFACE FLOW AND FLOODING

Surface Water and Flooding

Question	Response	Details
1. Is the site within the catchment of the ponds chains on Hampstead Heath?	No	As detailed within Paragraph 3.14 and Figure 3
2. As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run-off) be materially changed from the existing route?	No	The site drainage will not materially alter following development. The number of bedrooms will reduce following development from 9 to 6 and therefore foul flows to existing connections are expected to reduce.
3. Will the proposed basement development result in a change in the proportion of hard surfaced / paved external areas?	Yes	The proportion of hard surfaces is anticipated to increase following development. In addition, there is an anticipated increase in runoff rates due to climate change.
4. Will the proposed basement result in changes to the profile of the inflows (instantaneous and long-term) of surface water being received by adjacent properties or downstream watercourses?	Yes	The increase in hard surfaces proposed on the site could result in changes to the surface water runoff profiles from the site.
5. Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses?	No	The site drainage will not materially alter following development. Foul flows to the combined sewer will reduce.
6. Is the site in an area identified to have surface water flood risk according to either the Local Flood Risk Management Strategy or the Strategic Flood Risk Assessment or is it at risk from flooding, for example because the proposed basement is below the static water level of nearby surface water feature.	No	No

Non-Technical Summary of Screening Process

- 4.1 The screening process identifies the following issues to be carried forward to scoping for further assessment:
 - Potential change in runoff rates due to an increase in the proportion of hard paved surfaces on the site. This requires a SuDS strategy to ensure there is no impact on downstream runoff flows or water quality.
 - Potential changes in runoff due to climate change over the lifetime of the development. This requires a SuDS strategy to ensure there is no impact on downstream runoff flows or water quality.
- 4.2 The other potential concerns considered within the screening process have been demonstrated to be not applicable or not significant when applied to the proposed development.

CIEE WATER | ENVIRONMENT

5 SCOPING – SURFACE FLOW AND FLOODING

- 5.1 The following issues have been brought forward from the Screening process for further assessment:
 - Potential change in runoff rates due to an increase in the proportion of hard paved surfaces on the site.
 - Potential changes in runoff due to climate change over the lifetime of the development.
- 5.2 The proposed development will increase the impermeable areas on the site. The site drainage will not materially alter following development. However, in accordance with current policy, new development should consider increases in runoff both due to increases in hard surfaces, and accounting for climate change over the lifetime of the development.
- 5.3 A SuDS assessment has therefore been completed to address these two issues.

- WATER | ENVIRONMENT

6 SUDS ASSESSMENT

Policy

6.1 Camden policy only requires a full SuDS strategy at planning application stage for major developments and / or development located in a local flood risk zone. The Camden Water and Flooding CPG states that:

"All developments must not increase the risk of flooding [and] Developments are required to utilise Sustainable Drainage Systems (using the drainage hierarchy) to achieve greenfield runoff rates, where feasible"

- 6.2 Flood risk assessments are required for; sites over 1ha, major applications in areas at high risk of flooding, and basement developments on streets with a risk of flooding, where historic watercourses are present, or where there is an elevated risk of groundwater flooding. The proposed development does not fall into any of these categories. However, under the Basements CPG, an assessment of the impact on local drainage and flooding is required.
- 6.3 The Basements CPG states:

"The Council will require an adequate drainage plan and has a preference for the use of Sustainable Urban Drainage Systems (SUDS). Only where this cannot be achieved should surface/ground water be discharged to combined sewers."

Site Runoff Characteristics

- 6.4 Greenfield runoff rates in the 100 year return period event, for the entire site, are 1.4 l/s, calculated using the IH124 calculation method.
- 6.5 Due to the site slope, approximately 43% of the current site area to the rear of the property is prevented from leaving the site by the ground profile and the presence of boundary treatments as shown in the topographic survey. Where runoff does pass the boundary, this is at greenfield rates or higher due to the paved area. Following development, the site area discharging in this direction will reduce to approximately 34%. Runoff in this direction will reduce by around 20% due to the reduction in area.
- 6.6 For the remainder of the site, surface water is assumed to be positively drained. Currently, hard surfaces make up 68% (366m²) of the site drained area of 539m². The gravel area is assumed to be permeable and thus discharges at greenfield rates. The peak runoff rate to the road for the critical storm (5min duration) in the 100 year event is 19.6 l/s.
- 6.7 In the proposed case, the drained area increases to 606m², of which 84% (510m²) is hard paved. For the critical storm, the peak runoff rate in the 100 year event is 24.6 l/s, which increases to 34.4 l/s when including an allowance of 40% for future climate change. This represents an increase of 5.0 l/s (26%) at present day, and 14.8 l/s (76%) in the future due to the impact of climate change.

Sustainable Drainage Principles

- 6.8 The aim of SuDS is to emulate natural drainage processes such that watercourses and storage areas receive the hydrological profiles under which they evolved, and that water quality in local ecosystems is protected or improved. The best practice guide states that SuDS will:
 - Reduce the impact of additional urbanisation on the frequency and size of floods;
 - Protect or enhance river and groundwater quality;

- Be sympathetic to the needs of the local environment and community; and
- Encourage natural groundwater recharge.
- 6.9 Figure 6 shows the hierarchy of SuDS techniques. The SuDS techniques that are proposed to manage surface water for the development will be discussed in relation to this hierarchy.

WATER | ENVIRONMENT

	SUDS Technique	Flood Reduction	Pollution Reduction	Landscape & Wildlife
Most	Green roofs	1	1	✓
Sustainable	Basins and ponds 1. Constructed wetlands 2. Balancing ponds 3. Detention basins 4. Retention ponds	✓	~	~
	Filter strips and swales	✓	✓	✓
	Infiltration devices 5. Soakaways 6. Infiltration trenches and basins	•	✓	✓
	Permeable surfaces and filter drains 7. Gravelled areas 8. Solid paving blocks 9. Porous paviors	✓	~	
Least	Tanked systems 10. Over-sized pipes/tanks	√		
Sustainable	11. Box storage systems			

Figure 6: SuDS Hierarchy⁸

- 6.10 Living roofs are not feasible for the development due to the pitched roof construction. In order to provide source control and retain rainwater on site for reuse, it is strongly recommended that any associated landscaped areas are designed as bioretention areas, tree pits and /or rain gardens to retain and utilise rainfall. Water butts should be installed on rainwater downpipes.
- 6.11 Basins, ponds, filter strips and swales are not suitable for use within the development due to a lack of available space.
- 6.12 The ground investigation indicates that the sub-surface geology is made up of London Clay which is not considered to be suitable for infiltration devices (e.g. soakaways) generally. However, it would be beneficial to undertake infiltration testing and a more detailed geological investigation post-planning to determine whether it would be possible to allow paved areas to infiltrate to ground.
- 6.13 Table 1 includes a summary of potential SuDS options for the site, with reference to the SuDS hierarchy.

⁸ http://www.sustainabledrainagecentre.co.uk/suds-hierarchy_c2236.aspx Retrieved 02/11/2016

Table 1: Summary of proposed SuDS with reference to SuDS hierarchy

SUDS Technique	Practicable	Proposed	Notes
Green roofs, bioretention areas, tree pits	✓	~	Pitched roof construction is not suitable for green roofs. Bioretention areas and tree pits should be incorporated where possible
Basins and ponds	×	×	Insufficient space available on the site
Filter strips and swales	×	×	Insufficient space available on the site
Infiltration devices	×	×	Ground conditions not considered to be suitable
Permeable surfaces and filter drains	1	√	Paved areas should be formed of permeable block paving with a suitable porous sub-base (subject to infiltration testing)
Tanked systems	✓	~	Attenuation tanks to be used to provide additional attenuation storage where necessary.

Discharge Strategy

6.14 The discharge hierarchy should be considered and the relevant Planning Practice Guidance states:

"Generally the aim should be discharge surface runoff as high up the following hierarchy of drainage options as reasonably practicable:

- 1. Into the ground (infiltration);
- 2. To a surface water body;
- 3. To a surface water sewer, highway drain or another drainage system;
- 4. To a combined sewer."
- 6.15 The proposed drainage strategy should discharge water falling on paved areas to the ground if it is found to be feasible. This is subject to infiltration testing at the post-planning stage. Unfortunately, the site investigation available currently suggests that ground conditions are such that this is not likely to be possible, although the infiltration capacity of London Clay is highly locally variable. The only alternative option is to discharge at attenuated rates to existing connections, namely the Thames Water combined sewer. There is no need to apply to Thames Water for a connection to the existing on-site private demarcation chamber, since there is no increase in the number of properties on the development.

Proposed Surface Water Drainage System

6.16 Surface water runoff from the roof should initially be collected into water butts for use in irrigating garden areas, in accordance with the drainage hierarchy set out in the Camden Water and Flooding CPG.

- 6.17 The ground conditions on the site should be tested to determine whether it is feasible to discharge surface water from proposed paved areas directly to ground. This would remove the need to pump surface water from the rear terrace to the surface water collection system and would reduce the attenuation burden.
- 6.18 As a minimum, the final discharge from the site should be limited to the present-day existing 100 year return period runoff rate, where it is reasonably practicable to do so. For the critical storm, this means attenuating the calculated peak flow of 34.4 l/s down to 19.6 l/s (taking into account climate change over the lifetime of the development). This would require 3m³ of attenuation storage.
- 6.19 Management and maintenance of the SuDS should follow the manufacturers guidance and the CIRIA SuDS Guide. This will be finalised in the detailed drainage design of the site. It is typical that this is conditioned as part of granting planning permission.

- UF WATER | ENVIRONMENT

7 IMPACT ASSESSMENT – SURFACE FLOW AND FLOODING

- 7.1 The BIA has concluded there is negligible risk of flooding from any source affecting the site.
- 7.2 Without adequate mitigation, surface water runoff rates will increase following development; however, they can be attenuated to current, present day rates and discharged to existing connections, with a storage requirement of 3m³. The detailed design of the drainage system should consider the use of bioretention areas within the landscaping to prevent runoff, as well as consider the potential for infiltration through the base of permeable paved surfaces. All paved areas should be of permeable construction, and water butts should be installed on all downpipes.
- 7.3 Subject to the recommendations above and detailed in Chapter 6, the assessment considers that the proposed development, through provision of a suitable SuDS strategy and adequate mitigation, would not increase peak runoff rates downstream and would not result in increased pressure on the wider drainage area infrastructure. There is potential at detailed design stage to provide betterment to the existing site conditions and reduce pressure on the wider area.
- 7.4 The BIA has concluded there are no likely impacts to the wider hydrological environment as a result of the proposed development.

CIEE WATER | ENVIRONMENT

APPENDIX A: DESK STUDY REFERENCES

Ordnance Survey mapping

- https://explore.osmaps.com/
- https://www.visionofbritain.org.uk/

BGS Geological mapping and hydrogeological data

- http://mapapps.bgs.ac.uk/geologyofbritain/home.html
- http://mapapps2.bgs.ac.uk/geoindex/home.html?layer=BGSHydroMap
- https://www2.bgs.ac.uk/research/groundwater/datainfo/hydromaps/home.html

Site ground investigation undertaken on 28th February 2022 by Ground and Water

Hydrological information from the Flood Estimation Handbook (FEH) web service

• https://fehweb.ceh.ac.uk/

UK government Environmental Open Data and Magic Map

- https://environment.data.gov.uk/spatialdata/flood-map-for-planning-rivers-and-sea-floodzone-3/
- https://environment.data.gov.uk/spatialdata/flood-map-for-planning-rivers-and-sea-floodzone-2/
- https://environment.data.gov.uk/spatialdata/risk-of-flooding-from-surface-water-extent-1percent-annual-chance/
- https://environment.data.gov.uk/spatialdata/risk-of-flooding-from-surface-water-extent-0-1percent-annual-chance/
- https://environment.data.gov.uk/spatialdata/reservoir-flood-extents-wet-day/
- https://environment.data.gov.uk/DefraDataDownload/?Mode=survey

URS, London Borough of Camden SFRA, July 2014

Drain London/London Borough of Camden, Preliminary Flood Risk Assessment, v0.2, April 2011

London Borough of Camden, Floods in Camden Report of the Floods Scrutiny Panel, June 2003

London Borough of Camden, Camden Planning Guidance: Basements, January 2021

London Borough of Camden, Camden geological, hydrogeological and hydrological study – Guidance for subterranean development, Issue 01, November 2010

APPENDIX B: SITE SPECIFIC DATA

The following data for the site and surrounding area have been obtained:

- Site Investigation
- Thames Water Asset Location Data

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

		F	PRELIMINAR	Y SUMMARY					
CLIENT	Vincent and Rymill Limited								
SITE ADDRESS	61 Redin	61 Redington Road, London Borough of Camden, London NW3 7RP.							
REPORT REFERENCE	GWPR46	56/PS/March 2	2022						
	Condition	ns and limitation	ons of this prel	iminary summary	can be viewed with	thin Appendix A	۸.		
ENGINEER	Aubyn Sh	ortland, Grou	nd and Water	Limited					
ANTICIPATED	The Britis	h Geological S	urvey (BGS) m	aps and DEFRA on	line maps for the a	area suggest tha	at the site was		
GEOLOGY AND	located o	on the Claygate	e Member of t	the London Clay F	ormation, classifie	ed as a Seconda	ary A Bedrock		
HYDROGEOLOGY	Aquifer, o	overlying the L	ondon Clay Foi	rmation, classified	as Unproductive I	Bedrock Strata.	Based on this,		
	it was an	ticipated that	groundwater	was perched on	top of the Londor	n Clay Formatio	on, within the		
	Claygate	Member of th	e London Clay	Formation, local	ised in granular b	ands. The main	groundwater		
	table tho	ugh is expecte	d below the u	hproductive aquif	er.		· · ·		
	Site work	s were underta	aken on the 28	" of February 202.	2 and comprised tr	ne drilling of 1N	o. windowless		
	further 2	No hand hold	uindow comp	lor trial bolos (M/S		uucieu al 1.00	10m - 2.20m		
SCOPE OF WORKS	hal who	re technical r	window samp afusal was me	t due to the stif	fness of the under	andertaken to s	total of 2No		
	combine	d groundwater	and ground-g	as monitoring sta	ndnines were inst	alled within WS	01 and WS02		
	The insta	llations and ba	ckfill informat	ion can be viewed	helow		01 unu 10302.		
		Com	bined Ground-g	as and Groundwate	er Monitoring Well C	Construction			
			Donth of	Thickness of	Depth of plain		Piping		
	Trial	Type of	Installation	slotted piping	piping with	Response	internal		
	Hole	Installation	(m bgl)	with gravel	bentonite seal	Zone (m bgl)	diameter		
				filter pack (m)	(m bgl)		(mm)		
	WS01	Standpipe	5.00	4.00	1.00	1.00 - 5.00	50		
	WS02	Standpipe	3.00	2.00	1.00	1.00 - 3.00	50		
	Site work	s also included	I the hand exca	vation of 3No. tria	al pit foundation e	posures (TP/FE	01 - TP/FE03),		
	to discov	er the base of t	he existing fou	indations scheme:	s. TP/FE01 was exc	avated on the r	orth - eastern		
	facing ex	ternal wall and	TP/FE02 - TP/	FE03 were excava	ated on south-wes	tern facing exte	ernal walls.		
	The trial	holes were un	dertaken at va	arying levels acros	is the site, the rela	itive ground lev	els in respect		
	to metre	s above ordnai	nce datum (m	AOD) for each tria	al hole can be seen	tabulated belo	ow.		
				Trial Hole Groun	d Levels				
		Trial	Hole		Ground Leve	l (m AOD)			
		W	501		98.5	5			
		W	502		96.5	0			
		W	503		96.2	8			
		TP/	TP/FE01 98.57						
	TP/FE02 96.57								
1		TP/	FE02		96.5	7			
		TP/	FE02 FE03		96.5 96.5	7 7			
	A trial ba	TP/ TP/	FE02 FE03	in Figure 1. Dotoil	96.5 96.5	7 7	s can be coon		
	A trial ho	TP/ TP/	FE02 FE03 In is provided	in Figure 1. Detail	96.5 96.5 led foundation exp	7 7 posure diagram	s can be seen		

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

PRELIMINARY SUMMARY

A selection of soil samples was taken for laboratory chemical and geotechnical testing. Upon completion of the site works all trial holes and/or trial pits were backfilled and made good/reinstated in relation to the surrounding area.

GROUND CONDITIONS ENCOUNTERED

A summary of the ground conditions encountered within all trial holes can be viewed below. Trial hole logs can be viewed within Appendix B.

	Summary of Strata Encountered (WS01 – WS03)							
		Stra	ata		Top Depth (m AOD)	Base Depth (m AOD)	Thickness (m)	
	MADE GROUP SAND. Gravel fragments of f	ND: Dark brown was angular to lint (80%) and brid	o coarse o coarse	98.55	97.95	0.60		
	MADE GROUND: Dark brown gravelly sandy CLAY. Sand was fineto coarse. Gravel was angular to sub-rounded fine to coarsefragments of brick (30% - 70%), flint (30% - 60%) and concrete(10%).					95.08 - 95.60	0.90 – 1.20	
	HEAD DEPOSI slightly gravel rounded fine t	TS: Orangish brov ly silty CLAY. Gr o coarse flint.	vn with greyish brown avel was sub-angular	mottling to sub-	97.95	97.65	0.30	
	LONDON CLAY	FORMATION: Or g silty CLAY.	rangish brown with ligh	t greyish	95.08 - 97.65	>93.20 - 94.18	1.00 - 3.90	
	LONDON CLAY FORMATION: Yellowish brown and dark grey silty CLAY.				94.18	>93.18	>1.00	
	LONDON CLAY FORMATION: Dark grey silty CLAY.				93.75	>90.10	>3.65	
		Sum	nmary of Strata Encoun	itered (TP/F	E01 – TP/FE03	3)		
		St	rata		Top Depth (m AOD)	Base Depth (m AOD)	Thickness (m)	
MADE GROUND: Dark brown gravelly sandy CLAY. Sand was fit to coarse. Gravel was angular to subrounded fine to coar fragments of brick (40% - 80%), concrete (40%), flint (20% - 40 and carbonaceous material (10%)				nd was fine to coarse 20% - 40%)	96.57 - 98.57	>95.57- 97.87	0.40 - >1.00	
	LONDON CLAY	Y FORMATION: C g silty CLAY.	Drangish brown with li	ght greyish	96.17 - 97.87	>95.57 - >97.21	>0.60	
IN-SITU STRENGTH	An interpretation of the in-situ geotechnical testing results for WS01 is given in the table below.							
TESTING (SPTs)	Strata	SPT "N" Blow Counts Strata Strata		Testing Result) Tria	Hole/s		
		8	40	Low (up	per boundary)	WS01/5.0	0 – 5.45m bgl	
	London Clay Formation	10 – 13	50 – 65	N	/ledium	WS01/1.0 WS01/6.0	0 – 3.45m bgl 0 – 6.45m bgl	
		15 – 110	15 – 22		High	WS01/4.0 WS01/7.0	0 – 4.45m bgl 0 – 8.45m bgl	

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

PRELIMINARY SUMMARY								
ROOTS	Fresh roots were noted to proven depths of between 95.28m – 97.05m AOD within WS01 – WS03 and TP/FE01 & TP/FE03. Fresh roots were noted to an unproven depth of 95.57m AOD in TP/FE02.							
	Dead/decayed roots were noted at a depth of 93.28m AOD within WS03. Given these roots were dead/decayed, they were not anticipated to be up taking water from the soils and therefore were not considered to pose a risk to the serviceability of potential foundations. Geotechnical testing should be reviewed to update/confirm.							
	The depth of root pene	etration can be seen ta	ibulated below.					
		Summa	ry of Root Depth					
	Trial Uala	Fresh Root	s	Decayed Roo	ots			
		(m bgl)	(m AOD)	(m bgl)	(m AOD)			
	WS01	1.50	97.05	95.50	-			
	WS02	1.00	95.50	-	-			
	WS03	1.00	95.28	3.00	93.28			
	TP/FE01	1.00	97.57	-	-			
		>1.00	>95.57	-	-			
	It should be noted that	roots may be found to	greater depths at othe	er locations on t	he site, particularly			
	close to trees and/or t	rees that have been re	moved both within the	site and its clos	e environs.			
GROUNDWATER	No groundwater strikes were noted in the trial holes during the investigation; however, a slight seepage was noted within WS01 at 92.55m AOD (6.00m bgl) anticipated to be perched water within sandy/silty bands of the London Clay Formation. Further perched water was noted within TP/FE03 at 95.87m AOD (0.70m bgl).							
	silty/sandy/gravelly ba	nds are noted, especia	Illy after periods of inte	nse or prolonge	d rainfall.			
ANTICIPATED VOLUME	The following volume of	change potential was a	inticipated based on a p	physical and visu	ual appraisal of the			
CHANGE POTENTIAL	soils encountered and Head Deposit 	was subject to confirm t s: Likely to have low	nation of results of geot to medium volume cha	echnical classifi ange potential i	cation testing: in accordance with			
	NHBC Standar	rds Chapter 4.2 and BR	E240.					
	London Clay accordance w	Formation: Likely to ith NHBC Standards Ch	b have medium to h hapter 4.2 and BRE240.	igh volume ch	ange potential in			
GENERAL FOUNDATION RECOMMENDATION	At the time of reporting, March 2022, it was understood the proposed development comprised the full footprint extension of the existing basement structure. The development would also include the construction of a new gable with parapet. The specific layout and depth of the basement was currently unknown.							
	 Made Ground was noted to a proven depth of between 95.08m – 97.95AOD within WS01 - WS02 and TP/FE01 & TP/FE03. The depth of Made Ground was not proven within TP/FE02 and reached an unproven depth of >95.57m AOD. 							

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

PRELIMINARY SUMMARY

As a result of the inherent variability Made Ground, these materials are usually unpredictable in terms of bearing capacity and settlement characteristics. Foundations should, therefore, be taken through any Made Ground and either into, or onto a suitable underlying natural stratum of adequate bearing characteristics.
• The Head Deposits were likely to have medium volume change potential in accordance with BRE240 and NHBC Standards Chapter 4.3. Bedrock soils of the London Clay Formation were likely to have high volume change potential in accordance with NHBC Standards Chapter 4.2 and BRE240.
Foundations should be designed in accordance with the volume change potential classification, confirmed from geotechnical testing. Heave protection measures are also recommended for the slab to account for heave resulting from soil removal.
 The London Clay Formation was generally classified as having generally medium - high undrained shear strengths. A soft spot (SPT N value ≤8) was identified from 93.10m – 93.55m AOD (local level: 5.00m – 5.45m bgl) within the London Clay Formation, which should be considered in the final design, dependant on basement dimensions and required bearing capacities.
The loads of proposed foundations should not exceed the bearing capacity of the soils they are founding upon, nor should >25mm of load-induced settlement occur. Bearing capacity and settlement analysis shall be undertaken as part of the final report.
• Fresh roots were noted to proven depths of between 95.28m – 97.05m AOD within WS01 – WS03 and TP/FE01 & TP/FE03. Fresh roots were noted to an unproven depth of 95.57m AOD in TP/FE02. Dead/decayed roots were noted at a depth of 93.28m AOD within WS03. Roots may be encountered at greater depths within the vicinity of trees.
Foundations must not be placed within root penetrated and/or desiccated soils with volume change potential. It is recommended that foundations are taken at least 300mm into non- root penetrated strata if soils have volume change potential, or into soils of no volume change potential. The influence of trees on or surrounding the site will need to be taken into account in final design (NHBC Standards Chapter 4. 2) (tree rings).
• No groundwater strikes were noted in the trial holes during the investigation. Perched water seepage was noted at 92.55m AOD (6.00m bgl) within WS01 and at 95.87m AOD (0.70m bgl) within TP/FE03.
Any groundwater or surface water ingress must be prevented from entering excavations. Excavations must be kept dry and either concreted or blinded as soon after excavation as possible. If water were allowed to accumulate on the formation for even a short time not only would an increase in heave occur resulting from the soil increasing in volume by taking up water, but also the shear strength and hence the bearing capacity would also be reduced.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

PRELIMINARY SUMMARY		
	and this could result in increased settlements. Perched water may be recorded within excavations, especially after a period of prolonged rainfall. Instability issues may arise within the foundation trenches, in case of perched water being present.	
	Retaining wall foundations constructed at a depth of 95.05m AOD (3.50m bgl) on the soils of the London Clay Formation at this depth can be designed based on a presumed safe bearing capacity of ~100kN/m ² .	
	Retaining wall foundations constructed at a depth of 93.05m AOD (5.00m bgl) on the soils of the London Clay Formation at this depth can be designed based on a presumed safe bearing capacity of ~80kN/m ² .	
	Retaining wall foundations constructed at a depth of 92.05m AOD (6.00m bgl) on the soils of the London Clay Formation at this depth can be designed based on a presumed safe bearing capacity of ~130kN/m ² .	
	This was based on trial hole records, in-situ testing, inspection of samples recovered and referral to BS 8004:2015 <i>Code of Practice for Foundations</i> and based on a 5m long by 1m wide foundation and a maximum settlement of 25mm. Settlement/heave is likely to be moderate.	
GEOTECHNICAL CONSIDERATIONS	 A number of geotechnical considerations should be considered during the design and construction of the basement, which will be discussed further within the finalised report. The main risks associated with the project are detailed below: Ground movement around the excavation; Retaining wall design; Temporary works; Groundwater ingress; Heave following overburden pressure release; Flooding (perched water, surface water, sewer, combined). 	
LABORATORY TESTING	A number of samples were sent to the laboratory for geotechnical and chemical testing. The results were not available at the time of writing the preliminary summary and will be included within the final report. Black staining and a hydrocarbon odour was noted within the 3.00m bgl sample. A programme of chemical laboratory testing was scheduled for this sample to confirm any potential contamination.	
Figure 1 Trial Ho	ole Location Plan	
Figure 2 Trial Pi	t Foundation Exposure 01	
Figure 3 Trial Pi	t Foundation Exposure 02	
Figure 4 I fial Pr	t Foundation Exposure 03	
Appendix A Conditi	Conditions and Limitations	
Appendix B Trial H	ole Logs	
This preliminary information.	on may be subject to amendment in the final report and no liability can be accepted for any actions based on this	

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

Figures:

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX A: Conditions and Limitations

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The report has been prepared on the basis of information, data and materials which were available at the time of writing. Accordingly any conclusions, opinions or judgements made in the report should not be regarded as definitive or relied upon to the exclusion of other information, opinions and judgements.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the client in accordance with their brief; as such these do not necessarily address all aspects of ground behaviour at the site. No liability is accepted for any reliance placed on it by others unless specifically agreed in writing.

Any decisions made by you, or by any organisation, agency or person who has read, received or been provided with information contained in the report ("you" or "the Recipient") are decisions of the Recipient and we will not make, or be deemed to make, any decisions on behalf of any Recipient. We will not be liable for the consequences of any such decisions.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Any Recipient must take into account any other factors apart from the Report of which they and their experts and advisers are or should be aware. The information, data, conclusions, opinions and judgements set out in the report may relate to certain contexts and may not be suitable in other contexts. It is your responsibility to ensure that you do not use the information we provide in the wrong context.

This report is based on readily available geological records, the recorded physical investigation, the strata observed in the works, together with the results of completed site and laboratory tests. Whilst skill and care has been taken to interpret these conditions likely between or below investigation points, the possibility of other characteristics not revealed cannot be discounted, for which no liability can be accepted. The impact of our assessment on other aspects of the development required evaluation by other involved parties.

The opinions expressed cannot be absolute due to the limitations of time and resources within the context of the agreed brief and the possibility of unrecorded previous in ground activities. The ground conditions have been sampled or monitored in recorded locations and tests for some of the more

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

common chemicals generally expected. Other concentrations of types of chemicals may exist. It was not part of the scope of this report to comment on environment/contaminated land considerations.

The conclusions and recommendations relate to 61 Redington Road, London Borough of Camden, London NW3 7RP.

Trial hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sampler borehole implies the specific technique used to produce a trial hole.

The depth to roots and/or of desiccation may vary from that found during the investigation. The client is responsible for establishing the depth to roots and/or of desiccation on a plot-by-plot basis prior to the construction of foundations. Where trees are mentioned in the text this means existing trees, recently removed trees (approximately 15 years to full recovery on cohesive soils) and those planned as part of the site landscaping.

Ownership of copyright of all printed material including reports, laboratory test results, trial pit and borehole log sheets, including drillers log sheets, remain with Ground and Water Limited. Licence is for the sole use of the client and may not be assigned, transferred or given to a third party.

Only our client may rely on this report and should this report or any information contained in it be provided to any third party we accept no responsibility to the third party for the contents of this report save to the extent expressly outlined by us in writing in a reliance letter addressed from us to the third party.

Recipients are not permitted to publish this report outside of their organisation without our express written consent.

0333 600 1221 enquiries@groundandwater.co.uk

groundandwater.co.uk

APPENDIX B: Trial Hole Logs

Percussion Drilling Log

	groun	d&water												
Projec	t Name:	61 Redingt	on Road	l	Client: \	Vincent and	l Rymill L	imited		Date: 28/0)2/2022			
Locatio Londo	on: Lono <u>n NW3 '</u>	don Borougł 7RP	n of Carr	iden,	Contrac	ctor:								
Projec	t No. : 0	GWPR4656			Contractor: Drilling Equipment: Crew Name: Drilling Equipment: Level Logged By Scale 98.55m AoD AS 1:50 ng Depth (m) Level (m) Legend Stratum Description 1ts 0.60 97.95 MADE GROUND: Dark brown clayey to coarse SAND. Gravel was angular rounded fine to coarse fragments of fl brick (20%). Orangish brown with greyish brown rr gravelly silty CLAY. Gravel was sub-a rounded fine to coarse fint. (HEAD D Orangish brown with light greyish bro silty CLAY. (LONDON CLAY FORMAT									
Bore	ehole N WS01	umber	Hole W	e Type /LS	98	Level 8.55m AoD		Logged AS	Ву	S	cale I:50	Pag She	e Numbe eet 1 of <u>´</u>	ər 1
Well	Water Strikes	Samp	le and li	n Situ Testir	ng	Depth (m)	Level (m)	Legend		Strat	tum Descrip	otion		
		Depth (m)	Туре	Resul	ts	()	()		MADE	GROUND: D	ark brown cl	ayey gravell	y fine	_
		0.20							to coars rounded	se SAND. Gr d fine to coar	ravel was ano rse fragments	gular to sub- s of flint (809	%) and	-
		0.80				0.60	97.95		Orangis	o %). sh brown witi	h greyish bro	wn mottling	slightly	-
		1.00	D			0.90	97.65			d fine to coal	rse flint. (HEA	AD DEPOSI	TS)	1 -
		1.00	SPT	N=10 (1,1/2	2,2,3,3)				silty CL	AY. (LONDC	N CLAY FOR	RMATION)	ung	
		1.50	D											
		2.00	D											2 -
		2.00	SPT	N=12 (1,2/3	8,3,3,3)									
		2.50	D											
		2.00												
		3.00	SPT	N=10 (2,2/2	2,2,3,3)									
		3.50	D											
		4.00 4.00	D SPT	N=15 (2,2/3	8,4,4,4)									4 —
		4.50	D											
						4.80	93.75		Dark gr	ev silty CLA		CLAY		-
		5.00 5.00	D SPT	N=8 (2,2/2	,2,2,2)				FORMA	ATION)		ULAI		5 -
		5 50	П		,									-
		0.00												-
		6.00 6.00	D	N=13 (2 2/3	334)									6 _
		6.00		10 (2,2/0	,,0,0,1)									-
		0.50												-
		7.00	D	N-20 (4 4/6										7 —
		7.00	551	N-20 (4,4/0	,5,5,5)									
		7.50	D											
		8.00	D		5 0 0									8 —
		8.00	SPT	N=22 (4,5/5	0,5,6,6)	0.45	00.40		4					
						0.45	90.10			End of	Borehole at 8	.450m		
														9 —
														-
														10 -
	Hole Diame	eter	Casing	Diameter			Chiselling				Inclination	and Orientation		
Depth E	Base [Diameter De	epth Base	Diameter	Depth To	op Depth Ba	ise Dura	ation	Tool	Depth Top	Depth Base	Inclination	Orienta	ation
Rema	irks		<i></i>			1				1	I		·	
resh n	oois note	eu lo a depth	01 1.50M	bgi. Groundw	aler seep	age was end	ountered	al o.UUM b	ıyı.				AGS	

Percussion Drilling Log

	groun	d&water												
Projec	t Name	61 Redin	igton Road		Client: \	/incent and	l Rymill L	imited		Date: 28/0	2/2022			
Locati Londo	on: Lono n NW3	don Borou 7RP	igh of Cam	den,	Contrac	tor:								
Projec	t No. : C	GWPR465	6		Crew Na	ame:				Drilling Eq	uipment:			
Bor	ehole N WS02	umber	Hole V	Type /S	96	Level .50m AoD		Logged AS	Ву	S 1	cale :50	Page She	e Numbe et 1 of 1	er
Well	Water	Sam	ple and Ir	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrip	tion		
	Strikes	Depth (r	n) Type	Resul	ts	(m)	(m)		MADE	GROUND [.] D	ark brown gr	avelly sandy	,	
		0.20 0.50	D D						CLAY. S angular brick (7	Sand was fine to sub-roune 0%) and flint	e to coarse. (ded fine to co (30%).	Gravel was barse fragme	ents of	
		0.80	D			0.00	05.60							_
		1.00	D			0.90	95.00		Orangis silty CL	sh brown with AY. (LONDO	n light greyisł N CLAY FOF	n brown moti RMATION)	ling	1
		1.50	D											-
		2.00	D					××						2 —
		2.50	D											
		3.00	D											3 —
		3.30	D			3.30	93.20	x^		End of	Borehole at 3	.300m		
														4 —
														-
														-
														5 —
														-
														6
														-
														- - 7 —
														-
														-
														8 —
														-
														9 —
														-
														10 —
	Hole Diame	eter	Casing I	Diameter			Chiselling				Inclination	and Orientation		
Depth	Base [Diameter	Depth Base	Diameter	Depth To	p Depth Ba	ise Dura	ation	Tool	Depth Top	Depth Base	Inclination	Orienta	ation
Rema	arks													
Fresh	roots wer	e noted to a	a depth of 1.	.00m bgl. No g	groundwa	iter strikes w	ere encou	untered.					AGS	

Percussion Drilling Log

	groun	d&water			-						3			
Projec	t Name	: 61 Redingt	on Road	I	Client: V	/incent and	Rymill L	imited		Date: 28/0	2/2022			
Locatio Londo	on: Lon n NW3	don Borougł 7RP	n of Carr	nden,	Contrac	tor:								
Projec	t No. : (GWPR4656			Crew Na	ame:				Drilling Eq	uipment:			
Bore	ehole N WS03	umber 3	Hole V	e Type VS	96	Level .28m AoD		Logged AS	Ву	S 1	cale :50	Pag She	e Numbe eet 1 of 1	er I
Well	Water	Samp	le and l	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrin	otion		
	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)							
		0.20 0.50	D D						CLAY. S angular flint (60	GROUND: D Sand was fine to sub-roune %), brick (30	ark brown gr e to coarse. (ded fine to co %) and conc	Gravelly sandy Gravel was parse fragme crete (10%).	ents of	
		0.80	D							, .		. ,		-
		1.00	D											1 _
		1.50	D			1.20	95.08		Orangis silty CL	sh brown with AY. (LONDO	n light greyisl N CLAY FOF	h brown mot RMATION)	tling	
								××						
		2.00	D			2.10	94.18		Yellowis (LOND)	sh brown and ON CLAY FC	l dark grey s RMATION)	ilty CLAY.		2 —
		2.50	D											
		3.00	D			3.10	93.18	<u>×</u> ×	Black st	<i>aining with</i> End of	<i>hydrocarbc</i> Borehole at 3	on odour no 100m	oted.	3 —
														4 —
														-
														-
														5 —
														-
														-
														6 —
														-
														7 —
														-
														-
														8 —
														-
														- - -
														5 -
														-
														10 —
Depth E	Hole Diam Base [eter De Diameter De	Casing pth Base	Diameter Diameter	Depth To	p Depth Ba	Chiselling se Dura	ition	Tool	Depth Top	Inclination Depth Base	and Orientation Inclination	Orienta	ation
Rema Fresh r hydroca	oots wer arbon od	e noted to a cour was noted	lepth of 1 1 within th	.00m bgl. Dea ne 3.00m bgl s	ud/decaye ample.	d roots were	noted to	a depth of :	3.00m bgl	. Black staini	ng and a		AGS	

Trial Pit Loa

	groun	d&water				11			uy				
Projec Locati	t Name	: 61 Reding	iton Road h of Carr	d nden,	Client: Vince	ent and Ryn	nill Limited		Date: 28/02/202	22			
Londo	<u>on NW3</u> st No. ⊹ (Crow Name				Equipment:				
Loc	ation N	umber	, Locati	on Type		/el	Logo	jed By	Scale		Pa	ige Numb	er 1
	IP/FE	رار Samul	o ond In	City Testing	90.571		/	45	1:25		3	neelioi	
Well	Water Strikes	Depth (m) Type	Results	Depti (m)	n Level (m)	Legend		Stratum De	scription			
		0.20	D		0.70	97.87		MADE GF Sand was rounded f (40%) and Orangish	ROUND: Dark brown fine to coarse. Gra ine to coarse fragm d carbonaceous ma	n gravelly s vel was an ents of bric terial (10%	sandy gular 1 k (50%).	CLAY. to sub- (6), flint	
		1.00	D		1.30	97.27		CLAY. (LC	End of Borehol	MATION) e at 1.300m	1		1
	Dim	ansions			1.30	97.27			End of Borehol	e at 1.300m	Dumo	ng Data	2
Pit Rema Fresh	Length arks roots wer	Pit Wic	depth of 1	Pit Stability .00m bgl. No	Shoring Use	trikes were o	bserved.	Remarks		Date	Rate	Rema	rks
	resh roots were noted to a depth of 1.00m bgl. No groundwater strikes were observed.										5		

Trial Pit Log

grou	nd&water				Iſ	Ial F		Jg				
Project Name	e: 61 Redir	ngton Road	1	Client: Vincent	and Rym	ill Limited		Date: 28/02/202	22			
Location: Lor London NW3	idon Borou 7RP	igh of Carr	nden,	Contractor:								
Project No. :	GWPR465	56		Crew Name:				Equipment:				
Location N	lumber	Locati	on Type rP	Level 96 57m A	οD	Logg	led By	Scale		Pa	age Numb	er 1
Water	Sam	ole and In	Situ Testing	Depth	Level		10	01 1 0	· ,.			
Strikes	Depth (m) Type	Results	(m)	(m)	Legend		Stratum De	scription		_	
	0.20 0.50 0.80 1.00	III) IYPE	Results	1.00	95.57		MADE GR Sand was rounded fi brick (40%	ROUND: Dark brow fine to coarse. Gra ne to coarse fragm 5) and flint (20%). End of Borehol	n gravelly vel was a ents of co	sandy ngular ncrete	CLAY. to sub- (40%),	
i~	ensions			Trans	h Support	and Comm	ent		1	Pum	ing Data	5 -
Pit Length	Pit W	/idth	Pit Stability	Shoring Used			Remarks		Date	Rate	Rema	irks
Remarks Fresh roots we	re noted to	an unprover	n depth of >1.() 00m bgl. No grour	ndwater st	rikes were c	bserved.		<u> </u>		AGS	5

	groun	J d&water				Tr	rial F	Pit Lo	og			
Projec	t Name	61 Redingto	n Road		Client: Vincent	and Rym	ill Limited		Date: 28/02/2022	2		
Locati Londo	on: Lono n NW3	don Borough 7RP	of Camo	den,	Contractor:							
Projec	xt No. : C	WPR4656			Crew Name:				Equipment:			
Loo	ation No TP/FE	umber)3	Locatio T	n Type P	Level 96.57m Ad	D	Logg A	ed By \S	Scale 1:25		Page Num Sheet 1 o	ber f 1
Well	Water	Sample a	and In S	Situ Testing	Depth	Level	Legend		Stratum Des	cription		
	0.20 D 0.50 D 0.80 D 1.00 D			Results	0.40	96.17		MADE GR Sand was i rounded fir flint (20%). Orangish b CLAY. (LOI	OUND: Dark brown fine to coarse. Grav ne to coarse fragmen rown with light grey NDON CLAY FORM	gravelly sa el was ang nts of brick ish brown i IATION)	andy CLAY. ular to sub- (80%) and mottling silty	
		0.80 D 1.00 D 1.00 95.57 $$										
	Dim	ensions			Trench	1 Support	and Comme	ent		Ρ	umping Data	2
Rema	arks			20m bel Dece	block water ware a		+ 0 70~'					
riesh	ools wer	e nolea to a de	put of 0.2	∠om bgl. Perc	neu waler Was of	served a	ι υ. <i>τ</i> υm bgl.				AG	S

Asset location search

Water Environment Ltd Coppergate Mews 6Brighton Road LONDON KT6 5NE

Search address supplied

61 Redington Road London NW3 7RP

Your reference

22021 61 Redington Road

Our reference

ALS/ALS Standard/2022_4590753

Search date

17 February 2022

Knowledge of features below the surface is essential for every development

The benefits of this knowledge not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility of any development.

Did you know that Thames Water Property Searches can also provide a variety of utility searches including a more comprehensive view of utility providers' assets (across up to 35-45 different providers), as well as more focused searches relating to specific major utility companies such as National Grid (gas and electric).

Contact us to find out more.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Search address supplied: 61, Redington Road, London, NW3 7RP

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>

Asset location search

Waste Water Services

Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4WW, DX 151280 Slough 13 T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
591B	n/a	n/a
591A	n/a	n/a
5810	90.28	83.69
591C	n/a	n/a
581A	n/a	n/a
581B	n/a	n/a
6902	97.3	91.98
6901	94.97	89.34
6002	98.22	93.36
591F	n/a	n/a
The position of the apparatus shown on this plan i shown but their presence should be anticipated. No	s given without obligation and warranty, and the acc iability of any kind whatsoever is accepted by Thames	curacy cannot be guaranteed. Service pipes are not water for any error or omission. The actual position

snown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for of mains and services must be verified and established on site before any works are undertaken.

Asset Location Search - Sewer Key

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plan are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow.

4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.

5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Based on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

Asset Location Search - Water Key

Meter

End Items

Undefined End

Manifold

Customer Supply

Fire Supply

Operational Sites

Other Symbols

Data Logger

Casement: Ducts may contain high voltage cables. Please check with Thames Water.

Terms and Conditions

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment 14 days from due date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service, or will be held to be invalid.
- 4. Thames Water does not accept post-dated cheques-any cheques received will be processed for payment on date of receipt.
- 5. In case of dispute TWUL's terms and conditions shall apply.
- 6. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 7. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 8. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800

If you are unhappy with our service you can speak to your original goods or customer service provider. If you are not satisfied with the response, your complaint will be reviewed by the Customer Services Director. You can write to her at: Thames Water Utilities Ltd. PO Box 492, Swindon, SN38 8TU.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0121 345 1000 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

Credit Card	BACS Payment	Telephone Banking	Cheque
Call 0800 009 4540 quoting your invoice number starting CBA or ADS / OSS	Account number 90478703 Sort code 60-00-01 A remittance advice must be sent to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW. or email ps.billing@thameswater. co.uk	By calling your bank and quoting: Account number 90478703 Sort code 60-00-01 and your invoice number	Made payable to ' Thames Water Utilities Ltd' Write your Thames Water account number on the back. Send to: Thames Water Utilities Ltd., PO Box 3189, Slough SL1 4WW or by DX to 151280 Slough 13

Ways to pay your bill

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.

Surface Flow and Flooding Basement Impact Assessment

WATER | ENVIRONMENT

APPENDIX C: EXISTING AND PROPOSED DRAWINGS

Topographic Survey and Existing Floor Plans and Elevations

- Mija Survey Drawing No. 15000_01A (Topographic Survey)
- Mija Survey Drawing No. 15000_02B (Floor Plans)
- Mija Survey Drawing No. 15000_03B (Elevations)

Proposed Plans and Elevations

- Ashby Design No. 552/22/FUL/PL10.03 (Lower Ground Floor and Ground Floor Comparison Plans)
- Ashby Design No. 552/22/FUL/PL10.01 (Proposed Sections A-A & B-B)

The accuracy of this Survey corre-Utilities RICS Guidance Note 3rd E media print or the second It is for the use only of the pa and facts, which r and no liability, no All ground feat have been iten Fences shown are not necessarily legal boundarie All data remains in the ownership of Mija Survey and any or and any other information should be reported to Mija Surve en this Surve Abbreviations Temp. Bench Mark Telegraph Pole Traffic Light Tactile Paving Unable To Lift Vent Pipe Water Cover Water Cover Water Stop Cock Water Valve TBM TP TL TT ÜΤL V VP WC WM WSC WV S Arch Crown Level Arch Spring Level Coying Level Door Head Level Baves Level Floor Level Floor Level Floor Level Invert Level Parapet Level Ridge Level Structural Slab Level Top of Free Level Top of Tree Level Top of Tree Level Underside of Boxing Level Underside of Josit Level Underside of Josit Level Underside of Josit Level Underside of AJosit Level Underside of AJosit Level Underside of RSJ Level Generic Underside Level Window Klevel Window Head Level Level ACL ASL CL CPL DCL DHL EL FFL FL SSL TFL TWL UBL UDL UDL UPL URSJL USL WCL WHL Height Arch Crown Arch Spring Floor to Door Cill Door Cill to Head Height Underside of Boxing Underside of Duct Underside of Pipe Underside of RSJ Generic Underside Floor to Window Cill Window Cill to Head AC AS DC HH UBX UD UJ UP URSJ US WC WH Notes Spot Level Arch Gate Contours +20.00 Foul Pipe ----Storm Pipe \sim Top of Bank Hedge Bottom of Bank ID A N=YYYY.YYY Survey Station H=ZZZ.ZZZ DATUM Datum Point đ Photo Point ID
E=XXXX.XXX
N=YYYY.YYY
Scan Target
H=ZZZ.ZZZ Panoramic Photo Point Grid & Datum Survey Grid The Survey Grid is in relation to Ordnance Survey Network. Survey Datum The Survey is based on Ordnance Survey Datum (Newlyn). Trees All trees sizes and heights are approximate and species have been identified to the best of the Surveyors knowledge. Where guaranteed tree species becomes important, the services of an Arborist should be employed. Notation : Oiameter of Trunk / Height / Spread Trees with bole diameters below the specified minimum size may have not been Surveyed. Individual tree canopies are shown in a separate layer named RCB_CANOPY, which for presentation purposes has been turned off. Drainage Where drainage covers have been lifted, data has been recorded for each individual manhole from the surface and connections to other manholes, pipes or gullys are assumed. Where information is required by accessing the manhole or tracing to other manholes then a services trace will be needed. Date CAD Rev Notes 23.03.22 A Scale bar added Client Griggs Drawing Title TOPOGRAPHICAL SURVEY Project 61_ Redington Road ,Hamstead Scale Bar Scale in Metres 1:200 @ A2 Surveyor: R.A Checked: P.C. Status: FINAL Issue Date: 14/12/21 | CNG Ref: 15000_01 | Rev: A MIJA SURVEY ENGINEERING SERVICES Mija Survey Office 8-9 Riverside Business Centre, Kings Lynn, PE30 2HD info@mijaSurvey.com | www.mijaSurvey.uk

© Mija Survey Ltd

0m 12m 14m 6m 8m 10m 15m 20m

Lower Ground Floor

Ground Floor

14:81m³

.8.26m² 16.93m³

FFL-98.72 CL-101.09

Second Floor

Roof

Elevation-02

Elevation-04

61 Redington Road, Hampstead

Design copyright is vested in the Company below from whom consent must be obtained for copying or reproducing this drawing

PLANNING

SCALE 1:100

Ground Floor

Lower Ground & Ground Floor Comparison Plans

61 Redington Road, Hampstead

Section A-A

Proposed Sections A-A & B-B

SCALE 1:100

Section B-B

Project 61 Redington Road, Hampstead Title Proposed Sections A-A & B-B Scale Date 1:100 @ A2 April 23'

- -

Drawn Checked APM LS

Revision

-

--/--/-- --

552/22/FUL/PL10.02

Surface Flow and Flooding Basement Impact Assessment

APPENDIX D: CALCULATIONS

The following calculations have been referenced within the body of this report:

• D21 Runoff Calculations

6 Coppergate Mews• 103 Brighton Road• Surbiton• London• KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk• web: www.waterenvironment.co.uk

D21 RUNOFF CALCU	LATIONS	COVER SHEET					
Job No. Job Name	22023 61 Redington	Road					
Engineer Checked By Date	Agnes Gannor Fiona de Maur 04/05/2023	n I ny I	FdM FdM				
Site Characteristics							
Site Area (ha)	0.094	rall	Disch	araina fra	mite	-	
Existing Pervious Surfaces (ba)	0.0574	61%	0 0173	32%	R 30	0/6	
Existing Impervious Surfaces (ha)	0.0366	39%	0.0175	68%	α 100	%	
	Total: 0.094	Total:	0.0539	0070	<u>u 100</u>	70	
	0		Disal			_	
Proposed Penvious Surfaces (ba)	0.043	1dll 46%		16%	R 22	96	
Proposed Impensious Surfaces (ha)	0.045	54%	0.0090	1070 840/a	ρ 22 α 100	70 96	
Proposed Green Roof	0.051	0%	0.051	0%	v 0	%	
	Total: 0.094	Total:	0.0606	070	<u>r</u> 0	70	
Peak Rate of Runoff							
Existing Site Detailed Modelling Used? Runoff Calculation Method (Existing) Runoff Calculation Method (Proposed) Allowance for Future Climate Change Surface Water Management Strategy	BROWNFIELD No Wallingford/M Wallingford/M To 2115 UE Attenuated or	e.g. Microdra lodified Ration lodified Ration 40% n Site	inage, Hydro al (al (CAD, Mult Calculatior Calculatior	iple Catchme n Sheets Atta n Sheets Atta	ents Iched Iched	
		20	100				
Existing Discharge Bate	1yr	30yr	100yr	/c			
IoH Greenfield Discharge Rate (full site) Detailed modelling output/FEH:	0.4	1.0	1.4	/s /s			
Limiting Discharge Rate	6.6	15.5	19.6	/s			
Post-Development Discharge Rate	8.2	19.4	24.6	/s			
Including Climate Change	11.5	27.2	34.4	,			
Detailed modelling output:	6.6	15 5	10.6	/S			
Respoke Limiting Discharge Rate	0.0 6.6	15.5	19.0 6.6	/5			
Design discharge rate:	6.6	15.5	19.6	/s	Existing I	Rates	
Minimum Storage Required	1.0	2.4	3.0	n ³	5		

6 Coppergate Mews[,] 103 Brighton Road[,] Surbiton[,] London[,] KT6 5NE Tel: 020 8545 9720 Email: contact®waterenvironment.co.uk[,] web: www.waterenvironment.co.uk

	22023	61 Pedin	aton Poad
IH124 : Greenfield Peak Runoff	Calculations By: EdM	Checked By: EdM	Date: 04/05/2023
	calculations by Frank	checked by 1 run	Batel 0 1/03/2023
Catchment Area	AREA	ha	0.094
Standard average annual rainfall 1941 - 1970	SAAR	mm	660
Soil Index (from FSR or Wallingford Procedure WRAP maps)*	SOIL		0.47
*SOIL is the SPR for the soil type, and for larger sites is a weighted su	n of the individual so	oil classes	
for the site, where:			
$SOIL = 0.1A_{SOIL1} + 0.3A_{SOIL2} + 0.37A_{SOIL3} + 0.47A_{SOIL4} + 0.53A_{SOIL5}$			
AREA			
For smaller sites, use the SPR for the local soli type, as follows:			
	5		
ARFA 0 0 0 0.094	0	SOIL:	
SPR 0.1 0.3 0.37 0.47	0.53	0.47	
QBAR = 0.00108 . (0.01AREA) ^{0.89} . SAAR ^{1.17} . SOIL ^{2.17}			
* The site area is less than 50ha. Since the IoH124 methodology is not	QBAR _{50ha}	l/s	225.33
calibrated for sites less than 50ha in area, the calculation should be	QBAR/ha	l/s/ha	4.51
undertaken based on a 50ha site area and proportionately adjusted	QBAR _{site}	l/s	0.42
based on the ratio of the site size to 50ha.			
Hy	drological Area	fig 4 2	6
· · · ·		Tig 4.2	U
	Return Period G	rowth Factor	Discharge rate
	(vears)	(table 4.3)	l/s
	1	0.85	0.36
	2	0.88	0.37
	10	1.62	0.69
	30	2.3	0.97
	50	2.62	1.11
	100	3.19	1.35
Figures and table references from CIRIA C753 The SUDS Manual © CIRIA 2015			

	22023	61 Redin	gton Road
IH124 : Greenfield Peak Runoff	Calculations By: FdM	Checked By: FdM	Date: 04/05/2023
Catchment Area Drained Area Standard average annual rainfall 1941 - 1970 Soil Index (from FSR or Wallingford Procedure WRAP maps)*	AREA AREA SAAR SOIL	ha ha mm	0.094 0.0539 660 0.47
*SOIL is the SPR for the soil type, and for larger sites is a weighted su for the site, where: SOIL = $0.1ASOIL1 + 0.3ASOIL2 + 0.37ASOIL3 + 0.47ASOIL5 + 0.53AAAREA$ For smaller sites, use the SPR for the local soil type, as follows: SOIL TYPE 1 2 3 4 AREA 0 0 0 0.094 SPR 0.1 0.3 0.37 0.47	m of the individual s ASOIL5 5 0 0.53	SOIL: 0.47	
QBAR = 0.00108 . (0.01AREA) ^{0.89} . SAAR ^{1.17} . SOIL ^{2.17} * The site area is less than 50ha. Since the IoH124 methodology is not calibrated for sites less than 50ha in area, the calculation should be undertaken based on a 50ha site area and proportionately	QBAR _{50ha} QBAR/ha QBAR_{site}	l/s l/s/ha l/s	225.33 4.51 0.24
adjusted based on the ratio of the site size to Suna.	drological Area	fig 4.2	6
	Return Period G	rowth Factor	Discharge rate
	(vears)	(table 4.3)	l/s
	1	0.85	0.21
	2	0.88	0.21
	10	1.62	0.39
	30	2.3	0.56
	50	2.62	0.64
	100	3.19	0.77
Figures and table references from CIRIA C753 The SUDS Manual © CIRIA 2015			

I

6 Coppergate Mews[,] 103 Brighton Road[,] Surbiton[,] London[,] KT6 5NE Tel: 020 8545 9720 Email: contact@waterenvironment.co.uk[,] web: www.waterenvironment.co.uk

Vallingford Procedure :	Evicting Doak B	Pupoff	22023	61 Redin	gton Road					
vaningiora i rocedure :		Curion	Calculations By: FdM	Checked By: FdM	Date: 04/05/202					
Site Characteristics					-					
Site Area			AREA	ha	0.094					
Drained Catchment Area			AREA	ha	0.0539					
Approximate Longest Draina	ige Path		1	m	25					
Difference in Ground Levels	.90		ΔΗ	m	0.25					
Slope			Slope (S)		1: 100					
Permeable Surfaces (Rationa	al Method runoff coeffic	cient = 0.4)	ha	32%					
Impermeable Surfaces (Rati	onal Method runoff coe	efficient = ().95)	ha	68%					
Δr	ea Weighted Rational N	Method Rur	off Coefficient		0 773					
					0.775					
Site parameters from The W drainage modelling, HR Wal	/allingford Procedure fo lingford, July 2000 (CD	r Europe:)	Best Practice Guide t	o urban						
60minute, 5 year return per	iod rainfall		M5-60	mm	20					
Ratio of M5-60 to 2day, 5 ye	ear return period rainfa	II	r	-	0.40					
Time of Concentration										
Recommended Tc Method:	SC	S: Sheet F	low							
Tc Method Choice:	SC	S: Sheet F	low							
	Sheet Flo	W	D	in a su Dui du						
Surface Description			Pa							
Siope				Shallow						
Roughness Coefficient	(Manning's n)			0.018						
Flow Length, L			m	25						
M2-24hr			mm	37.70						
Land Slope			m/m	0.01000						
Тс			hr	0.05						
Time of Concentration			Tc	min	3.0					
Critical Storm Duration (min	imum 5min)		T _{crit}	min	5.0					
	,		Chi							
Critical Storm Rainfall and	d Runoff									
Z1 _{TC} 0.38 *Wa	allingford Procedure Figure	e 3.6								
M5-T _{crit} 7.7	2 30				Discharge Ra					
C 0.773					0 = 2.78Ci					
					•					
	Return Period	Z2*	Depth	Intensity	Discharge Rat					
	(years)		(mm)	(mm/hr)	l/s					
	<u> </u>	0.62	4.7	56.7	6.57					
	2	0./9	6.1 0.2	/2./	8.42					
	20	1.20	9.Z	110.0	12.82 15.49					
	50 50	1.40	12.1	146.8	17.02					
	100	1.84	14.1	169.1	19.60					
				1						
	*Wallingford Procedure Table 3.2									

Wallingford Pro	llingford Procedure : Developed Peak Runoff		upoff	22023	61 Redin	gton Road	
			unon	Calculations By: FdM	Checked By: FdM	Date: 04/05/202	
Site Charac	teristics						
Site Area				ΔΡΕΔ	ha	0 094	
Drained Cat	Drained Catchment Area				ha	0.0606	
Approximate	l ongest Drainage Path		1	m	25		
Difference in	Ground Levels		лн 	m	0.25		
Slope				Slope (S)		1: 100	
ыбре				0.000 (0)		11 100	
Permeable S	Permeable Surfaces (Rational Method runoff coefficient = 0.4) ha						
Impermeabl	e Surfaces (Rational Metho	od runoff coef	ficient = (0.95)	ha	84%	
Green Roof	Green Roof of gradient of up to 15°, and depth of 20-40mm , c= 0.7 *						
	Area Weight	ed Rational M	ethod Rur	noff Coefficient		0.86	
*in line with T	able 10.1 of CIRIA C644						
Site parame drainage mo	ters from The Wallingford delling, HR Wallingford, Jเ	Procedure for Ily 2000 (CD)	Europe: I	Best Practice Guide t	o urban		
60minute, 5	year return period rainfall		M5-60	mm	20		
Ratio of M5-	60 to 2day, 5 year return	period rainfall		r	-	0.40	
Time of Co	ncentration						
Recommend	led Tc Method:	SCS	: Sheet F	low			
Tc Method C	Choice:	SCS	: Sheet F	low			
		0.00					
		Sheet Flow	N				
Surface	Description			Pav	ing or Brick		
	Slope				Shallow		
Roughness	Coefficient (Manning	g's n)			0.018		
Flo	Flow Length, L M2-24hr				25		
	Land Slope				0.01000		
	IC			hr	0.05		
Time of Con	centration	Tc	min	3.0			
Critical Storr	Critical Storm Duration (minimum 5min)				min	5.0	
		-		Chi			
Critical Stor	rm Rainfall and Runoff						
71	0 38 *Wallingford Pr	ocedure Figure	3.6				
ME T		secure riguie	5.0			Discharge Det	
MD-1 _{crit}	/./						
C	0.005					Q = 2.76CH	
-	Return Period	Z2*	Depth	Intensity	Discharge Rate	Future Rate	
-	(years)		(mm)	(mm/hr)	l/s	l/s	
-	1	0.62	4.7	56.7	8.24	11.53	
	2	0.79	6.1	72.7	10.57	14.79	
-	10	1.20	9.2	110.6	16.08	22.51	
-	30	1.45	11.1	133.6	19.42	27.19	
	50	1.60	12.2	146.8	21.34	29.88	
-	100	1.0.4	444	100 1	04 -0	D / / /	

Site Parameters Drained Catchme Approximate Long Difference in Gro Slope Permeable Surfac Impermeable Sur	s ent Area ligest Draina bund Levels				Calculations By: FdN	4 Checked By: FdM	Date: 04/05/
Site Parameters	s ent Area Igest Draina bund Levels	age Dath					
Drained Catchme Approximate Long Difference in Gro Slope Permeable Surfac Impermeable Sur	ent Area Igest Draina Jound Levels	age Path					
Approximate Lon Difference in Gro Slope Permeable Surfac Impermeable Sur	igest Draina ound Levels	aa Dath			AREA	ha	0.0606
Difference in Gro Slope Permeable Surfac Impermeable Sur	ound Levels	geraui			L	m	25
Slope Permeable Surfac Impermeable Sur					ΔH	m	0.25
Permeable Surface Impermeable Surface					Slope (S)		1: 100
Impermeable Sur	ces (Ration	al Method	runoff coeffic	cient = 0.4	•)	ha	16%
	rfaces (Rat	ional Metho	od runoff coe	fficient =	0.95)	ha	84%
Green Root of gra	adient	of up to	15°, and design of the second se	d depth of	20-40mm , C	= 0.7 *	0%
*in line with the FLI	Are L Guidelines	on Planning	C Rational M . Execution and	ethoa Run d Upkeep of	f Green Roof Sites, 2	2002	0.86
		5.					
Site parameters f	from The W	/allingford	Procedure fo	r Europe:	Best Practice Guid	le to urban	
60minute. 5 vear	r return ner	ingiora, Ju iod rainfall	ily 2000 (CD)	M5-60	mm	20
Ratio of M5-60 to	o 2day, 5 y	ear return	period rainfa	II	r	-	0.40
Time of Concentr	ration				T _c	min	3.0
$\begin{array}{l} C \\ Z2_{100} \\ M100-T_d \\ Intensity \\ Q_d \\ Q_{d, climate change} \\ Q_{limiting \ discharge} \end{array}$	0.86 1.85 *Wa 14.2 170.6 24.8 34.7 19.6	allingford Pro mm mm/hr I/s I/s I/s	ocedure Table :	3.2			
			Ma	iximum sto	brage required	m	3.0
2 5		Storage	Requireme	ents			
5.5							
3.0							
ي 2.5							
ວັ ປີ 1.5	_						
orag							
St.							
0.5							
0.0		++-	+-+	++			
0	60 120	180 240	300 360 Storm Duratio	420 480 n (mins)	0 540 600 66	0 720	

		a i i i	22025	61 Dadia	aton Road
M 30 year Event Storage Calculator			Calculations By: FdM	Checked By: FdM	Date: 04/05/2023
Site Parameter	rs				
Drained Catchm Approximate Lor Difference in Gro	ient Area ngest Drainage Path ound Levels		AREA L ΔH	ha m m	0.0606 25 0.25
Slope			Slope (S)		1: 100
Permeable Surfa Impermeable Su Green Roof of g *in line with the Fl	16% 84% 0% 0.86				
Site parameters	from The Wallingford	Procedure for Europe:	Best Practice Guide	to urban	
60minute, 5 yea Ratio of M5-60 t Time of Concent	ar return period rainfa to 2day, 5 year return tration	ll I period rainfall	M5-60 r T _c	mm - min	20 0.40 3.0
$\begin{array}{c} I_d \\ Z1_{TD} \\ M5-T_d \\ C \\ Z2_{30} \\ M30-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Q_{limiting discharge} \end{array}$	0.38 *Wallingford Pr 7.7 mm 0.86 1.46 *Wallingford Pr 11.2 mm 134.4 mm/hr 19.5 l/s 27.3 l/s 15.5 l/s	rocedure Figure 3.6 rocedure Table 3.2 Maximum sto	prage required	m ³	2.4
			5		
2.5 2.0 (E) 301.0 2.0 301.0 0.0 0.0	Storag	e Requirements	0 540 600 660	720	
6 Coppergate Merse 103 Brighton Road - Surbidon London - KT6 SNE Email: contact@waterenvironment.co.uk: web: www.waterenvironment.co.uk

M 1 voar I	Fuont	Storado	Calculator	-	22023		01 Reuli	J ¹⁰
in i year	Lvent	Storage	Calculator		Calculations By: F	dM C	Checked By: FdM	Date: 04
Site Paramete	orc							
Drained Catchment Area				AREA		ha	0.06	
Approximate Lo	ongest Dra	ainage Path			L		m	2
Difference in Gr	round Lev	els			ΔH Clana (C)		m	0.2
Slope					Slope (S)			1. 10
Permeable Surf	aces (Rat	ional Method	d runoff coefficie	nt = 0.4	1)		ha	16
Impermeable Surfaces (Rational Method runoff coefficient					0.95)		ha	84
Green Roof of g	gradient	of up to	o 15°, and	depth of	20-40mm ,	C=	0.7 *	00
*in line with the F	LL Cuidalir	Area Weight	ted Rational Met	hod Rur	f Croop Roof Sitor	2002		0.8
Site narameters	s from The	es on Plannin Wallingford	d Procedure for I	Jpkeep u	Best Practice G	, 2002 Iide to	urhan	
drainage model	lling, HR V	Vallingford,	July 2000 (CD)	_urope.	best i fuence of			
60minute, 5 ve	ar return	period rainfa	all		M5-60		mm	2
Ratio of M5-60	to 2day,	5 year return	n period rainfall		r		-	0.4
Time of Concen	ntration				T _c		min	3
Z1 _{TD} M5-T _d C	5.0 0.38 * 7.7 0.86	min Wallingford P mm	rocedure Figure 3.	6				
P_d $Z1_{TD}$ $M5-T_d$ C $Z2_1$ $M1-T_d$ Intensity Q_d	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2	min Wallingford P Mm Wallingford P mm mm/hr I/s	rocedure Figure 3. rocedure Table 3.2	6 2				
Td Z1 _{TD} M5-Td C Z2 ₁ M1-Td Intensity Qd Qd,climate change	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P Wallingford P mm mm/hr I/s I/s	rocedure Figure 3. rocedure Table 3.2	6 2				
P_d $Z1_{TD}$ $M5-T_d$ C $Z2_1$ $M1-T_d$ Intensity Q_d Q_d , climate change Qlimiting discharge	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P Mm Wallingford P mm mm/hr I/s I/s I/s	rocedure Figure 3. rocedure Table 3.2 Maxi	6 2 mum sto	prage required	r	n ³	1.
P_d $Z1_{TD}$ $M5-T_d$ C $Z2_1$ $M1-T_d$ Intensity Q_d Q_d , climate change $Q_{limiting discharge}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P Mm Wallingford P mm mm/hr I/s I/s I/s	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u>	6 2 mum ste	prage required	r	n ³	1.
Id Z1 _{TD} M5-Td C Z2 ₁ M1-Td Intensity Qd Qd,climate change Qlimiting discharge	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> je Requiremen	6 2 mum ste	prage required	r	n ³	1
1 d Z1 _{TD} M5-Td C Z2 ₁ M1-Td Intensity Qd Qd,climate change Qlimiting discharge	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> je Requiremen	6 2 mum sto	prage required	r	n ³	1.
$\begin{bmatrix} 1 & d \\ 21_{TD} \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Qlimiting discharge \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> je Requiremen	6 2 ts	brage required		n ³	1.
$\begin{bmatrix} 1 & d \\ Z1_{TD} \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Q_{limiting discharge} \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> je Requiremen	6 2 mum sto ts	prage required	r	n ³	1.
$\begin{bmatrix} 1 & d \\ Z1_{TD} \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Qlimiting discharge \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3. <u>Maxi</u> je Requiremen	6 2 ts	prage required	r	n ³	1.
$\begin{bmatrix} 1 & d \\ Z1_{TD} \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Qlimiting discharge \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> je Requiremen	6 2 ts	prage required	r	n ³	1.
$\begin{bmatrix} 1 & d \\ Z1_{TD} \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Qlimiting discharge \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> je Requiremen	6 2 mum sto ts	prage required	r	n ³	1.
$\begin{bmatrix} 1 & d \\ Z1_{TD} \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Qlimiting discharge \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 Maxi ge Requiremen	6 2 ts	brage required		n ³	1.
$\begin{bmatrix} 1 & 21 \\ TD \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Q_{limiting discharge} \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> Je Requirement	6 2 ts ts	prage required		n ³	1.
$\begin{bmatrix} 1 & 21 \\ TD \\ M5-T_d \\ C \\ Z2_1 \\ M1-T_d \\ Intensity \\ Q_d \\ Q_d, climate change \\ Q_{limiting discharge} \\ \end{bmatrix}$	5.0 0.38 * 7.7 0.86 0.61 * 4.7 56.5 8.2 11.5 6.6	min Wallingford P mm Wallingford P mm mm/hr I/s I/s I/s Storag	rocedure Figure 3. rocedure Table 3.2 <u>Maxi</u> Je Requirement	6 2 mum sta ts	Drage required	r	n ³	1