Structural Methodology Statement

for

28 Charlotte Street

Fitzrovia

London W1T

rodriguesassociates 3 Amwell Street

3 Amwell Street London EC1R 1UL Telephone 020 7837 1133 www.rodriguesassociates.com June 2023 Structural Methodology Statement

for

28 Charlotte Street London W1T 2NF

for

Mr Matteo Caraccia

Job No 1964

Rev	Date	Notes
-	Oct 2022	First Issue
Α	June 2023	Updated Trigger Levels for Vertical & Horizontal Movement

CONTENTS

1. INTRODUCT	10N	4
2. SCOPE OF V	NORKS	4
	ON OF 28 CHARLOTTE STREET AND ADJOINING	4
4. GEOLOGY A	ND HIDROLOGY CONDITIONS	4
5. STRUCTUR	AL CALCULATIONS	5
6. STRUCTUR	AL DRAWINGS	5
7. CONSTRUC	TION METHOD STATEMENT	5
	IMPACT ON 28 CHARLOTTE STREET AND ADJOINING	
9. SLOPE STAI	BILITY	7
	L IMPACT ON EXISTING AND SURROUNDING UTILITIE TURE AND MAN – MADE CAVITIES	•
	L IMPACT ON DRAINAGE, SEWAGE, SURFACE AND ER LEVELS AND FLOWS INCLUDING SUDS	8
12. POTENTIAI	LIMPACT ON EXISTING AND PROPOSED TREES	8
13. NOISE, VIB	RATION AND DUST CONTROL	8
	NG AND LIMITS ON GROUND MOVEMENTS DURING AND CONSTRUCTION	11
APPENDIX A	PROPOSED STRUCTURAL SCHEME	13
APPENDIX B	PROPOSED CONSTRUCTION SEQUENCE	14
APPENDIX C	PRELIMINARY STRUCTURAL CALCULATIONS	15
APPENDIX D	SITE INVESTIGATION	16

1. INTRODUCTION

This Structural Methodology Statement is produced for submission to London Borough of Camden as part of a planning application for works to 28 Charlotte Street, W1T 4NF and should not be used for any other purposes, e.g. construction or Party Wall Awards.

2. SCOPE OF WORKS

A new single storey basement is proposed under the rear of the existing property. The current study room will be connected to a new lower ground space dedicated to video editing and contained within reinforced concrete walls and slab.

3. DESCRIPTION OF 28 CHARLOTTE STREET AND ADJOINING PROPERTIES

The front part of the building is a six storey mid-terraced Victorian property of masonry construction with timber floors to ground floor and upper levels and timber rafters to form the roof.

The rear walls to adjoining properties are of brick construction and they appear to be much deeper than the existing ground floor level (refer to proposed section in Appendix A).

The property is in a sound condition structurally. The adjoining properties are of similar construction and look to be in sound condition from an external non – intrusive visual examination.

4. GEOLOGY AND HIDROLOGY CONDITIONS

The existing site geology from British Geological Survey information is of Lynch Hill gravel formation, which has been partly confirmed by site investigation dated 11/01/2016.

A borehole made in the study (refer to Appendix D) has revealed the following sequence and final depth of strata.

Made Ground: 0m to 5.3m Silty gravelly Sand: 5.3m to 7.7m Clay with partings of silt and sand: 7.7m to 10.00m

From the same borehole the groundwater was recorded at ~5.3m bgl circa with ground becoming moist from 1.8m bgl circa.

Trial pits has been also undertaken during the site investigation and they all show made ground down to 4m from ground level and within the area composing the rear study (refer to Appendix D).

As well as the existing party walls, the proposed basement slab will be formed within a stratum of made ground and therefore it is proposed to avoid additional loads into the existing party walls creating a new concrete box detached from them and sitting on piles. The piles will then reach a suitable bearing level.

The building's design shall also resist floatation with a safety factor of not less than 1.1 as specified in BS8007:1987 cl. 2.2.3.2 and, Despite the depth of the recorded water table, it is assumed that ground water can reach 1.4m above basement formation level.

5. STRUCTURAL CALCULATIONS

See calculation sheets 1964/C1 - C8 showing the assumed loadings, loads on elements and design of structure composing the basement box. These calculations can be found in the Appendix C.

6. STRUCTURAL DRAWINGS

See drawings in Appendix A showing the proposed ground and basement floor layout, and sections through party walls. No structures will be connected to the existing party walls in a way to change their dimension or loads.

7. CONSTRUCTION METHOD STATEMENT

The temporary works will be the design responsibility of the contractor and once appointed, he will produce a complete method statement and temporary works design. This is to be submitted to the Structural Engineer for approval prior to commencement.

We anticipate that there will be a pre-commencement condition requiring compliance with the Code of Construction Practice that requires the appointed contractor to prepare a Construction Management Plan/ method statement and submit to the Council's environmental services team (separate to planning) for approval. They would then sign off the final Appendix A form and that signed form would be used to discharge the pre-commencement planning condition.

The construction method statement has been developed to ensure that the proposed works are constructed safely and with no impact on the structural stability of the existing and adjacent properties.

The proposed permanent and temporary works will not apply any significant additional loads onto the surrounding structures or utilities. Measures will be taken to ensure that the changes in stress and resultant movement in the soil surrounding the basement are minimised during the works and on completion.

There will be no adverse effect on the surrounding soil. This is ensured by the design of the earth retaining structures.

The existing geology, as described in the ground investigation, is capable of supporting the permanent and temporary works.

There are no unusual geological, hydrological or structural concerns which need to be addressed.

The following outlines the assumed method of construction to ensure stability of the existing structures in the temporary and permanent case.

SITE SET UP

Set up site with all contractor welfare and accommodation within the existing building.

Protect the site with hoarding, security measures, etc.

Terminate and protect all existing services.

Set up movement monitoring points on property and on neighboring properties and carry out baseline survey. Monitor regularly against this baseline survey and report results to engineer.

In order to minimize the environmental impact of construction the following are to be observed:

- a. The contractor must be a member of the Considerate Contractor's Scheme.
- b. Groundwork subcontractors must be registered with ASUC.
- c. The provisions of the Control of Pollution Act (1974) and the Environmental Protection Act (1990) are to be observed.
- d. Neighbours are to be notified of the work via individual letters, outlining the anticipated programme and contact details for the site.
- e. The contractor must ensure the health and safety of all its operatives and members of the public in accordance with best practice and the Health and Safety at Work Act 1974.
- f. Wastewater from construction activities must be dealt with as per BS6031:1981 Code of practice for earthworks.
- g. Dust generating activities are to be enclosed to prevent dust escaping and dust is to be suppressed by means of spraying. Waste leaving site is to be enclosed with fly sheeting or sealed skips. Waste is to be handed down rather than dropped down to reduced dust generation.
- h. All applicable plant is to be fitted with dust collection vacuum boxes.

- i. All surface runoff to be contained on site.
- j. Working hours are to be limited as per the planning conditions.
- k. The contractor must control noise and vibration as per British Standard 5228-1 2:2009: 'Code of practice for noise and vibration control on construction and open sites Part 1 (Noise) and Part 2 (Vibration).'
- I. Modern, well maintained and silenced plant is to be used.
- m. Delivery vehicles must switch off engines when parked up.
- n. Site radios are not to be audible from the street.
- o. Reduce use of percussive and vibrating machinery to a minimum.

CONSTRUCTION SEQUENCE AND TEMPORARY SUPPORT

See Appendix B for the proposed construction sequence drawings and description.

8. POTENTIAL IMPACT ON 28 CHARLOTTE STREET AND ADJOINING PROPERTIES

The proposed basement under the existing property will not be formed below existing walls but within them keeping the walls propped at all time to reduce the amount of potential movement to the adjacent structures.

Expected settlement is zero provided an experienced contractor is appointed who undertakes the works using good practice in accordance with the structural design and follows all agreed method statements, installing all necessary temporary vertical and lateral supports required. In practice some settlement is possible, but this should be no worse than 'aesthetic', according to the BRE's definition. If these conditions are met, any settlement that occurs is likely to be minimal and is likely to be accommodated in the elasticity of the superstructure. This has been borne out in the vast majority of past projects on similar properties.

The design and construction methodology, as described above, deals with the potential risks and ensures that the excavation and construction of the proposed basement will not affect the structural integrity of the property and adjoining properties.

9. SLOPE STABILITY

The site is located on ground that is relatively flat and so slope instability can only be initiated in the temporary condition as the proposed basement is being built, however this is highly unlikely due to the construction sequence and implementation of temporary works and is covered by the statement above on the impact on adjoining properties.

10. POTENTIAL IMPACT ON EXISTING AND SURROUNDING UTILITIES, INFRASTRUCTURE AND MAN – MADE CAVITIES

Any local services on the property's land will be maintained during construction and re – routed if necessary. The exact location of these services will not be known until the works commence. However, the impact will be negligible as these services will be maintained. If it is necessary to relocate or divert any utilities, the Contractor and Design Team will be under a statutory obligation to notify the utility owner prior to any works. This will be so that they can assess the impact of the works and grant or refuse their approval. There are no known man – made cavities (e.g. tunnels) in the vicinity of the proposed basement.

11. POTENTIAL IMPACT ON DRAINAGE, SEWAGE, SURFACE AND GROUND WATER LEVELS AND FLOWS INCLUDING SUDS

All existing drainage and sewage connections will be maintained throughout the construction works so there will be no impact on these existing systems.

The proposed refurbishment will not alter the current state of the property, which will remain as a mixed-use retail and residential building. Therefore, there will be no significant change in discharge to the existing drainage and sewage systems.

Surface water will not be altered as the proposed works are underground and there will be no change to the external 'hard surfaces'.

The site–specific borehole confirms that the new formation is above the ground water level, thus there will be no impact on ground water flows and levels.

12. POTENTIAL IMPACT ON EXISTING AND PROPOSED TREES

The property does not have a garden, therefore no existing trees will be felled during the construction of the proposed basement. In addition, there are no trees protected by Tree Preservation Orders in the vicinity of the proposed basement that will be damaged by the construction works.

13. NOISE, VIBRATION AND DUST CONTROL

Any basement works should be completed in such a way as to ensure that suitable measures to control the emission of dust and dirt during construction and ensure works will not generate noise audible at the site boundaries outside of permitted working hours are in place. The current proposal is to create a new basement floor below the existing ground floor at the rear of the property, but outside the footprint area of the main building.

The proposal also includes the general refurbishment of the property with very minor.

The construction works involve the demolition of the existing concrete floor slab in the ground floor study room, as well as the excavation and creation of a new reinforced concrete box in the rear of the property at basement level. A detailed sequence of the works has been given in Appendix B. Those most likely to be affected by noise, dust and vibration will be the immediate neighbors at No 26 and No30 Charlotte Street, as well as No's 7-15 Whitfield Street.

The properties opposite side of the street are slightly more remote from the proposed development and are therefore less likely to be affected, however need to be considered. There might be some impact on other residents within Charlotte Street Road due to the related construction traffic..

Below we have described the mitigation measures that are proposed to keep noise, dust and vibration to acceptable levels.

Mitigation Measures for Demolition of Existing Slab

The breaking out of existing structures shall be carried out by diamond saw cutting and hydraulic bursting where possible to minimize noise and vibration to the adjacent properties. All demolition and excavation works will be undertaken in a carefully controlled sequence, taking into account the requirement to minimize vibration and noise. The contractor will need to utilize non-percussive breaking techniques where practicable.

As the property is terraced, careful consideration needs to be given to minimize noise and vibration transfer to the adjoining properties. The contractor should ensure that where any slab is adjacent to the boundary the concrete slab should be diamond saw cut first along the boundary to isolate the slab from any adjoining structures.

Dust suppression equipment should be used during the demolition process to ensure that any airborne dust is kept to a minimum. Where practical, concrete should also be wetted down prior to and during breakout to further inhibit airborne dust.

Mitigation Measures to Bulk Excavation

Due to size of the basement and restriction to access the rear of the property, it is likely that excavations will be undertaken with hand tools. However, if mechanical plant will be required to complete the bulk excavation, the contractor should ensure that any mechanical plant is switched off when not in use and is subject to regular maintenance checks and servicing. An electrically powered conveyor will be used as detailed above.

Mitigation Measures for the Construction of the Concrete Basement Shell

The contractor should ensure that any concrete pours are completed within the permitted hours for noise generating works. The contractor should allow for a contingency period to ensure that concrete pours can be completed within these hours regardless of unforeseen circumstances such as batching plant delays and traffic congestion.

The fabrication and cutting of steelwork for the reinforced concrete underpins and slabs shall take place off site. If any rebar needs to be trimmed on site this should be completed using hydraulic or pneumatic tools of angle grinders.

Dust Control

In order to reduce the amount of dust generated from the site, the contractor should ensure that any cutting, grinding and sawing should be completed off site where practicable. If cutting, grinding and sawing is being carried out on site, surfaces are to be wetted down prior to and during these types of work whenever possible. Any equipment used on site should be fitted with dust suppression or dust collection facilities.

The contractor will be responsible for ensuring good practice with regards to dust and should adopt regular sweeping, cleaning and washing down of the hoardings and scaffolding to ensure that the site is kept within good order. The Contractor selected will be member of the Considerate Contractors Scheme. Contact details of the contractor who will be responsible for containing dust and emissions within the site will be displayed on the site boundary so that the local residents can contact the contractor to raise any concerns regarding noise and dust.

The construction site will be enclosed within suitable scaffold sheeting and any stockpiles of sand or dust-generating materials will be covered. Cement, fine aggregates, sand and other fine powders should be sealed after use.

14. MONITORING AND LIMITS ON GROUND MOVEMENTS DURING EXCAVATION AND CONSTRUCTION

The contractor shall provide monitoring to the rear lightwell wall, rear and party walls of No28 Charlotte Street throughout their height during the basement construction.

Monitoring shall be completed as follows:

- 1. Two separate sets of readings one month prior to any works being started to provide a base reading.
- 2. Fortnight readings during he structurally critically phases, such as excavation and basement construction.
- On a month basis thereafter for a 6 month period following completion of the notifiable works. Note: contingency should be set aside to allow for additional visits at increased frequencies, should trigger values be exceeded.

Cumulative movement of survey points must not exceed:

- a. Vertical settlement
 Code amber trigger values: +/-3mm
 Code red trigger values: +/-5mm
- b. Lateral displacement
 Code amber trigger values: +/-1.5mm
 Code red trigger values: +/-8mm

Movement approaching critical values:

Code amber trigger value:

All interested parties, including the Adjoining Owner's Surveyor and his Engineer should be informed and further actions immediately agreed between two of the three Surveyors and implements by the Building Owner. Notwithstanding the Party Wall requirements, the Contractor is to appoint, and to have permanently on site, a suitably qualified Structural Engineer who will be responsible for the reviewing of the movement monitoring results at the start and end of each day and provide immediate advice, remedial works and design as necessary in the event of movement being noted.

The Contractor is to ensure that he has 24 hour/7 days a week access to emergency support provision including but not limited to additional temporary props, needles, waling beams and concrete supply at the start of the excavation and prior to any likelihood of this trigger value being reached. If this value is reached the Contractor, and his Engineers, must without delay provide all interested parties with his plan to implement any emergency remedial and supporting works deemed necessary.

The Contractor must be ready to carry out these works without delay if the movement continues and approaches the trigger value above.

Code red trigger value:

All interested parties including Adjoining Owner's Surveyor and Engineer will be informed immediately. Works will stop and be made safe using methods and equipment agreed at the above stage. The Contractor is to ensure that the movement has stopped as a result of the implemented remedial works designed and installed at this stage. The requirements of the Party Wall Act will also ensure that wo of the three Surveyors and their advising Engineers shall them enter into an addendum Award, setting out whether or not the Building Owner's works can re-commence and when, and if so agree conditions.

Appendix A – Proposed Structural Scheme

For

28, Charlotte Street

Fitzrovia

London W1T

rodriguesassociates 1 Amwell Street London EC1R 1UL tel: (+44) 020 7837 1133 www.rodriguesassociates.com October 2022

roung	guesassoci	ates		DRAWING I	REGISTE	ER	+ R	EC	OR) C								
1 Amv	vell Street ,	London, E	C1R 1UL															
JOB N		1964	JOB NAME	28 Charlott	e Street													
REF			ISSUE CODE					_	SUE	DATES	;							
SHEE			FOR INFORMATION ONLY		CODE													
TYPE		Structural			DAY													
			CONSTRUCTION ISSUE		MONTH						_		_				_	
			RECORD COPY		YEAR	20	20	22			_		_			_	_	
			CONTRACT ISSUE	60		l			1 1	11	1			1			1	
	ING NO		TITLE	SCALE	SIZE	I	I	I	1 1	1 1	1	1 1	1	1	1 1	I	1	1 1
	SERIES			SCALL	JIZL						-			+		-	-	+
	OENLEO																	
	GENERAL	01	GENERAL NOTES	NTS	A1			1										
	PLANS		EX-BASEMENT FLOOR	1:25	A1			1										
		03	EX-GROUND FLOOR SHT 1	1:25	A1			1										
			EX-GROUND FLOOR SHT 2	1:25	A1			/										
			PR-BASEMENT FLOOR SHT 1	1:25	A1	/		А										
			PR-BASEMENT FLOOR SHT 2	1:25	A1	/		1										
			PR-GROUND FLOOR SHT 1	1:25	A1	/		A										
		15	PR-GROUND FLOOR SHT 1	1:25	A1	/	-	1			_	+		-			_	+
	SECTIONS	50		1.20	A 4	1	-	•	$\left \right $		_	+		-	\vdash		_	+
	SECTIONS		PR-SECTION M-M PR-SECTION N-N	1:20 1:20	A1 A1	/	-	A	+		+			+	$\left \right $	-	+	+
			PR-SECTION 0-0	1:20	A1 A1	/		A /			_						_	
		52		1.20	AI	-	-	<u> '</u>	+		-			-	$\left \right $		-	
	OTHER	SCS-01	PR CONSTR. SEQUENCE - SHEET 1	1:100	A1	-	1	A	+		+			+	$\left \right $	+	+	+
				1:100	A1			A								-		
			PR CONSTR. SEQUENCE - SHEET 3	1:102	A1		1	A			-			-			-	
											_		_				_	
											_		_				_	
								<u> </u>			_					_		
											_		_			_	_	
											_		_			_	_	
											_					-	_	
											_					-	_	
											-					-		
																-		
																-		
							-		\square					-			-	
																	Ċ.	j į
	D TO:							N	O OF	COPIE	S							
CLIEN															μŢ			\square
ARCH						/	/	1										
	TITY SURV	EYOR																
	RACTORS					-	-	-			_	+		_			_	
	RACTOR					-	-	-	+		+		_	+	$\left \right $	-	+	+
	ICES ENGIN					-	-	-	$\left \right $			+		-	$\left \right $		-	+
	ENGINEER					-	-	-	+		+			+	$\left \right $	+	+	+
		ROL					-	-			-			-	\vdash	-	+	
	SCAPE ARC						1	1						1			-	
	Y WALL SU						1	1			1			1			1	
	00						1	1										
								1						1			+	
FORM	IAT																	
	RD COPY						pd		_									
ISSUE						ig	cb	ab	ιT			ΙT						ΙΓ
<u>515</u> 151515101010	d on behalf																	

GENERAL NOTES

1. ALL DRAWINGS TO BE READ IN CONJUNCTION WITH ALL RELEVANT SPECIFICATIONS. ARCHITECT'S DRAWINGS AND SERVICES ENGINEER'S DRAWING

2. FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS

3. ALL DIMENSIONS ARE IN MILLIMETRES UNLESS NOTED OTHERWISE.

4. DO NOT SCALE FROM THE DRAWINGS OR THE COMPUTER DIGITAL DATA. ONLY FIGURED DIMENSIONS TO BE USED.

5. STRUCTURAL LEVELS ARE IN METRES AND RELATED TO ORDNANCE DATUM (OD). THEY ARE SHOWN THUS:

2.500m ON PLANS.

2.500m ON SECTIONS.

STRUCTURAL SLAB LEVEL (SSL) IS THE TOP SURFACE LEVEL OF THE CONCRETE SLAB IMMEDIATELY ADJACENT TO A COLUMN POSITION.

6. FOR ALL WATERPROOFING DETAILS SEE ARCHITECT'S DRAWINGS.

7. HOLES OF MAXIMUM DIMENSION LESS THAN 150mm ARE NOT SHOWN ON THE STRUCTURAL DRAWINGS. FOR DETAILS OF SUCH HOLES REFER TO RELEVANT ARCHITECT'S DRAWINGS AND SERVICES BUILDERS-WORK DRAWINGS.

8. THE WORKS CONTRACTOR IS TO PROVIDE ANY TEMPORARY BRACING NECESSARY TO MAINTAIN STRUCTURAL STABILITY DURING CONSTRUCTION.

9. THE WORKS HAVE BEEN DESIGNED AND SHALL BE CONSTRUCTED IN ACCORDANCE WITH THE FOLLOWING EUROCODES AND THEIR CORRESPONDING NATIONAL ANNEXES. THIS LIST IS NOT EXHAUSTIVE AND IS ONLY INTENDED TO LIST THE PRINCIPAL CODES USED:

BS EN 1990:2002 BASIS OF STRUCTURAL DESIGN

BS EN 1991-1-1:2002 ACTIONS ON STRUCTURES. GENERAL ACTIONS. DENSITIES, SELF-WEIGHT, IMPOSED LOADS FOR BUILDINGS BS EN 1991-1-2:2002 ACTIONS ON STRUCTURES. GENERAL ACTIONS. ACTIONS ON STRUCTURES EXPOSED TO FIRE BS EN 1991-1-3:2003 ACTIONS ON STRUCTURES. GENERAL ACTIONS. SNOW LOADS BS EN 1991-1-4:2005 ACTIONS ON STRUCTURES. GENERAL ACTIONS. WIND ACTIONS

10. THE WORKS HAVE BEEN DESIGNED FOR THE FINISH STATE. THE SUPERIMPOSED LOADS INDICATED IN THE CALCULATIONS HAVE BEEN USED IN THE DESIGN AND WILL BE MADE AVAILABLE ON REQUEST.

11. ALL WORKS SHALL COMPLY WITH BUILDING REGULATIONS AND OTHER RELEVANT STATUTORY NOTICES E.G. HEALTH AND SAFETY BYLAWS, COSHH ETC

TEMPORARY WORKS

1. THE TEMPORARY WORKS ARE THE RESPONSIBILITY OF THE CONTRACTOR AND TEMPORARY WORKS DESIGNER.

2. THE CONTRACTOR SHALL ENSURE THAT DURING PARTIAL REMOVAL OR DEMOLITION OF PARTS OF THE BUILDING, THE STABILITY OF THE REMAINING PARTS OF THE BUILDING ARE NOT COMPROMISED.

3. THE CONTRACTOR SHALL SUBMIT DESIGN RISK ASSESSMENTS FOR ALL TEMPORARY WORKS AND METHOD STATEMENTS IN ACCORDANCE WITH CDM (2015) PRIOR TO COMMENCEMENT OF THE WORKS.

4. ANY REPLACEMENT OF FLOORS OR ROOFS SHOULD BE DONE INCREMENTALLY SO AS TO NOT COMPROMISE THE STABILITY OF THE EXISTING STRUCTURE.

NOTES ON UNDERPINNING

1. THESE NOTES ARE TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S DRAWINGS AND SPECIFICATIONS.

2. PINS TO BE MAXIMUM 1.0m AND LENGTH TO MATCH ADJACENT UNDERPINNING AND CAST IN SEQUENCE TO BE AGREED WITH THE ENGINEER PRIOR TO COMMENCEMENT OF THE WORKS.

3. SHEAR KEYS AND DOWEL BARS (MIN. 4No. 160 x 800mm LONG BARS) TO BE INSERTED IN THE CONSTRUCTION JOINTS BETWEEN PINS.

4. MINIMUM 75mm DRY-PACK MORTAR, 1:3 EXPANDING CEMENT:SAND TO BE RAMMED INTO GAP BETWEEN EXISTING FOUNDATIONS AND NEW CONCRETE AFTER THE CONCRETE HAS GAINED FULL STRENGTH.

5. PINS TO BE EXCAVATED IN SEQUENCE SUCH THAT NO PINS ARE EXCAVATED WITHIN TWO METRES OF A JUST CAST PIN.

6. CONCRETE TO BE MIN. C32/40 GRADE

7. THE CONTRACTOR SHALL SUBMIT A METHOD STATEMENT WITH DIAGRAMS INDICATING THE CONSTRUCTION SEQUENCE AND TEMPORARY WORKS TO CONSTRUCT THE UNDERPINNING, WITH A PROGRAMME INDICATING WHEN THE PINS ARE TO BE CONSTRUCTED.

NOTES FOR CONCRETE

1. THESE NOTES ARE TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND SERVICES ENGINEER'S DRAWINGS AND SPECIFICATIONS.

2. ALL CONCRETE SHALL COMPLY WITH BS 5328 "CONCRETE" AND BS 8110 "STRUCTURAL USE OF CONCRETE"

3. THE STRUCTURAL CONCRETE IS TO BE GRADE C30. MASS CONCRETE SHALL BE GRADE C20P. IF AN ALTERNATIVE SOURCE OR GRADE IS PROPOSED, THE MIX SHALL BE SUBJECT TO APPROVAL AS DESCRIBED IN BS 5328 AND BS 8110.

4. COVER TO REINFORCEMENT IS TO BE AS SHOWN ON THE DRAWINGS

5. THE CONCRETE FINISHES ARE TO BE:

FINISH LOCATION

- 3U SURFACES OF ALL SLABS ALL FORMED SURFACES
- 6. 50mm THICK BLINDING CONCRETE IS TO BE PLACED UNDER ALL REINFORCED CONCRETE IN CONTACT WITH THE GROUND. CONCRETE TO BE GRADE C20P.

7. REINFORCEMENT SHALL COMPLY WITH BS 4449 OR BS 4483 AS RELEVANT. THE CONTRACTOR SHALL PREPARE BENDING SCHEDULES BASED ON THE R.C. DETAILS SHOWN ON THE DRAWINGS.

8. OPENINGS SHOWN ON THE ENGINEER'S DRAWINGS ARE TO BE CHECKED BY THE CONTRACTOR WITH THE RELEVANT SERVICES BUILDERSWORK DRAWINGS PRIOR TO CONSTRUCTION. ANY DISCREPANCIES MUST BE DRAWN TO THE ATTENTION OF THE ARCHITECT.

9. NO HOLES IN REINFORCED CONCRETE ARE TO BE FORMED OR CUT WITHOUT THE ENGINEER'S PRIOR AGREEMENT.

10. THE POSITIONS AND DETAILS OF ALL CONSTRUCTION JOINTS ARE TO BE AGREED WITH THE ENGINEER BEFORE WORK COMMENCES. MAXIMUM LENGTH OF WALL SHALL BE 10m. MAXIMUM AREA OF SLAB SHALL BE 200m².

11. WATER BARS SHALL BE USED AT ALL CONSTRUCTION JOINTS AND PENETRATIONS. PUDDLE FLANGES SHALL BE USED ON PIPEWORK PASSING THROUGH RC WALLS OR SLABS.

12. SERVICEABILITY CRITERIA SHOWN BELOW HAVE BEEN ADOPTED IN DESIGN IN ACCORDANCE WITH BS 8110. CONTRACTOR TO ENSURE ALL SUPPORTED FINISHES ALLOW FOR THESE DEFLECTIONS. PREDEFLECTION MAY BE REQUIRED FOR SIGNIFICANT PERMANENT LOADS.

BEAMS – SPAN/250 CANTILEVERS – LENGTH/125 COLUMNS – HEIGHT/300

NOTES FOR TIMBER

1. THESE NOTES ARE TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND SERVICES ENGINEER'S DRAWINGS AND SPECIFICATION.

2. ALL TIMBER-WORK SHALL COMPLY WITH BS EN 1995-1-1:2004 DESIGN OF TIMBER STRUCTURES. GENERAL. COMMON RULES AND RULES FOR BUILDINGS

3. ALL SOLID TIMBER SHALL COMPLY WITH BS EN 14081-1 AND BE GRADE C24 UNLESS NOTED OTHERWISE. EVIDENCE OF GRADING SHALL BE PROVIDED BEFORE WORK COMMENCES.

4. THE SIZES SHOWN ON THE DRAWINGS ARE FINISHED SIZES.

5. PLYWOOD SHALL COMPLY WITH BS EN 636 AND BE AS FOLLOWS:

(i) TYPE - SWEDISH GRAGE P30 SPRUCE PINE (ii) GRADE - SELECT UNSANDED

(iii) NOMINAL THICKNESS - 18.0mn (iv) NUMBER OF PLIES - 5

6. IN JOINT ZONES, WANES, SHAKES AND KNOTS ARE NOT PERMITTED.

7. TIMBER TO BE CAREFULLY CUT AND PLANED TO ENSURE TIGHT FIT AND CONTINUOUS BEARING AGAINST METALWORK

8. ALL GAPS BETWEEN TIMBER AND METALWORK TO BE RESIN-GROUTED, TO THE APPROVAL OF THE ENGINEER.

9. ALL CONNECTORS, BOLTS, NAILS ETC. SHALL BE GALVANISED.

10. ADHESIVE SHALL BE TO BS EN 301 OR BS EN 15425 TYPE WBP

11. ALL TIMBER TO BE TREATED IN ACCORDANCE WITH THE BRITISH WOOD PRESERVATIVE AND DAMP-PROOFING ASSOCIATION COMMODITY SPECIFICATION C8 FOR 40 YEARS DESIRED SERVICE LIFE.

12. ALL TIMBER FLAT ROOFS TO BE TIED DOWN WITH EXPAMET STSS STAINLESS STEEL VERTICAL RESTRAINT STRAPS © 1200mm c/c. ALL WALLS TO BE LATERALLY RESTRAINED WITH EXPAMET HS HORIZONTAL RESTRAINT STRAPS © 1200mm c/c.

13. SERVICEABILITY CRITERIA SHOWN BELOW HAVE BEEN ADOPTED IN DESIGN IN ACCORDANCE WITH BS EN 1995-1-1. CONTRACTOR TO ENSURE ALL SUPPORTED FINISHES ALLOW FOR THESE DEFLECTIONS. PREDEFLECTION MAY BE REQUIRED FOR SIGNIFICANT PERMANENT LOADS. ALSO NOTE THAT TIMBER EXHIBITS LONG TERM CREEP AND WILL THEREFORE CONTINUE TO DEFLECT AFTER LOAD HAS BEEN APPLIED.

BEAMS - SPAN/250 CANTILEVERS - LENGTH/125 COLUMNS - HEIGHT/300

NOTES FOR STRUCTURAL STEELWORK

1. THESE NOTES ARE TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S AND SERVICES ENGINEER'S DRAWINGS AND SPECIFICATIONS

2. THE DESIGN, FABRICATION & ERECTION OF THE STRUCTURAL STEELWORK IS TO BE IN ACCORDANCE WITH THE FOLLOWING DOCUMENTS:

BS EN 1993-1-1:2005 DESIGN OF STEEL STRUCTURES. GENERAL RULES AND RULES FOR BUILDINGS DATIONAL STRUCTURAL STEELWORK SPECIFICATION FOR BUILDING CONSTRUCTION -THE LATEST EDITION.

ALL CLAUSES OF THE ABOVE, INCLUDING APPENDICES ARE DEEMED TO BE PART OF THIS SPECIFICATION.

3. FABRICATION DRAWINGS SHALL BE SUBMITTED FOR APPROVAL 14 DAYS PRIOR TO COMMENCEMENT OF FABRICATION, UNLESS AGREED OTHERWISE. IF FABRICATION DRAWINGS ARE NOT TO BE SUBMITTED THE FABRICATOR SHALL BE RESPONSIBLE FOR COORDINATION OF THE ARCHITECT'S AND ENGINEER'S DRAWINGS. ANY DISCREPANCY SHALL BE NOTIFIED IMMEDIATELY TO THE CONTRACT ADMINISTRATOR, AND PRIOR TO COMMENCEMENT OF FABRICATION.

4. ALL STEELWORK SHALL COMPLY WITH BS EN 10025-1 to 6, BS EN 10210-1.

5. ALL ROLLED STEEL SHALL BE GRADE S355 UNLESS NOTED OTHERWISE. STEEL GRADE SHALL CONFORM WITH TABLE 3.1 OF BS EN 1993-1-1. ALL HOLLOW SECTION STEELWORK TO BE CELSIUS 355 TO BS EN 10210-1

6. UNLESS NOTED OTHERWISE ALL BUTT WELDS SHALL BE FULL PENETRATION.

7. UNLESS NOTED OTHERWISE ALL FILLET WELDS SHALL BE FULL PROFILE WITH A MINIMUM LEG LENGTH OF $6 \mathrm{mm}.$

8. UNLESS NOTED OTHERWISE ALL ORDINARY BOLT ASSEMBLIES SHALL BE M16 GRADE 8.8.

9. UNLESS NOTED OTHERWISE ALL HOLDING DOWN BOLTS SHALL BE M16 GRADE 8.8 ANCHORED A MINIMUM OF 200mm DEPTH INTO THE SUPPORTING CONCRETE WITH A 100x100x8 THICK WASHER PLATE AT THE EMBEDDED HEAD OF THE BOLT.

10. THE CLEARANCE OF BASE PLATES FROM SUPPORTING CONCRETE SHALL BE A MINIMUM OF 20mm AND ON COMPLETION OF ERECTION THIS SHALL BE GROUTED SOLID UNDER THE FULL AREA OF THE BASE PLATE WITH 1:2 SAND: CEMENT GROUT.

11. CORROSION PROTECTION FOR INTERNAL STEELWORK:

a) SURFACE PROTECTION - BLAST CLEAN TO SA 2.5 QUALITY BS EN ISO 8501-1.
 b) PREFABRICATOR PRIMER - EPOXY ZINC PHOSPHATE HB: 50 MICRONS (DFT).
 c) FINISHING COAT - SEE ARCH'S SPEC.

d) SEE ARCH'S SPECIFICATION FOR DETAILS ON COLOUR AND TEXTURE.

12. CORROSION PROTECTION FOR EXTERNAL STEELWORK TO BE HOT DIP GALVANIZED.

13. FIRE PROTECTION TO BE SPECIFIED BY THE ARCHITECT AND TO BE ACHIEVED AS FOLLOWS

1/2 HOUR ONE LAYER OF PLASTERBOARD AND SKIM COAT OR INTUMESCENT PAINT TO

1 HOUR TWO LAYERS OF PLASTERBOARD WITH JOINTS STAGGERED AND SKIM COAT OR INTUMESCENT PAINT TO MANUFACTURER'S SPECIFICATION.

14. SERVICEABILITY CRITERIA SHOWN BELOW HAVE BEEN ADOPTED IN DESIGN IN ACCORDANCE WITH NA TO BS EN 1993-1-1. CONTRACTOR TO ENSURE ALL SUPPORTED FINISHES ALLOW FI THESE DEFLECTIONS. PREDEFLECTION MAY BE REQUIRED FOR SIGNIFICANT PERMANENT LOADS. FOR

BEAMS - SPAN/360 CANTILEVERS - LENGTH/180 COLUMNS - HEIGHT/300

NOTES FOR MASONRY

1. THESE NOTES ARE TO BE READ IN CONJUNCTION WITH RELEVANT ARCHITECT'S SERVICES ENGINEER'S DRAWINGS AND SPECIFICATIONS.

2. ALL BRICKWORK SHALL COMPLY WITH BS EN 1996-1-1:2005 DESIGN OF MASONRY STRUCTURES. GENERAL RULES FOR REINFORCED AND UNREINFORCED MASONRY STRUCTURES.

3. ALL BRICKS SHALL HAVE A MINIMUM CRUSHING STRENGTH OF 20N/mm

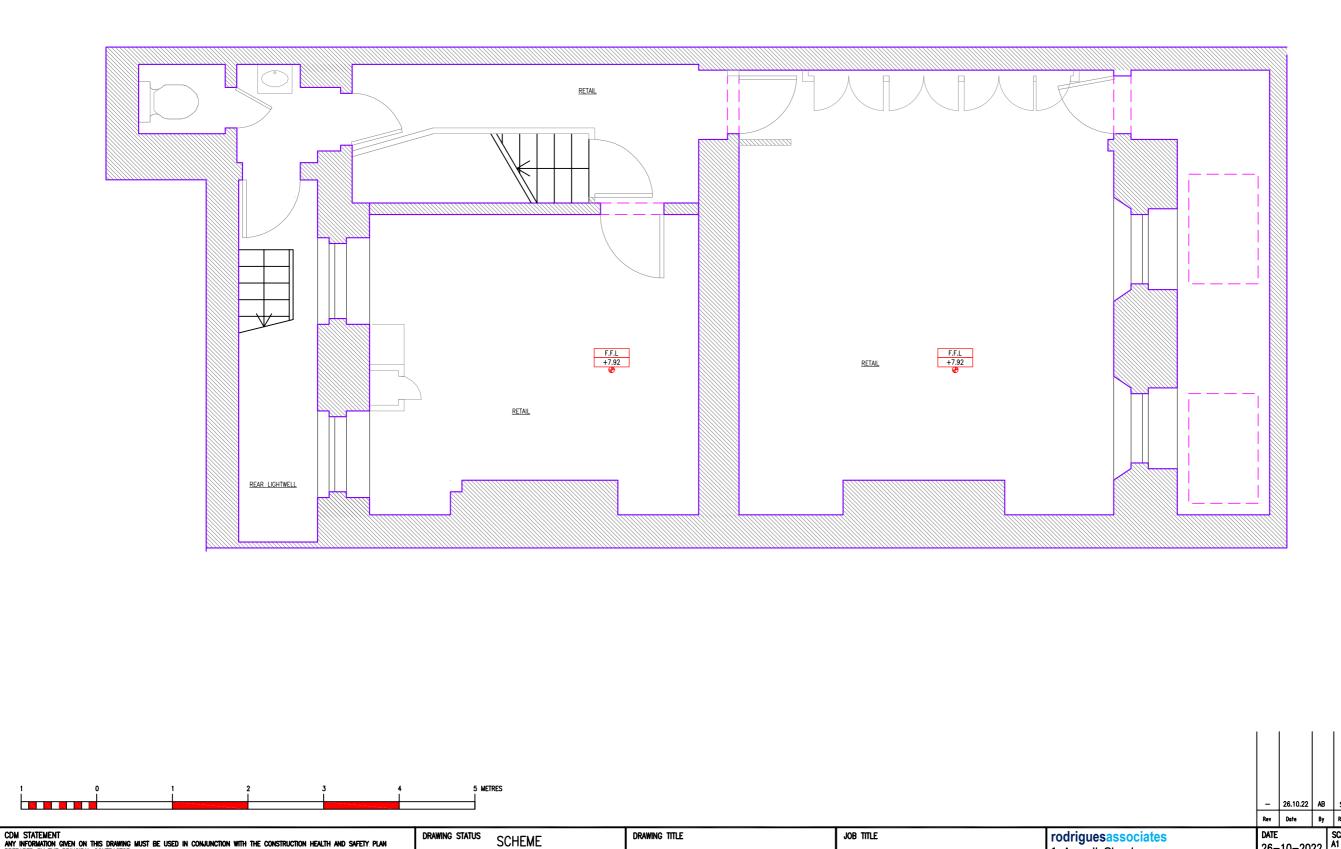
4. BLOCKWORK SHALL HAVE A MINIMUM CRUSHING STRENGTH OF 7N/mm

5. MORTAR SHALL BE CLASS (iii) / M4 CEMENT: LIME: SAND MIX (1:1:6), UNLESS INDICATED OTHERWISE.

6. ALL VERTICAL JOINTS SHALL BE COMPLETELY FILLED. BRICKS SHALL BE LAID FROG UP. THE VOIDS IN PERFORATED BRICKS SHALL BE FILLED.

7. FISSURED BRICKS OR BRICKS WITH VOIDS SHALL NOT BE USED.

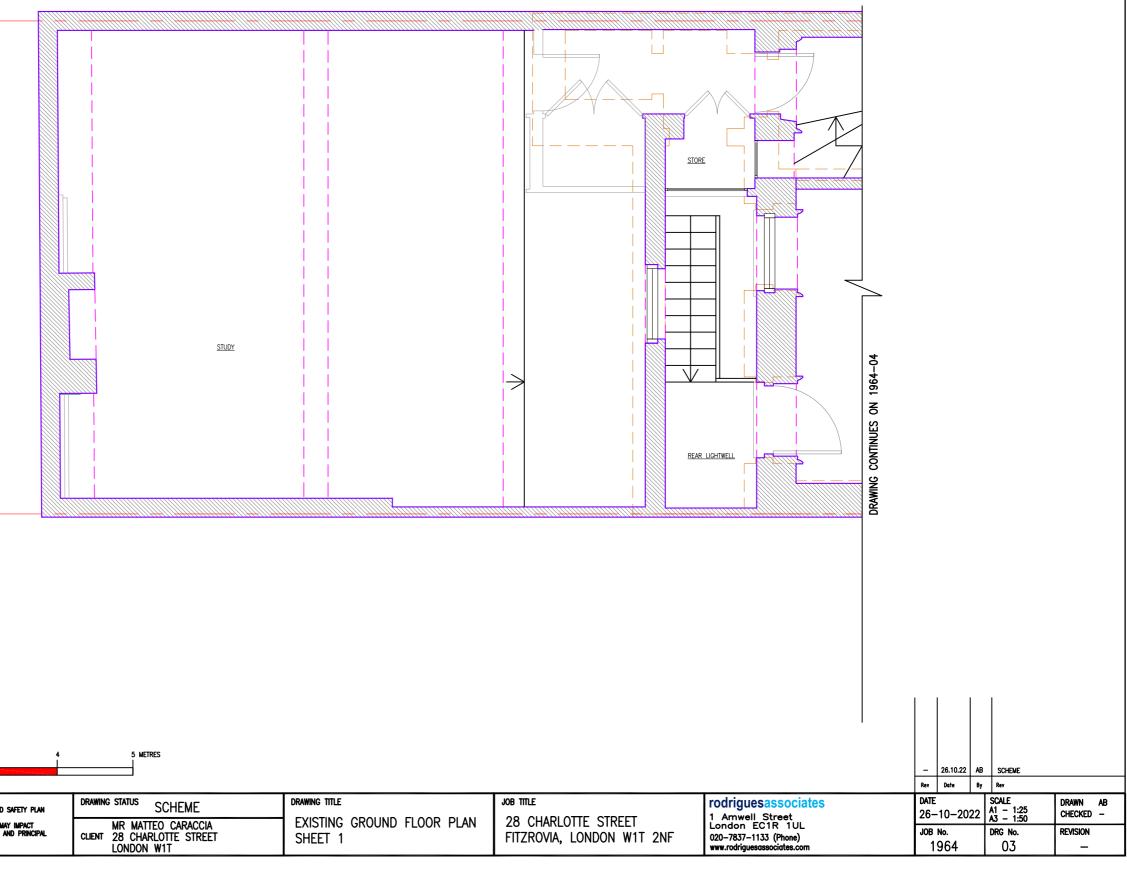
8. HORIZONTAL CHASES ARE PROHIBITED. VERTICAL CHASES AND BUILDERSWORK HOLES SHALL BE AGREED WITH THE ARCHITECT.


9. WALL TIES TO BE ANCON ST1 TYPE 1 TIE AT 450mm VERTICALLY AND 900mm HORIZONTALLY UNLESS OTHERWISE STATED

CDM STATEMENT Any information given on this drawing must be used in conjunction with the construction health and safety plan	DRAWING STATUS SCHEME	DRAWING TITLE	JOB TITLE	rodriguesassocia
PREPARED BY THE FRINCIPAL CONTRACTOR. Any changes in design, or contractor. Upon the design, construction or use of the building, must be notified to the principal contractor and principal designer immediately.	MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET LONDON W1T	GENERAL NOTES AND SPECIFICATIONS	28 CHARLOTTE STREET FITZROVIA, LONDON W1T 2NF	1 Amwell Street London EC1R 1UL 020-7837-1133 (Phone) www.rodriguesassociates.com

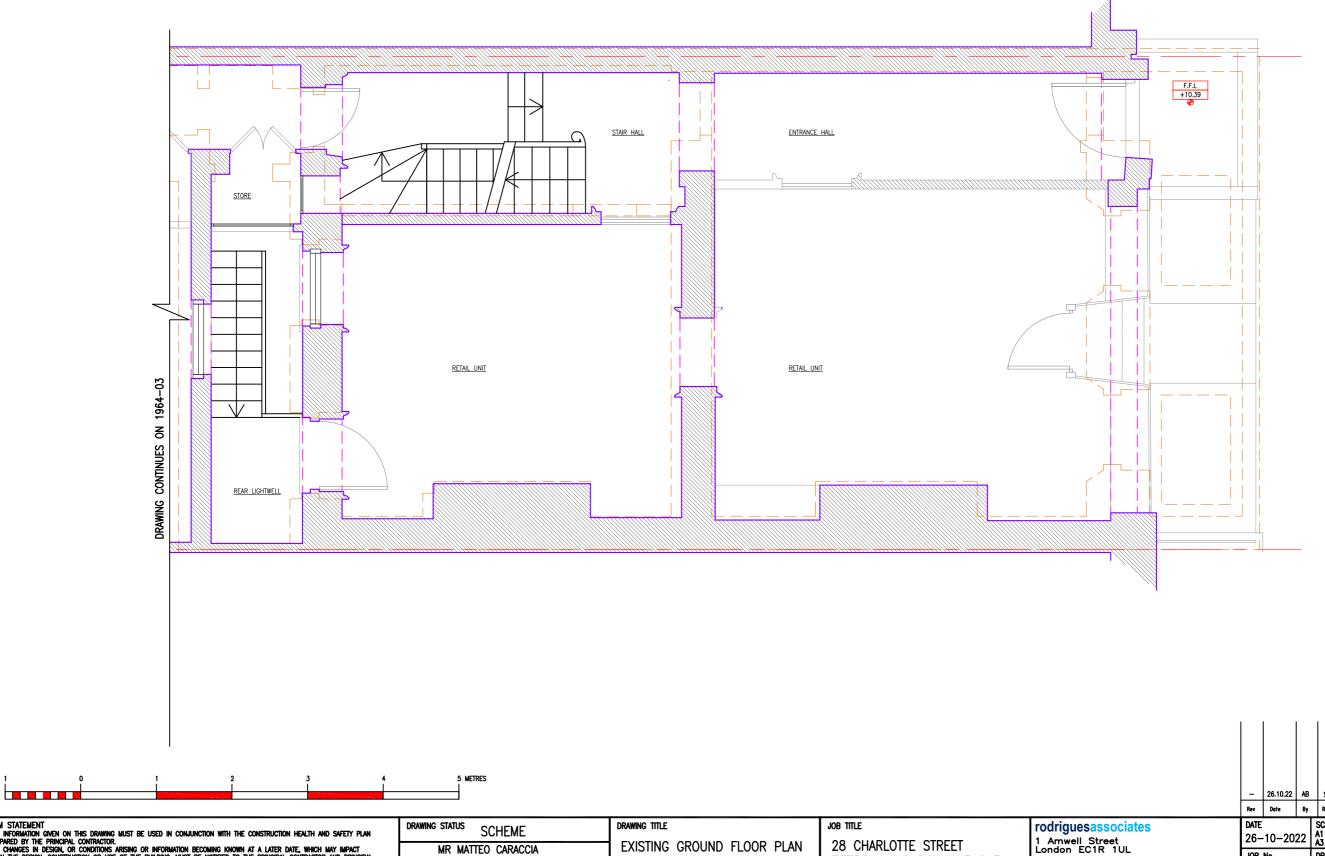
	 Rev	26.10.22 Date	AB By	SCHEME Rev	
ciates	date 26-	10-20	22	SCALE N/A	DRAWN AB Checked —
UL ne) s.com	јов №. 1964			drg no. 01	REVISION —

1


1 1

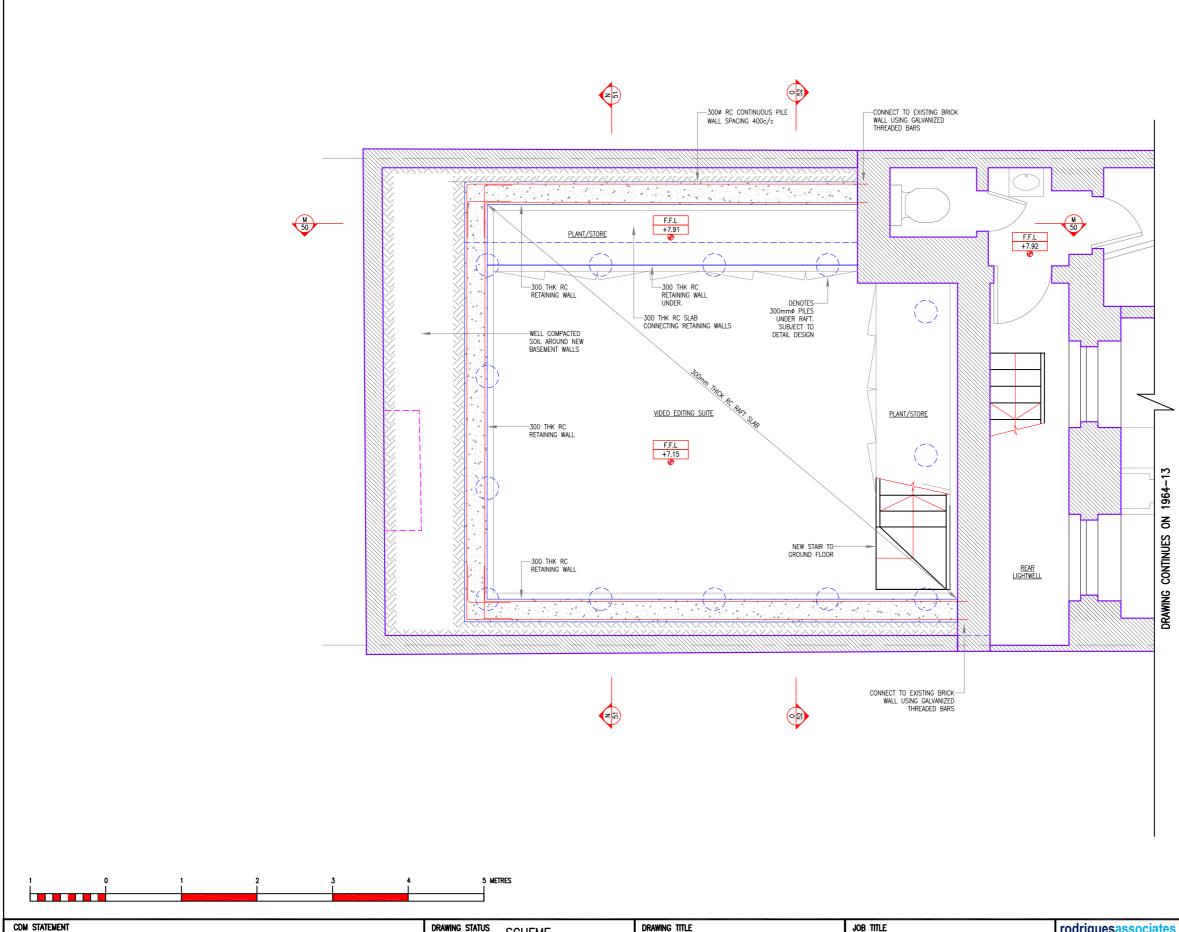
CUM STATEMENT Any information given on this drawing must be used in conjunction with the construction health and safety plan Prepared by the principal contractor.	DRAWING STATUS SCHEME	DRAWING IIILE		1 Amwell Street
ANY CHANGES IN DESIGN, OR CONDITIONS ARISING OR INFORMATION BECOMING KNOWN AT A LATER DATE, WHICH MAY IMPACT UPON THE DESIGN, CONSTRUCTION OR USE OF THE BUILDING, MUST BE NOTIFIED TO THE PRINCIPAL CONTRACTOR AND PRINCIPAL DESIGNER IMMEDIATELY.	MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET LONDON W1T	EXISTING BASEMENT PLAN	28 CHARLOTTE STREET FITZROVIA, LONDON W1T 2NF	London EC1R 1UI 020-7837-1133 (Phone) www.rodriguesassociates.cc

- 1. FOR GENERAL NOTES SEE DRAWING 1967 01
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.


		26.10.22 Date	AB By	SCHEME Rev	
et	date 26-	10-20		SCALE A1 - 1:25 A3 - 1:50	DRAWN AB CHECKED -
1UL none) tes.com	JOB			drg no. 02	REVISION —

ANY INFORMATION GVEN ON THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE CONSTRUCTION HEALTH AND SAFETY PLAN PREPARED BY THE PRIVIDUAL CONTROLL CONTROLL CONTROL OF ONE OF A LATER DATE, WHICH MAY IMPACT MY CHANGES IN DESIGN, OR CONDITIONS ARSING OR INFORMATION BECOMING KNOWN AT A LATER DATE, WHICH MAY IMPACT	DRAWING STATUS SCHEME MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET LONDON W1T	drawing title EXISTING GROUND FLOOR PLAN SHEET 1	28 CHARLOTTE STREET	rodriguesassocia 1 Amwell Street London EC1R 1UL 020-7837-1133 (Phone) www.rodriguesassociates.co
---	--	--	---------------------	---

- 1. FOR GENERAL NOTES SEE DRAWING 1967 01
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

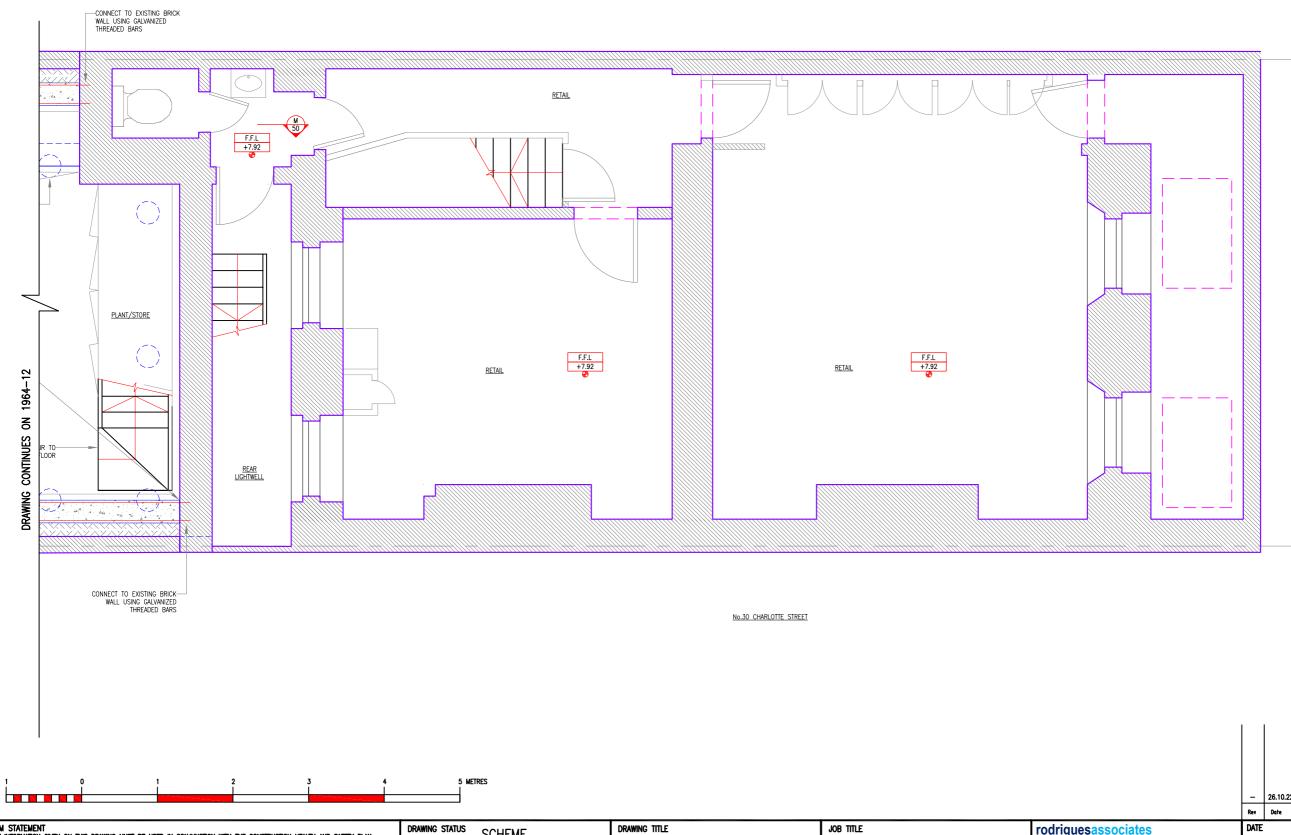

SHEET 2

CDM STATEMENT ANY INFORMATION GIVEN ON THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE CONSTRUCTION HEALTH AND SAFETY PLAN PREPARED BY THE PRINCIPAL CONTRACTOR. ANY CHANGES IN DESIGN, OR CONDITIONS ARISING OR INFORMATION BECOMING KNOWN AT A LATER DATE, WHICH MAY IMPACT UPON THE DESIGN, CONSTRUCTION OR USE OF THE BUILDING, MUST BE NOTIFIED TO THE PRINCIPAL CONTRACTOR AND PRINCIPAL DESIGNER IMMEDIATELY. CLIENT MR MATTEO CARACCIA 28 CHARLOTTE STREET LONDON W1T

28 CHARLOTTE STREET FITZROVIA, LONDON W1T 2NF

- 1. FOR GENERAL NOTES SEE DRAWING 1967 01
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

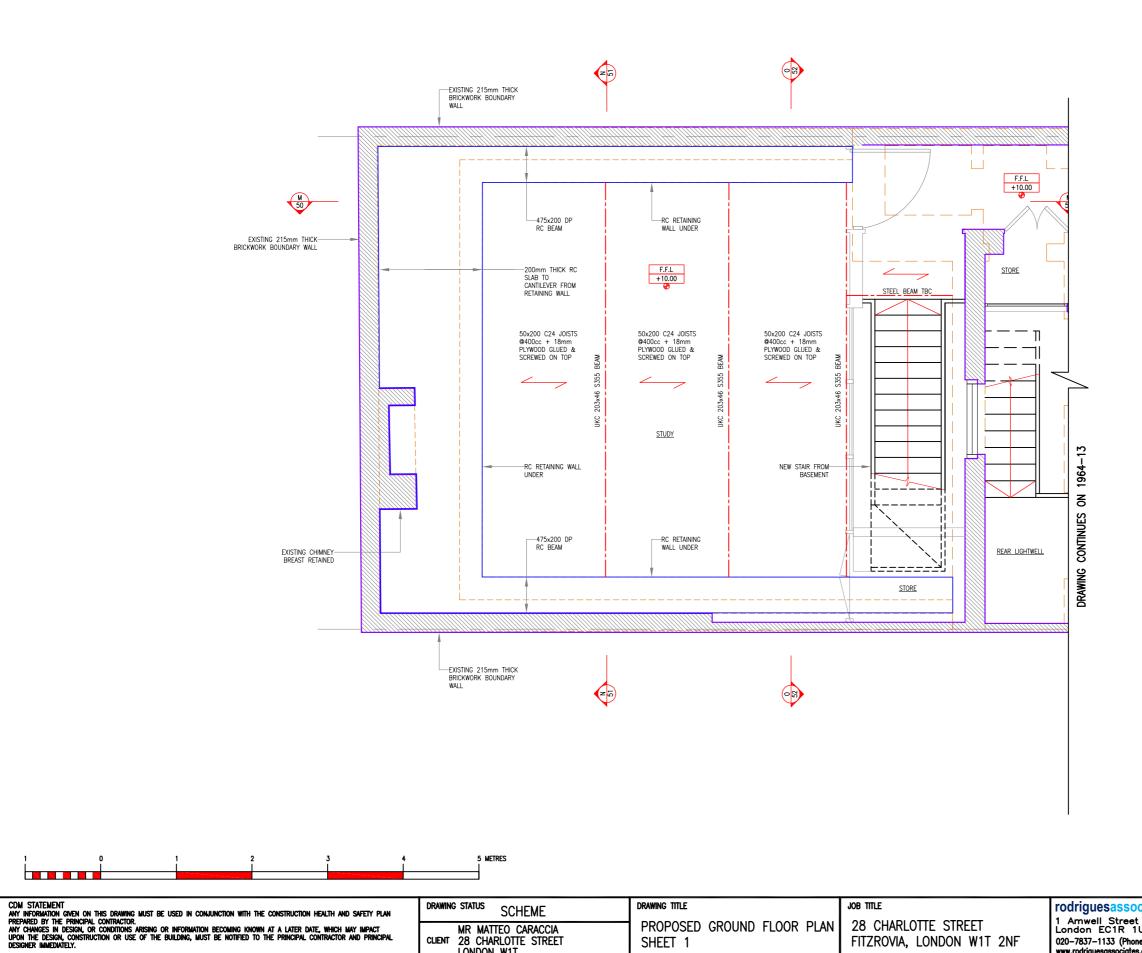
	_	26.10.22	AB	SCHEME	
	Rev	Date	By	Rev	
rodriguesassociates	date 26-	-10-20	<u></u>	SCALE A1 - 1:25 A3 - 1:50	DRAWN AB CHECKED —
London EC1R 1UL 020–7837–1133 (Phone) www.rodriguesassociates.com	job 1	№. 964		drg no. 04	REVISION —



COM STATEMENT ANY INFORMATION GIVEN ON THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE CONSTRUCTION HEALTH AND SAFETY PLAN PREPARED BY THE PRINCIPAL CONTRACTOR. DRAWING STATUS SCHEME DRAWING STATUS DRAWING TITLE DRAWING TITL					
UPON THE DESIGN, CONSTRUCTION OR USE OF THE BUILDING, MUST BE NOTIFIED TO THE PRINCIPAL CONTRACTOR AND PRINCIPAL CULENT 28 CHARLOTTE STREET SHEET 1 FITZROVIA, LONDON W1T 2NF 020-7837-1133 (P	ANY INFORMATION GIVEN ON THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE CONSTRUCTION HEALTH AND SAFETY PLAN PREPARED BY THE PRINCIPAL CONTRACTOR. ANY CHANGES IN DESIGN, OR CONDITIONS ARISING OR INFORMATION BECOMING KNOWN AT A LATER DATE, WHICH MAY IMPACT UPON THE DESIGN, CONSTRUCTION OR USE OF THE BUILDING, MUST BE NOTIFIED TO THE PRINCIPAL CONTRACTOR AND PRINCIPAL	MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET	PROPOSED BASEMENT PLAN	28 CHARLOTTE STREET	rodriguesassocial 1 Amwell Street London EC1R 1UL 020-7837-1133 (Phone) www.rodriguesassociates.com

- 1. FOR GENERAL NOTES SEE DRAWING 1967 01
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

	A _	26.10.22 06.03.20	AB IG	Scheme Initial draft	
	Rev	Date	By	Rev	
ciates	date 04-	-03–20	20	SCALE A1 - 1:25 A3 - 1:50	DRAWN IG CHECKED CB
UL ne) s.com	job no. 1964			drg no. 12	REVISION


No.26 CHARLOTTE STREET

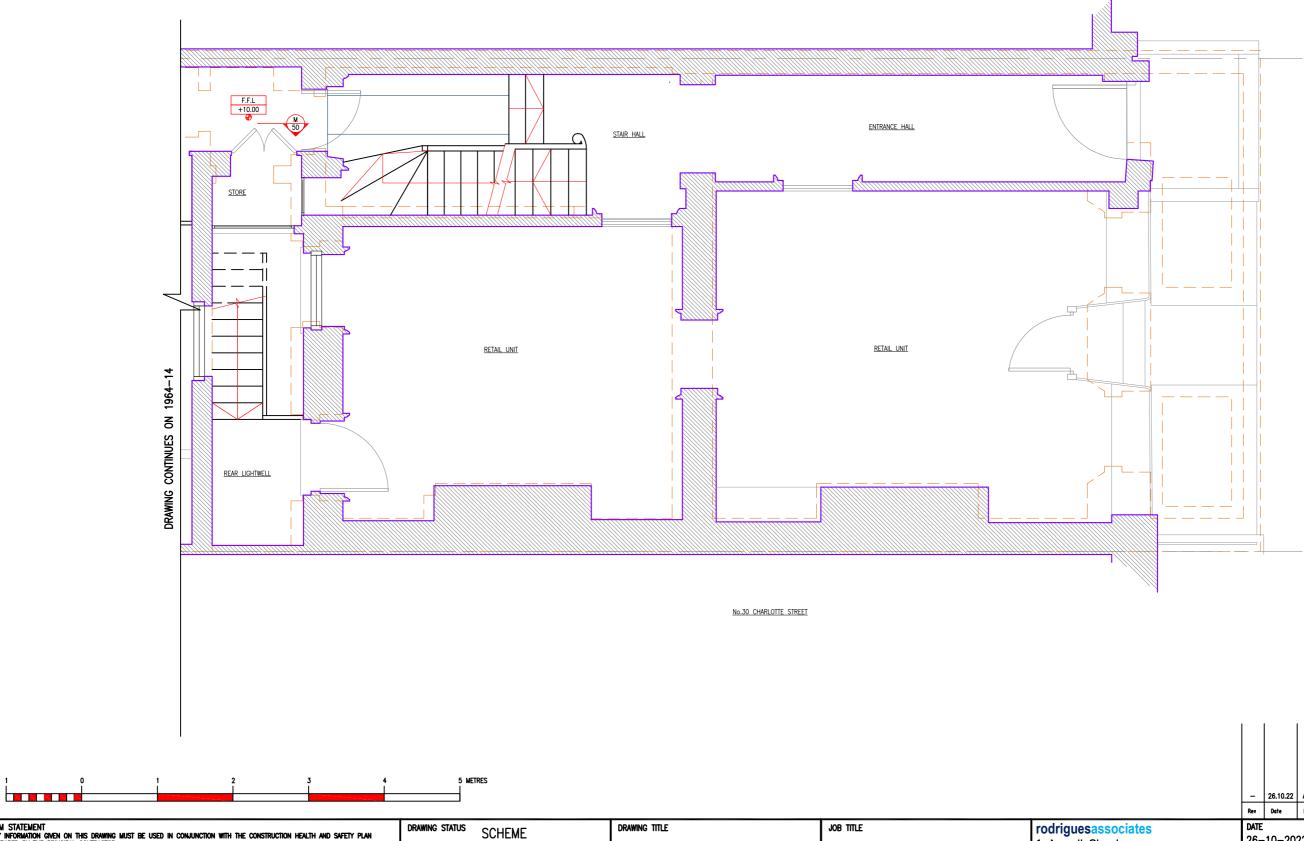
CDM STATEMENT ANY INFORMATION GIVEN ON THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE CONSTRUCTION HEALTH AND SAFETY PLAN PREPARED BY THE PRINCIPAL CONTRACTOR. ANY CHANGES IN DESIGN, OR CONDITIONS ARISING OR INFORMATION BECOMING KNOWN AT A LATER DATE, WHICH MAY IMPACT UPON THE DESIGN, CONSTRUCTION OR USE OF THE BUILDING, MUST BE NOTIFIED TO THE PRINCIPAL CONTRACTOR AND PRINCIPAL DESIGNER IMMEDIATELY. CLIEN

5 METRES				_	26.10.22	AB	SCHEME		
				Rev	Date	By	Rev		
RAWING STATUS SCHEME	drawing title PROPOSED BASEMENT PLAN	job tile 28 CHARLOTTE STREET	1 Amwell Street	date 26-	10-20	22	A4 4.0E I	Drawn Ab Checked —	
MR MATTEO CARACCIA LIENT 28 CHARLOTTE STREET LONDON W1T	SHEET 2		London EC1R 1UL 020-7837-1133 (Phone) www.rodriguesassociates.com					No. REVISION	

- 1. FOR GENERAL NOTES SEE DRAWING 1967 01
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET SHEET 1 LONDON W1T

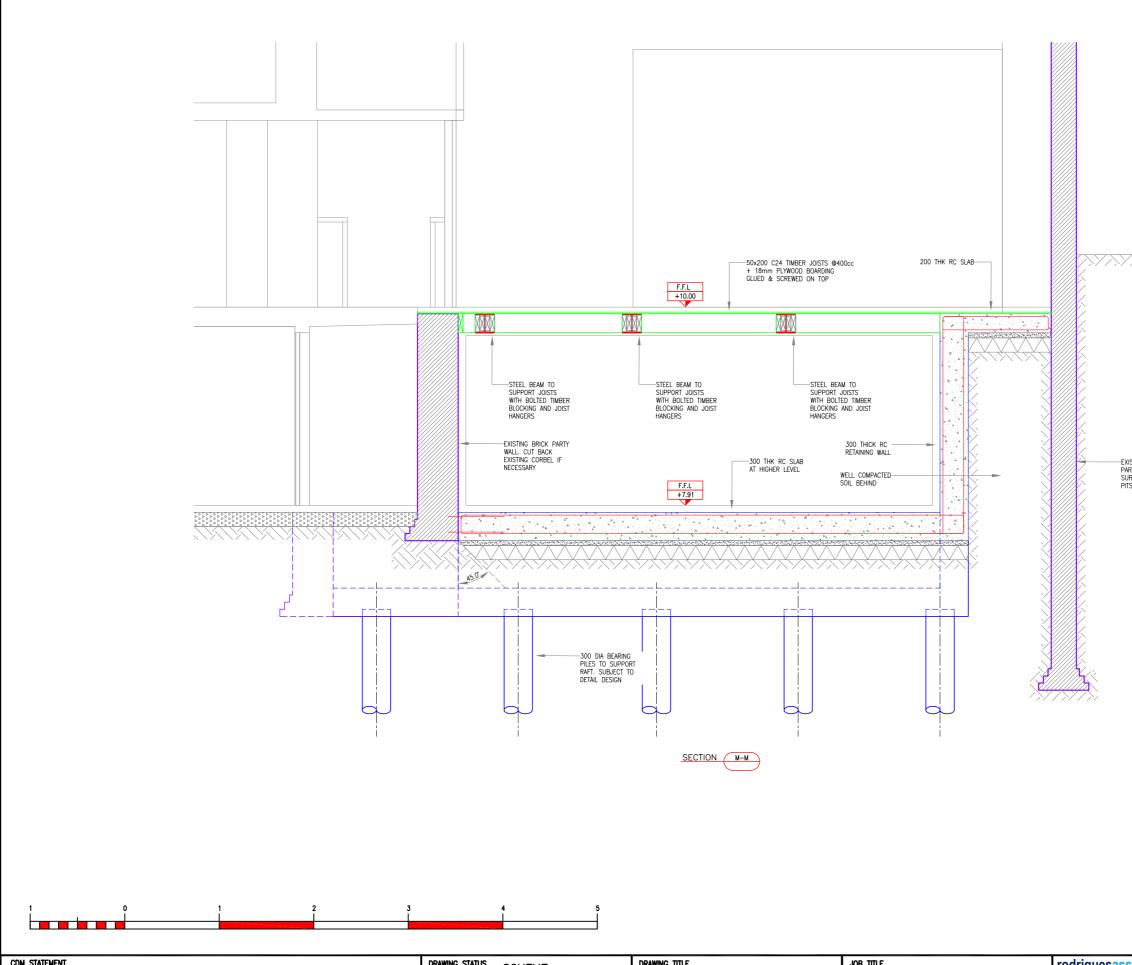
020-7837-1133 (Phone www.rodriguesassociates. FITZROVIA, LONDON W1T 2NF


1. FOR GENERAL NOTES SEE DRAWING 1967 - 01

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

A _	26.10.22 06.03.20	AB IG	scheme Initial draft	
Rev	Date	By	Rev	
		20	SCALE A1 - 1:25 A3 - 1:50	DRAWN IG CHECKED CB
			drg no. 14	REVISION
	- Rev DATE 04- JOB	- 06.03.20 Rev Date DATE	- 06.03.20 IG Rev Date By DATE 04−03−2020 JOB No.	- 06.03.20 IG INITIAL DRAFT Rev Date By Rev DATE SCALE A1 - 1:25 04-03-2020 A1 - 1:50 1:50 JOB No. DRG No. DRG No.

NOTES

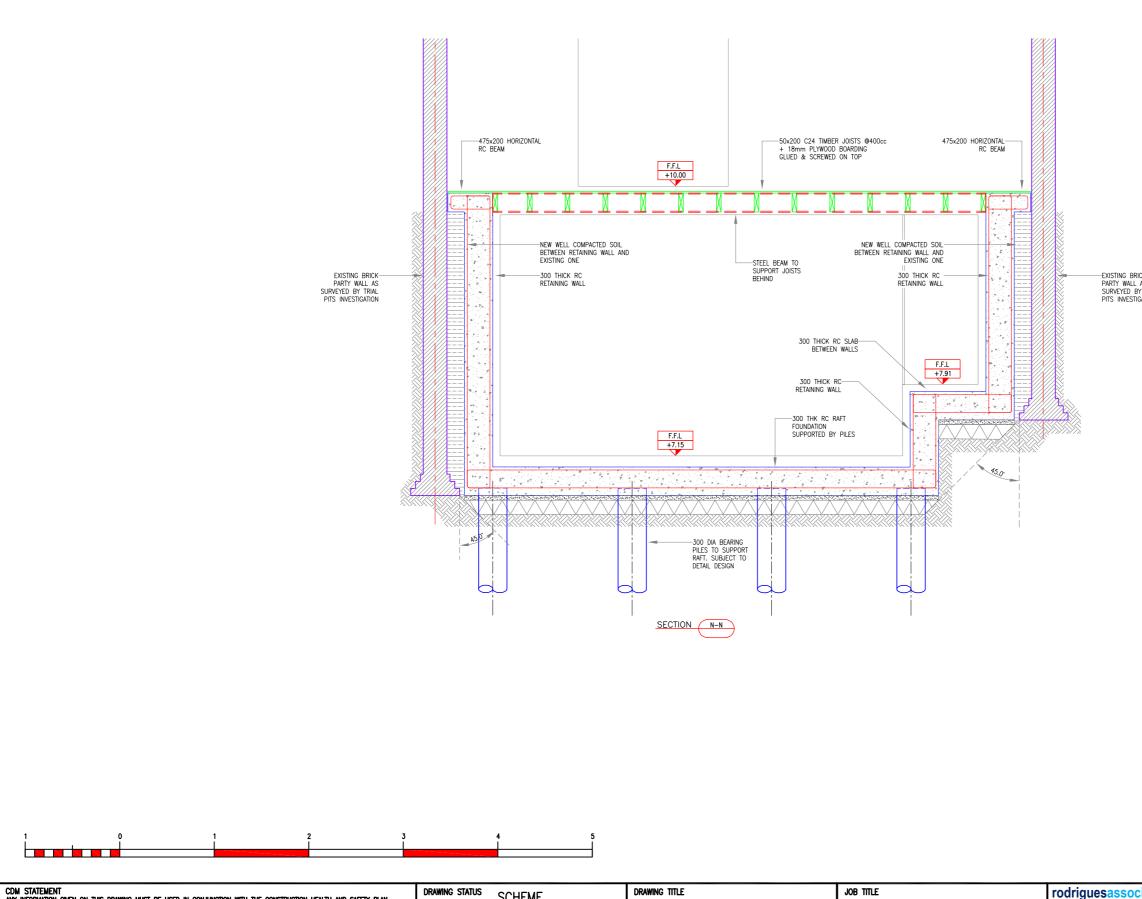

No.26 CHARLOTTE STREET

CDM STATEMENT ANY INFORMATION GIVEN ON THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE CONSTRUCTION HEALTH AND SAFETY PLAN PREPARED BY THE PRINCIPAL CONTRACTOR. ANY CHANGES IN DESIGN, OR CONDITIONS ARISING OR INFORMATION BECOMING KNOWN AT A LATER DATE, WHICH MAY IMPACT UPON THE DESIGN, CONSTRUCTION OR USE OF THE BUILDING, MUST BE NOTIFIED TO THE PRINCIPAL CONTRACTOR AND PRINCIPAL DESIGNER IMMEDIATELY.

5 METRES				_	26.10.22	AB	SCHEME	
				Rev	Date	By	Rev	
drawing status SCHEME	DRAWING TITLE			date 26-	10-20)22	SCALE A1 - 1:25 A3 - 1:50	Drawn Ab Checked —
MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET LONDON W1T	PROPOSED GROUND FLOOR PLAN SHEET 2	28 CHARLOTTE STREET FITZROVIA, LONDON W1T 2NF	London EC1R 1UL 020–7837–1133 (Phone) www.rodriguesassociates.com	JOB 1	‰. 964		DRG No. 15	REVISION —

- 1. FOR GENERAL NOTES SEE DRAWING 1967 01
- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

CDM STATEMENT ANY INFORMATION GIVEN ON THIS DRAWING MUST BE USED IN CONJUNCTION WITH THE CONSTRUCTION HEALTH AND SAFETY PLAN	DRAWING STATUS SCHEME	DRAWING TITLE	JOB TITLE	rodriguesassocia
PREPARED BY THE PRINCIPAL CONTRACTOR. May changes in design, or conditions arising or information becoming known at a later date, which may impact upon the design, construction or use of the building, must be notified to the principal contractor and principal designer immediately.	MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET LONDON, W1T	PROPOSED SECTION M-M	28 CHARLOTTE STREET FITZROVIA, LONDON W1T 2NF	1 Arnwell Street London EC1R 1UL 020–7837–1133 (Phone) www.rodriguesassociates.com


NOTES

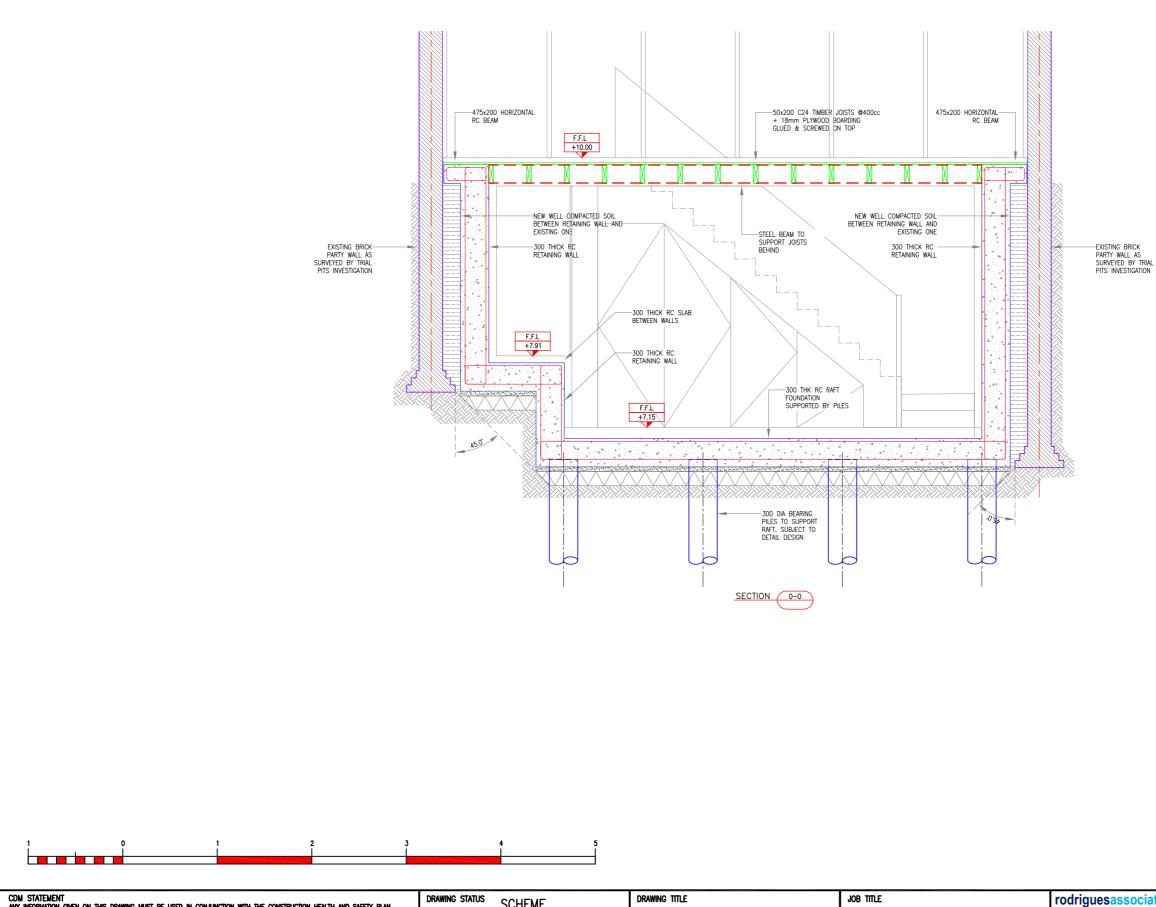
1. FOR GENERAL NOTES SEE DRAWING 1967 - 01

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

-EXISTING BRICK PARTY WALL AS SURVEYED BY TRIAL PITS INVESTIGATION

	A –	26.10.22 06.03.20	AB	scheme revised Initial draft	
	Rev	Date	Ву	Rev	
ociates	date 04-	03-20	20	SCALE A1 - 1:20 A3 - 1:40	DRAWN IG CHECKED CB
UL ne) s.com	JOB 1	∾. 964		drg №. 50	REVISION A

CDM STATEMENT Any information given on this drawing must be used in conjunction with the construction health and safety plan prepared by the principal contractor.	DRAWING STATUS SCHEME	DRAWING TITLE	JOB TILE	rodriguesassocia
ANY CHARGES IN DESIGN, OR CONDITIONS ARISING OR INFORMATION BECOMING KNOWN AT A LATER DATE, WHICH MAY IMPACT UPON THE DESIGN, CONSTRUCTION OR USE OF THE BUILDING, MUST BE NOTIFIED TO THE PRINCIPAL CONTRACTOR AND PRINCIPAL DESIGNER IMMEDIATELY.	MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET LONDON, W1T	PROPOSED SECTION N-N	28 CHARLOTTE STREET FITZROVIA, LONDON W1T 2NF	London EC1R 1UL 020-7837-1133 (Phone) www.rodriguesassociates.co


NOTES

1. FOR GENERAL NOTES SEE DRAWING 1967 - 01

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

ICI A	
łΥ	TRIAL
GA	TION

	A _	21.10.22 06.03.20	AB IG	scheme revised Initial draft	
	Rev	Date	By	Rev	
ciates	date 04-	03-20	20	SCALE A1 - 1:20 A3 - 1:40	DRAWN IG CHECKED CB
UL ne) s.com	job 1	∾. 964		drg №. 51	revision A

CDM STATEMENT Any information given on this drawing must be used in conjunction with the construction health and safety plan	DRAWING STATUS SCHEME	DRAWING TITLE	JOB TITLE	rodriguesassocia
PREPARED BY THE PRINCIPAL CONTRACTOR. Any Changes in Design, or conditions arising or information becoming known at a later date, which may impact upon the design, construction or use of the building, must be notified to the principal contractor and principal designer immediately.	MR MATTEO CARACCIA CLIENT 28 CHARLOTTE STREET LONDON, W1T	PROPOSED SECTION 0-0	28 CHARLOTTE STREET FITZROVIA, LONDON W1T 2NF	1 Arnwell Street London EC1R 1UL 020-7837-1133 (Phone) www.rodriguesassociates.com

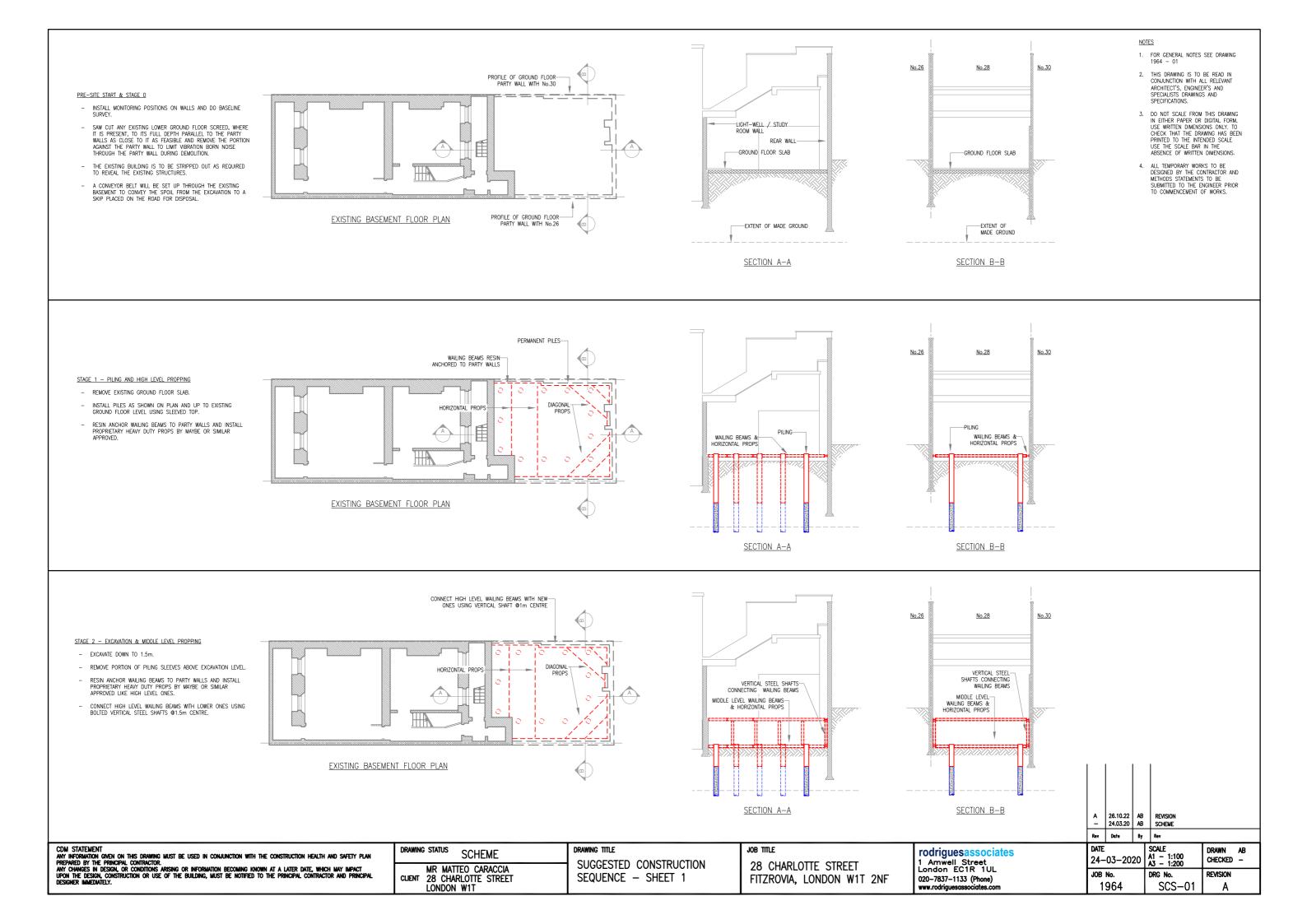
NOTES

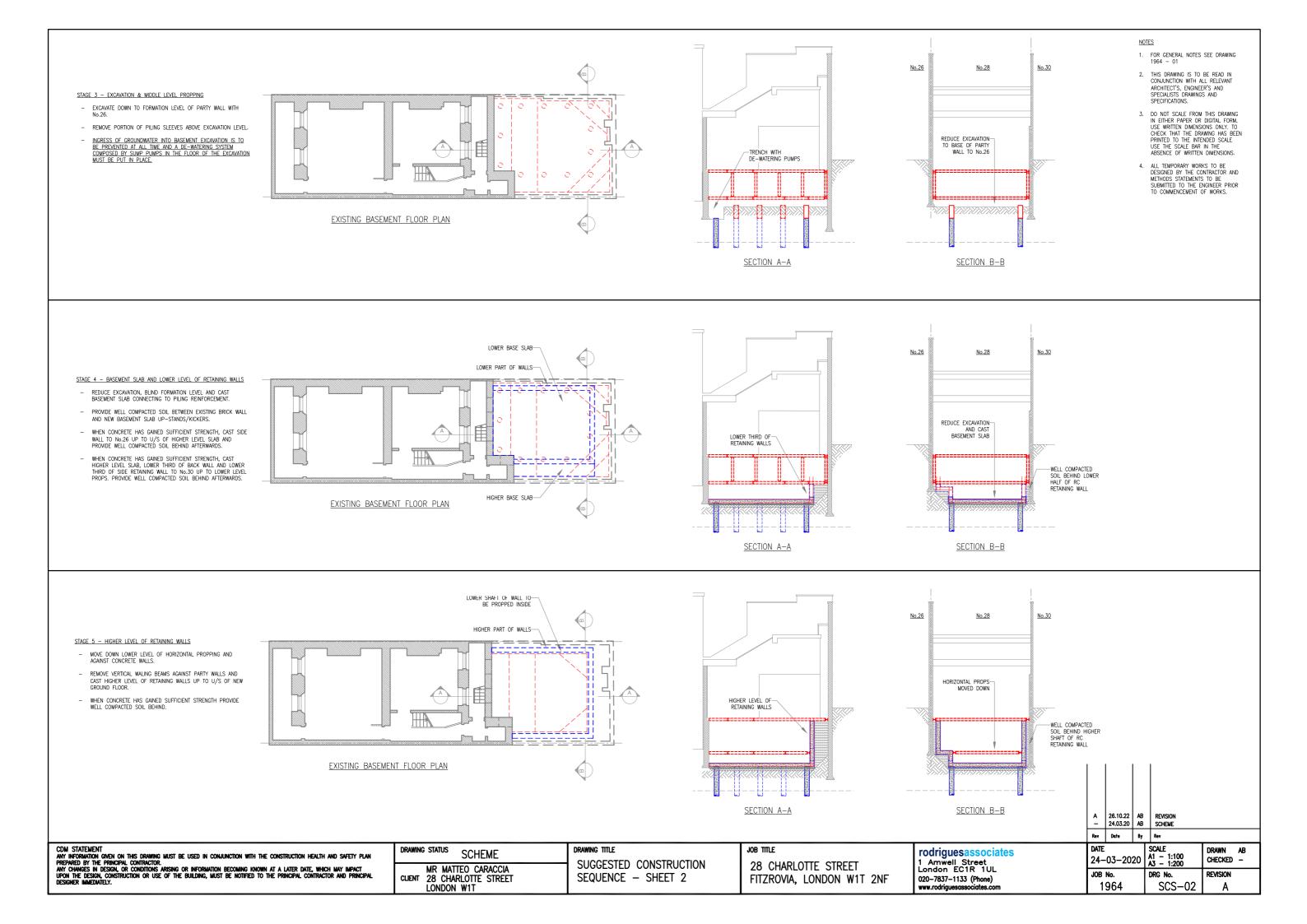
1. FOR GENERAL NOTES SEE DRAWING 1967 - 01

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, ENGINEER'S AND SPECIALISTS DRAWINGS AND SPECIFICATIONS.
- DO NOT SCALE FROM THIS DRAWING IN EITHER PAPER OR DIGITAL FORM. USE WRITTEN DIMENSIONS ONLY. TO CHECK THAT THE DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE USE THE SCALE BAR IN THE ABSENCE OF WRITTEN DIMENSIONS.
- ALL TEMPORARY WORKS TO BE DESIGNED BY THE CONTRACTOR AND METHODS STATEMENTS TO BE SUBMITTED TO THE ENGINEER PRIOR TO COMMENCEMENT OF WORKS.

		26.10.22 Date	AB	SCHEME REVISED	
ociates	date 26-	10-20	22	SCALE A1 - 1:20 A3 - 1:40	DRAWN AB Checked —
UL ne) s.com	job 1	№. 964		drg №. 52	REVISION —

Appendix B – Proposed Construction Sequence


For


28, Charlotte Street

Fitzrovia

London W1T

rodriguesassociates 1 Amwell Street London EC1R 1UL tel: (+44) 020 7837 1133 www.rodriguesassociates.com October 2022

Appendix C – Preliminary Structural Calculations

For

28, Charlotte Street

Fitzrovia

London W1T

rodriguesassociates

1 Amwell Street London EC1R 1UL Telephone 020 7837 1133 www.rodriguesassociates.com October 2022

driquesa	ssociates		Job No.: Sheet	t No.:	Rev:
Amwell Str	reet, Londo	n, EC1R 1UL	1964	C1. 1	
020 7837 1 b title:		w.rodriguesassociates.com	1304	01. 1	
Iculations:	28 Cha	rlotte Street	Designed: A Date:		Ckd:
iculations.		Area Loads	Designed: AB Date:	26/10/2022	CKU.
<u>Existir</u>	ng flat roo	<u>f</u>			
	Dead	Asphalt		0.40 kN/m ²	
	200.0	Boarding		0.14 kN/m ²	
		Insulation		0.05 kN/m ²	
		Joists		0.15 kN/m ²	
		Services		0.05 kN/m ²	
		Plasterboard and skim coat		0.18 kN/m ²	
				0.97 kN/m ²	_
	Impose	ed (allowing for maintenance c	of structure above)	1.50 kN/m ²	
<u>Exterr</u>	nal brick w	<u>/all</u>			
	Deci			7.70 kN/m ²	
	Dead	345mm brickwork			
		Plaster		0.25 kN/m ² 7.95 kN/m ²	_
				7.95 KN/m ⁻	
<u>Exterr</u>	<u>nal brick w</u>	<u>vall</u>			
	Dead	215mm brickwork		4.73 kN/m ²	
		Plaster		0.25 kN/m ²	
				4.98 kN/m ²	
<u>Propo</u>	sed grour	nd floor internal			
	Dead	Finishes		0.15 kN/m ²	
	Doud	Screed		1.40 kN/m ²	
		Insulation		0.05 kN/m ²	
		200 dp joists		0.15 kN/m ²	
		Services		0.15 kN/m ²	
		Plasterboard and skim coat		0.18 kN/m ²	
		Flasterboard and skill coat		2.08 kN/m ²	_
				2.00 KN/III	
	Impose	ed		1.50 kN/m ²	
	mpoor	Partitions		1.00 kN/m ²	
				2.50 kN/m ²	_
				2.00	
<u>Propo</u>	sed base	<u>ment floor</u>			
	Dead	Finishes		0.15 kN/m ²	
		75mm Screed		1.40 kN/m ²	
		Insulation		0.05 kN/m ²	
		300mm RC slab		7.20 kN/m ²	
				8.80 kN/m ²	_
	Impose	ed		1.50 kN/m ²	
		Partitions		1.00 kN/m ²	
				2.50 kN/m ²	_
				2.00 KN/11	

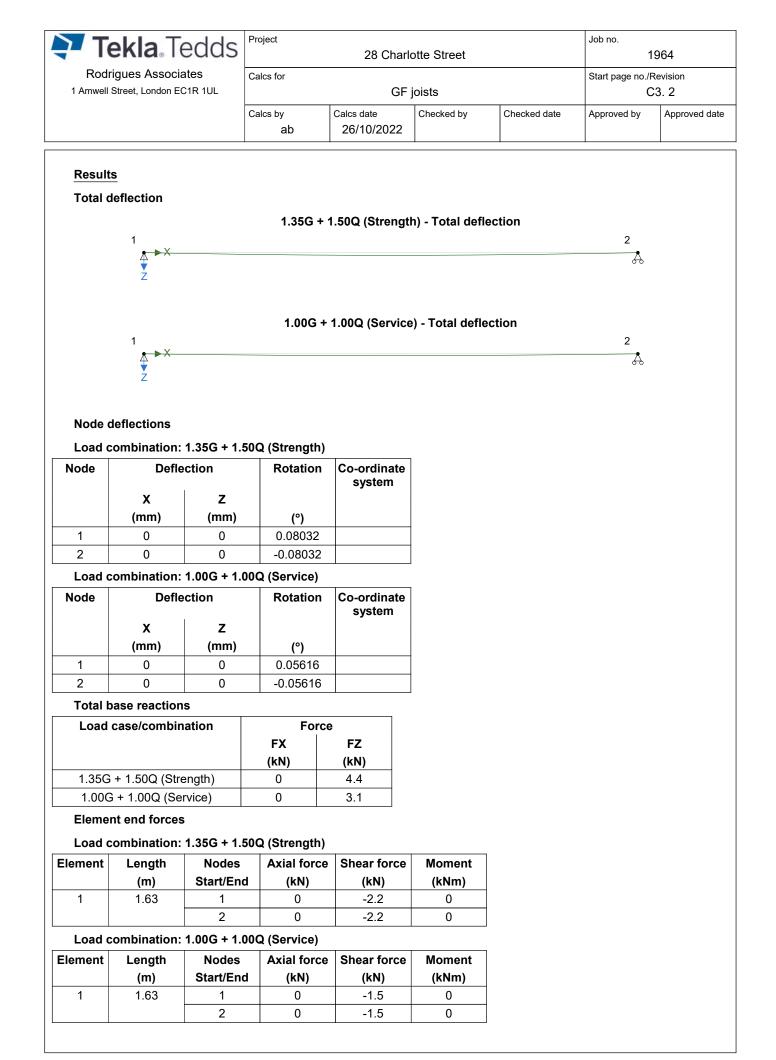
rodriguesas	sociates		Job No.:		Sheet No .:		Rev:	
		n, EC1R 1UL w.rodriguesassociates.com		1964		C1. 2	-	-
Job title:		28 Charlotte Street			-		-	
Calculations:		Area Loads	Designed:	AB	Date:	26/10/2022	Ckd:	0
Typica	l floor							
	Dead	Finishes				0.15 kN/m ² 0.14 kN/m ²		
		Boarding Joists				0.15 kN/m ² 0.05 kN/m ²		
		Insulation Services				0.05 kN/m ²		
		Plasterboard and skim coat				0.18 kN/m ² 0.72 kN/m ²	-	
	Impose	ed				1.50 kN/m ²		
		Partitions				1.00 kN/m ² 2.50 kN/m ²	-	
<u>RC Re</u>	<u>taining w</u>	<u>/all</u>						
	Dead	300mm reinf. Concrete				6.00 kN/m ²		
		Render				0.60 kN/m ²		
		Insulation & Waterproofing				0.20 kN/m ²		
		Plaster				0.25 kN/m ² 7.05 kN/m ²	-	
						7.05 KN/III		

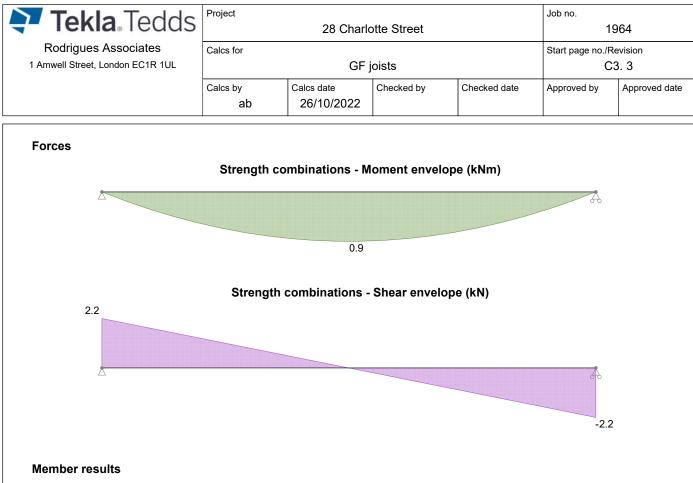
riguesassociates			Job No.:		Sheet No.:			Rev:
nwell Street, London, EC1R 1UL 20 7837 1133, e: www.rodriguesassoci	iataa aam			1964		C2. 2		
tle: 28 Charlotte					I			
lations: Calculat			Designed:	AB	Date:	26/10/20	22	Ckd:
				AD		20/10/20		
FLOTATION SEMPLIFIED CH								
Flotation force = Uplift as noted	<u>l below</u>							
Basement area =				36.15	m2			
GW above formation level =				1.40	m	assumed 1	.8m below GI	_
Water weight =				10	kN/m3			
F = UPLIFT				506	kN			
<u>Resistance</u>								
Reference				Area/L		Dead		
				m2		kN/m2	kN	1
Proposed ground floor				26.7		2.08	55.5	
Basement RC walls 300 thk				47.27		7.20	340.3	
Basement RC slab 300 thk				36.15		7.20	260.3	
GF RC slab and beams 200 thl	<			8.1		4.80	38.9	
			Sum =	695	kN			J
F.o.S = R / F	1.37	>	1.10	Accepta Anchor		e not require	d	
Refer to relevant sheet for RC Case 1: WATER UPLIFT	Raft design ເ	under	High Gro	undwate	r Pressi	ure		
Design for water = 1.4 x 10				1/ 00	kN/m2			
SWT of 300 thk raft = 0.3 x 24					kN/m2		6.80 kN/m2	unli
	=			-1.20				
	=			-7.20				
	=			-7.20				

rodriguesassociates		Job No.:		Sheet No.:		Rev:	
1 Amwell Street, London, EC1R 1UL t: 020 7837 1133, e: www.rodriguesassociates.com			1964	C2. 3		-	
Job title:	28 Charlotte Street						
Calculations:	Calculations	Designed:	AB	Date: 26/10/2022		Ckd:	0
				-			

rodriguesassociates		Job No.:	Job No.:		Sheet No.:		Rev:	
1 Amwell Street, London, EC1R 1UL t: 020 7837 1133, e: www.rodriguesassociates.com			1964		C2. 4		-	
Job title:	28 Charlotte Street			-			-	
Calculations:	Calculations	Designed:	AB	Date:	26/10/2022		Ckd:	0
		-		-				

rodriguesassociates		Job No.:		Sheet No.:		Rev:	
1 Amwell Street, London, EC1R 1UL t: 020 7837 1133, e: www.rodriguesassociates.com			1964	C2. 5		-	
Job title:	28 Charlotte Street						
Calculations:	Calculations	Designed:	AB	Date: 26/10/2022		Ckd:	0
				•			


0 7837 1133, e: www e:	-					1964	<u> </u>	C2.	-		<u> </u>	-
ations:		narlotte S s on eler			Designed:	AB	Date:	26/10	/2022		Ckd:	
	LUau	s on elei	nents			AD		20/10/	2022		<u> </u>	
Beam & Load	Span	Area	loads	Width	Loca	ation	U	DL	Point	loads]	
description	mm	DL kN/m²	LL kN/m²	mm	from mm	to mm	DL kN/m	LL kN/m	DL kN	LL kN		
GF steel beams												
GF new timber f	5200 loor	2.08	2.50	1630			3.39	4.08				
New basement	side reta	aing wal	lls supp	orting n	ew GF b	eams						
GF new timber f	loor	2.08	2.50	2600			5.41	6.50				
GF RC beams t	o restra i 1630+16	-		aining	wall							
retaining wall top							4.00	16.20				
Piles on No 26		d indicat	ive 1.5m	centre								
GF BF retaining wal BF	1500	2.08 7.20 8.80	2.50	2600 2900 3300					8.11 31.32 43.56 82.99	9.75 0.00 12.38 22.13		
Piles on No 30												
GF BF retaining wal BF	1500	2.08		centre 2600 2900 2500					8.11 31.32 33.00 72.43	9.75 0.00 <u>9.38</u> 19.13		
Piles to rear wa												
GF BF retaining wal BF GF Rc slab	1500		2.50	centre 800 2900 1050 1000					2.50 31.32 13.86 9.60 57.28	3.00 0.00 3.94 <u>3.75</u> 10.69		


Tekla Tedds	Project	28 Char	otte Street		Job no. 1	964
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	GF	joists		Start page no./F	Revision 3.1
	,	lcs date 26/10/2022	Checked by	Checked date	Approved by	Approved dat
TIMBER JOIST ANALYSIS & I In accordance with EN1995-1			ng corrigendur	n June 2006 an		onal annex
Joist details						
Joist spacing	s _{Joist} = 400 mm					
		1630				
Forces input on Joist						
Vertical permanent load on jois	t	F _{G_Joist} = 2.	10 kN/m²			
Vertical imposed load on joist		Fq_Joist= 2.	50 kN/m²			
Joist loading details						
Distributed loads						
Vertical permanent load on jois	ł	p _G = 0.84 k	N/m			
Vertical imposed load on joist		pg 1.00 k				
Member results summary	Unit	Capacity	/ Maxi	mum Ut	tilisation	Result
Bearing stress	N/mm		0.5	0.	274	PASS
Bending stress	N/mm	² 16.2	2.8	0.	175	PASS
Shear stress	N/mm	² 2.7	0.5	0.	192	PASS
Beam stability check				0.	175	PASS
Deflection	mm	6.5	1.1	0.	170	PASS
ANALYSIS Loading Self weight included (Permaner	st v 1)				Tedds calcula	tion version 1.0
Load combination factors			· · · · · ·			
		ent ed				

Load combination	Permane	Impose	Snow	Wind
1.35G + 1.50Q (Strength)	1.35	1.50	0.00	0.00
1.00G + 1.00Q (Service)	1.00	1.00	0.00	0.00

Member Loads

Member	Load case	Load Type	Orientation	Description
Member	Permanent	UDL	GlobalZ	0.84 kN/m at 0 m to 1.63 m
Member	Imposed	UDL	GlobalZ	1 kN/m at 0 m to 1.63 m

Envelope - Strength combinations

Member	Position	Shear force (kN)		Mor	nent
	(m)			(kNm)	
Member	0	2.2 (max abs)		0 (min)	
	0.815	0		0.9 (max)	
	1.63	-2.2		0 (min)	

Tedds calculation version 2.2.17 Member - Span 1 Partial factor for material properties and resistances Partial factor γ_M = **1.300** Member details Load duration Medium-term Service class 2 **Timber section details** Number of timber sections N = 1 Depth of sections Breadth of sections b = **47** mm h = **200** mm C24 Timber strength class

Tekla Tedds	Project		atta Otra at		Job no.	004
Rodrigues Associates		20 Chan	otte Street		1964 Start page no./Revision	
1 Amwell Street, London EC1R 1UL	Calcs for	GF	joists			3.4
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved d
	47x20 Cross- Sectio Sectio Secon Secon Radius Radius	0 timber section -sectional area, A, 9400 n modulus, W _y , 313333 n modulus, W _z , 73633 r id moment of area, I _y , 3 id moment of area, I _z , 1 s of gyration, i _y , 57.7 m s of gyration, i _z , 13.6 m r strength class C24	3.3 mm ³ mm ³ 1333333 mm ⁴ 730383 mm ⁴ m			
	Chara Chara Chara Chara Chara Mean Fifth p Shear Chara	cteristic bending strengt cteristic shear strength, cteristic compression st	f_{vk} , 4 N/mm ² trength parallel to grait trength perpendicular h parallel to grain, $f_{t,0}$ $_{0,mean}$, 11000 N/mm ² asticity, E _{0.05} , 7400 N/ g_{mean} , 690 N/mm ² 0 kg/m ³	to grain, f _{c.90.k} , 2.5 N/mi _{.k} , 14.5 N/mm ²	m²	
Span details						
Bearing length	L _b = 100 mm					
Bearing length <u>Consider Combination 1 - 1.3</u>	-	ength)				
	35G + 1.50Q (Str	rength)				
Consider Combination 1 - 1.3	35G + 1.50Q (Str 1					
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress	85G + 1.50Q (Str <u>1</u> licular to the gra σ _{c,y,90,d} = 0.464	ain - cl.6.1.5 N/mm²	Des.perp.com Utilisation = 0	.274	fc,y,90,d = 1.69	
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend	85G + 1.50Q (Str <u>1</u> licular to the gra σ _{c,y,90,d} = 0.464	ain - cl.6.1.5 N/mm²	Utilisation = 0	.274		
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress	35G + 1.50Q (Str <u>1</u> licular to the gra $\sigma_{c,y,90,d} = 0.464$ erpendicular con	ain - cl.6.1.5 N/mm²	Utilisation = 0	.274		
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per	35G + 1.50Q (Str <u>1</u> licular to the gra $\sigma_{c,y,90,d} = 0.464$ erpendicular con	ain - cl.6.1.5 N/mm² mpression stre	Utilisation = 0 ongth exceeds Design shear Utilisation = 0	.274 design perpen strength .192	dicular compr f _{v,y,d} = 2.708	ression stro N/mm²
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section (35G + 1.50Q (Str L licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7	ain - cl.6.1.5 N/mm² mpression stre	Utilisation = 0 ongth exceeds Design shear Utilisation = 0	.274 design perpen	dicular compr f _{v,y,d} = 2.708	ression str
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section (35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m	ain - cl.6.1.5 N/mm² mpression stre	Utilisation = 0 ongth exceeds Design shear Utilisation = 0	.274 design perpen strength .192	dicular compr f _{v,y,d} = 2.708	ression stro N/mm²
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m span	ain - cl.6.1.5 N/mm² mpression stre	Utilisation = 0 ongth exceeds Design shear Utilisation = 0	.274 design perpen strength .192	dicular compr f _{v,y,d} = 2.708	ression str
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress Check design 815 mm along	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m span	ain - cl.6.1.5 N/mm ² mpression stre nm ² PA:	Utilisation = 0 ongth exceeds Design shear Utilisation = 0	.274 design perpen strength .192 hear strength e	dicular compr f _{v,y,d} = 2.708	ression str N/mm² n shear str
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress Check design 815 mm along Check bending moment - Sec	35G + 1.50Q (Str \underline{P} licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m span ction 6.1.6	ain - cl.6.1.5 N/mm² mpression stre nm² PA: /mm²	Utilisation = 0 ongth exceeds Design shear Utilisation = 0 SS - Design s Design bendir Utilisation = 0	.274 design perpen strength .192 hear strength e	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240	ression str N/mm² n shear str 6 N/mm²
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress Check design 815 mm along Check bending moment - Sec	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m span ction 6.1.6 $\sigma_{m,y,d} = 2.838$ N/	ain - cl.6.1.5 N/mm² mpression stre nm² PA: /mm² PASS - L	Utilisation = 0 ongth exceeds Design shear Utilisation = 0 SS - Design s Design bendin Utilisation = 0 Design bendin	.274 design perpen strength .192 hear strength e. ng strength .175 ng strength exce npression - cl.6.	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240 eeds design b	ression stra N/mm² n shear stra 6 N/mm²
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress <i>PASS - Design per</i> Check shear force - Section of Design shear stress <u>Check design 815 mm along</u> Check bending moment - Sec Design bending stress	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m span ction 6.1.6 $\sigma_{m,y,d} = 2.838$ N/	ain - cl.6.1.5 N/mm² mpression stre nm² PA: /mm² PASS - L	Utilisation = 0 ongth exceeds Design shear Utilisation = 0 SS - Design s Design bendin Utilisation = 0 Design bendin oding and con	.274 design perpen strength .192 hear strength en ng strength .175 ng strength exce npression - cl.6. .175	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240 eeds design b	ression stra N/mm² n shear stra 6 N/mm² ending stra
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress <i>PASS - Design per</i> Check shear force - Section of Design shear stress <u>Check design 815 mm along</u> Check bending moment - Sec Design bending stress	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m span ction 6.1.6 $\sigma_{m,y,d} = 2.838$ N/ ither bending or	ain - cl.6.1.5 N/mm² mpression stre nm² PA: /mm² PASS - L	Utilisation = 0 ongth exceeds Design shear Utilisation = 0 SS - Design s Design bendin Utilisation = 0 Design bendin on bending and con	.274 design perpen strength .192 hear strength en ng strength .175 ng strength exce npression - cl.6. .175	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240 eeds design b .3.3	ression str N/mm² n shear str 6 N/mm² ending str
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress Check design 815 mm along Check bending moment - Sec Design bending stress Check beams subjected to eit Check design at end of span	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m Span ction 6.1.6 $\sigma_{m,y,d} = 2.838$ N/ ither bending or	ain - cl.6.1.5 N/mm² mpression stre nm² PA: /mm² PASS - L	Utilisation = 0 ongth exceeds Design shear Utilisation = 0 SS - Design s Design bendin Utilisation = 0 Design bendin on bending and con	.274 design perpen strength .192 hear strength en ng strength .175 ng strength exce npression - cl.6. .175	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240 eeds design b .3.3	ression str N/mm² n shear str 6 N/mm² ending str
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress Check design 815 mm along Check bending moment - Sec Design bending stress Check beams subjected to eit	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m Span ction 6.1.6 $\sigma_{m,y,d} = 2.838$ N/ ither bending or	ain - cl.6.1.5 N/mm² mpression stre nm² PAS PASS - D combined ben	Utilisation = 0 ongth exceeds Design shear Utilisation = 0 SS - Design s Design bendin Utilisation = 0 Design bendin on bending and con	274 design perpen strength .192 hear strength e. ng strength .175 og strength exce npression - cl.6. .175 PASS - E	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240 eeds design b .3.3	ression str N/mm ² n shear str 6 N/mm ² ending str is accepta
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress Check design 815 mm along Check bending moment - Sec Design bending stress Check beams subjected to eit Check design at end of span Check compression perpend	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular con 6.1.7 $\tau_{y,d} = 0.520$ N/m Span ction 6.1.6 $\sigma_{m,y,d} = 2.838$ N/ ither bending or licular to the gra $\sigma_{c,y,90,d} = 0.464$ l	ain - cl.6.1.5 N/mm² mpression stre 1m² PA: /mm² PASS - L • combined ben ain - cl.6.1.5 N/mm²	Utilisation = 0 angth exceeds Design shear Utilisation = 0 SS - Design s Design bendin Utilisation = 0 Design bendin utilisation = 0 Des.perp.com Utilisation = 0	274 design perpen strength .192 hear strength e. ng strength .175 og strength exce npression - cl.6. .175 PASS - E np.strength .274	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240 eeds design b .3.3 Beam stability f _{c,y,90,d} = 1.69.	ression str N/mm ² n shear str 6 N/mm ² ending str is accepta 2 N/mm ²
Consider Combination 1 - 1.3 Check design at start of spar Check compression perpend Des.perp.comp.stress PASS - Design per Check shear force - Section of Design shear stress Check design 815 mm along Check bending moment - Sec Design bending stress Check beams subjected to eit Check design at end of span Check compression perpend Des.perp.comp.stress	35G + 1.50Q (Str 1 licular to the gra $\sigma_{c,y,90,d} = 0.464$ l erpendicular could 6.1.7 $\tau_{y,d} = 0.520$ N/m Span ction 6.1.6 $\sigma_{m,y,d} = 2.838$ N/ ither bending or licular to the gra $\sigma_{c,y,90,d} = 0.464$ l	ain - cl.6.1.5 N/mm² mpression stre 1m² PA: /mm² PASS - L • combined ben ain - cl.6.1.5 N/mm²	Utilisation = 0 angth exceeds Design shear Utilisation = 0 SS - Design s Design bendin Utilisation = 0 Design bendin utilisation = 0 Des.perp.com Utilisation = 0	274 design perpen strength .192 hear strength e. ng strength .175 og strength exce npression - cl.6. .175 PASS - E np.strength .274	dicular compr f _{v,y,d} = 2.708 xceeds design f _{m,y,d} = 16.240 eeds design b .3.3 Beam stability f _{c,y,90,d} = 1.69.	ression str N/mm ² n shear str 3 N/mm ² ending str is accepta 2 N/mm ²

Tekla. Tedds	Project	28 Charlo	otte Street	Job no. 1964		
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	GF j	oists	ists		vision 5. 5
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved date

PASS - Design shear strength exceeds design shear stress

Consider Combination 2 - 1.00G + 1.00Q (Service)

Check design 815 mm along span

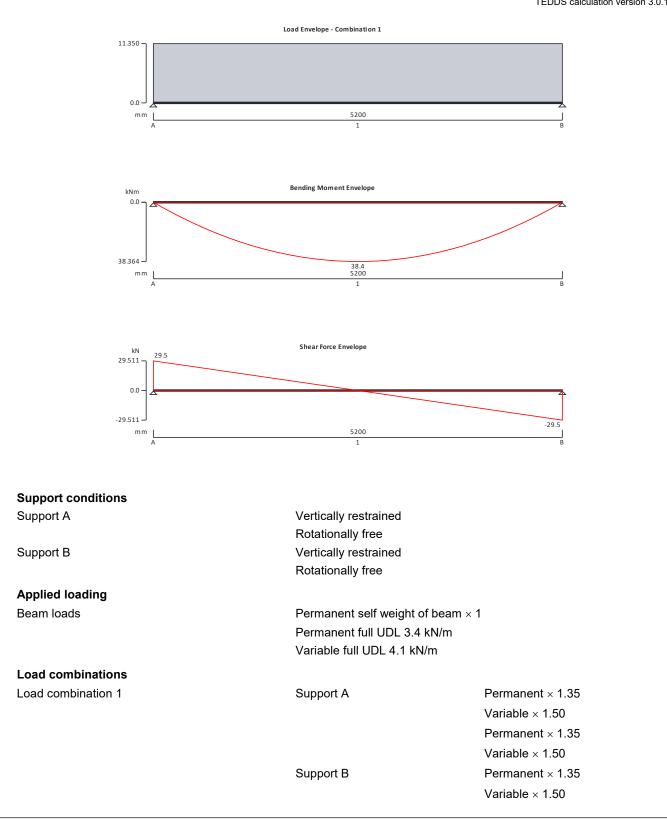
Check y-y axis deflection - Section 7.2

Final deflection with creep $\delta_{y,Final} = 1.1 \text{ mm}$

Allowable deflection

 $\delta_{y,Allowable}$ = 6.5 mm

Utilisation = 0.17


PASS - Allowable deflection exceeds final deflection

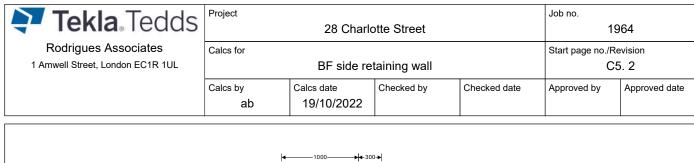
Tekla. Tedds	Project	28 Charlo	28 Charlotte Street			064
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	GF stee	el beams		Start page no./Revision G4. 1	
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved date

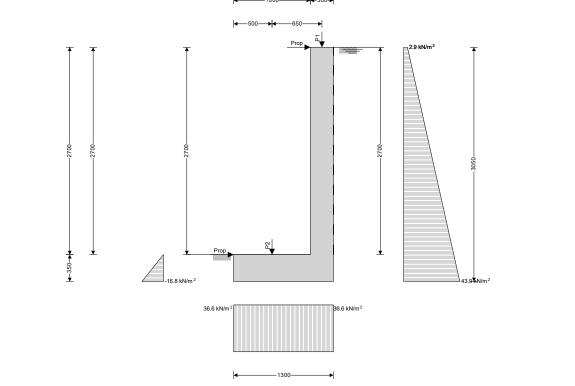
STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Tekla Tedds	S Project	28 Charl	otte Street			964
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	GF stee	el beams		Start page no./F	Revision 64.2
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved
Analysis results						
Maximum moment		M _{max} = 38.4	l kNm	M _{min} =	0 kNm	
Maximum shear		V _{max} = 29.5			-29.5 kN	
Deflection		δ _{max} = 7.9 r		$\delta_{\min} = 0$		
Maximum reaction at support	A	R _{A max} = 29		R _{A min}	= 29.5 kN	
Unfactored permanent load re	eaction at support /	A RA_Permanent	= 10 kN			
Unfactored variable load reac	tion at support A	R _{A_Variable} =	10.7 kN			
Maximum reaction at support		R _{B_max} = 29	9 .5 kN	R _{B_min}	= 29.5 kN	
Unfactored permanent load re		-				
Unfactored variable load reac	tion at support B	$R_{B_{Variable}} =$	10.7 kN			
Section details Section type	UC 203x203x46	6 (BS4-1)	Steel grade		S355	
	↓	(2011)	etter grade			
			-			
	203.2		-7.2			
	Ť					
	4	203.6-		→		
Section classification	Class 2					
Check shear - Section 6.2.6						
Design shear force	V _{Ed} = 30 kN		Design shear		V _{c,Rd} = 347.9	
		PAS	S - Design sh	ear resistance e	exceeds desig	gn shear fo
Check bending moment - Se						
Design bending moment	M _{Ed} = 38.4 kNm		Des.bending r	esist.moment	M _{c,Rd} = 176.6	kNm
Slenderness ratio for lateral		ng			_	
LTB slenderness ratio	$\overline{\lambda}_{LT}$ = 1.493		Limiting slend	erness ratio	λ _{LT,0} = 0.400	ט
		,	λ _{LT} > λ _{LT,0} - La	ateral torsional l	buckling cann	not be igno
Design resistance for buckl	ing - Section 6.3.	2.1				
Des.buckling resist.moment	M _{b,Rd} = 76 kNm					
	PASS -	Design buckli	ng resistance	moment excee	ds design ber	nding mon
Check compression - Section	on 6.2.4					
Design compression force	N _{Ed} = 83 kN		Design resista	ance of section	N _{c,Rd} = 2085	kN
Boolgir compression lores						
	ing - Section 6.3.	1.1				
Design resistance for buckl Design buckling resistance	ing - Section 6.3. N _{b,y,Rd} = 1546.5					

Tekla Tedds	Project				Job no.		
	-	28 Charlo	otte Street		1	964	
Rodrigues Associates	Calcs for				Start page no./R	evision	
Amwell Street, London EC1R 1UL		GF steel beams				G4. 3	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved d	
	ab	26/10/2022					
Design resistance for buckli	ng - Section 6.3.	1.1					
Design buckling resistance	N _{b,z,Rd} = 788.6 k						
		PASS - Design	buckling resist	ance exceeds	design comp	ression fo	
Check torsional and torsiona	al-flexural buckli	ina					
Torsional buckling force	N _{cr,T} = 2770.7 k	•	Torsional-flexura	al buckling	N _{cr,TF} = 2770.	7 kN	
Design resistance for bucklin	ng - Section 6.3.	1.1					
Design buckling resistance	N _{b,T,Rd} = 1292.6						
0 0			buckling resist	ance exceeds	design comp	ression fo	
Combined bending and axial	force - Section	6.2.9					
Bending and axial force check	N _{Ed} <= min(0.25	$5 \times N_{\text{pl,Rd}}, 0.5 \times h$	$I_{W} imes t_{W} imes f_{y} / \gamma_{M0}$				
No allo	owance on the p	lastic moment	need to be acc	ounted for du	e to the effect	of axial fo	
	nbers not susce	ptible to torsio	nal deformation				
Interaction factors kii for mer			mai ueioimatioi	1S - Lable B.1			
Interaction factors k _{ij} for mer Interaction formulae	N_{Ed} / ($\chi_y \times N_{Rk}$ /	γ_{M1}) + $k_{yy} \times M_{Ed}$ /					
-			/ (χlt × M rk / үм1)	= 0.548			
-		γ_{M1}) + k _{zy} × M _{Ed} /		= 0.548 = 0.402	ession checks	are satis	
Interaction formulae	N_{Ed} / ($\chi_z \times N_{Rk}$ /	γ_{M1}) + k _{zy} × M _{Ed} /	/ (χlt × Mrk / γm1) / (χlt × Mrk / γm1)	= 0.548 = 0.402	ession checks	are satis	
Interaction formulae	N_{Ed} / ($\chi_z \times N_{Rk}$ /	γ _{M1}) + k _{zy} × M _{Ed} / PASS - Co	/ (χlt × Mrk / γm1) / (χlt × Mrk / γm1)	= 0.548 = 0.402	ession checks	are satis	
Interaction formulae	N_{Ed} / ($\chi_z \times N_{Rk}$ /	γ _{M1}) + k _{zy} × M _{Ed} / PASS - Co able loads	/ (χlt × Mrk / γm1) / (χlt × Mrk / γm1)	= 0.548 = 0.402 ng and compr	ession checks δ = 7.892 mm		
-			/ (χlt × M rk / үм1)	= 0.548			


Tekla. Tedds	Project	28 Charlotte Street				64
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	BF side re	taining wall		Start page no./Revision C5. 1	
	Calcs by ab	Calcs date 19/10/2022	Checked by	Checked date	Approved by	Approved date


RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.16

	I
Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 2700 mm
Prop height	h _{prop} = 2700 mm
Stem thickness	t _{stem} = 300 mm
Angle to rear face of stem	α = 90 deg
Stem density	γ _{stem} = 25 kN/m ³
Toe length	I _{toe} = 1000 mm
Base thickness	t _{base} = 350 mm
Base density	γ _{base} = 25 kN/m ³
Height of retained soil	h _{ret} = 2700 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2700 mm
Water density	γ _w = 9.8 kN/m ³
Retained soil properties	
Soil type	Medium dense well graded sand and gravel
Moist density	$\gamma_{mr} = 20 \text{ kN/m}^3$
Saturated density	γ _{sr} = 22.3 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 30 deg
Characteristic wall friction angle	$\delta_{r.k}$ = 15 deg
Base soil properties	
Soil type	Very loose brick hardcore
Soil density	γ _b = 13 kN/m ³
Characteristic effective shear resistance angle	φ' _{b.k} = 26 deg
Characteristic wall friction angle	δ _{b.k} = 13 deg
Characteristic base friction angle	δ _{bb.k} = 17.3 deg
Presumed bearing capacity	P _{bearing} = 50 kN/m ²
Loading details	
Variable surcharge load	Surcharge _Q = 10 kN/m²
Vertical line load at 1150 mm	P _{G1} = 5.4 kN/m
	P _{Q1} = 6.5 kN/m
Vertical line load at 500 mm	P _{G2} = 1.6 kN/m
	P _{Q2} = 2.5 kN/m

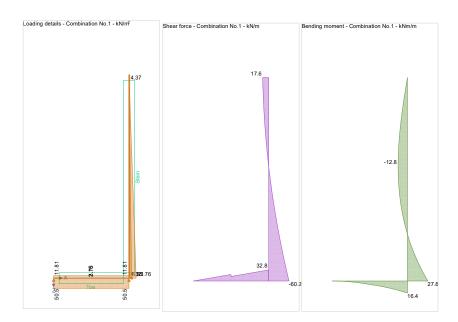
General arrangement - sketch pressures relate to bearing check

Calculate retaining wall geometry

· · · · · · · · · · · · · · · · · · ·	
Base length	I _{base} = I _{toe} + t _{stem} = 1300 mm
Saturated soil height	h _{sat} = h _{water} + d _{cover} = 2700 mm
Moist soil height	$h_{moist} = h_{ret} - h_{water} = 0 mm$
Length of surcharge load	I _{sur} = I _{heel} = 0 mm
- Distance to vertical component	x _{sur_v} = I _{base} - I _{heel} / 2 = 1300 mm
Effective height of wall	h _{eff} = h _{base} + d _{cover} + h _{ret} = 3050 mm
- Distance to horizontal component	x _{sur_h} = h _{eff} / 2 = 1525 mm
Area of wall stem	$A_{\text{stem}} = h_{\text{stem}} \times t_{\text{stem}} = 0.81 \text{ m}^2$
- Distance to vertical component	x _{stem} = I _{toe} + t _{stem} / 2 = 1150 mm
Area of wall base	$A_{base} = I_{base} \times t_{base} = 0.455 \text{ m}^2$
- Distance to vertical component	x _{base} = I _{base} / 2 = 650 mm
Using Coulomb theory	
Active pressure coefficient	$K_{A} = \sin(\alpha + \phi'_{r,k})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{r,k}) \times [1 + \sqrt{[\sin(\phi'_{r,k} + \delta_{r,k})} \times \sin(\phi'_{r,k})]$
	$(-\beta) / (\sin(\alpha - \delta_{r,k}) \times \sin(\alpha + \beta))]^2) = 0.301$
Passive pressure coefficient	$K_{P} = \sin(90 - \phi'_{b.k})^2 / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})}))$
	(sin(90 + δ _{b.k}))]] ²) = 3.787
Bearing pressure check	
Vertical forces on wall	
Wall stem	$F_{stem} = A_{stem} \times \gamma_{stem} = 20.3 \text{ kN/m}$
Wall base	$F_{base} = A_{base} \times \gamma_{base} = 11.4 \text{ kN/m}$

Tekla Tedds	Project 28 Charlotte Street					964	
Rodrigues Associates	Calcs for				Start page no./Revision		
1 Amwell Street, London EC1R 1UL		BF side re	taining wall		(5.3	
	Calcs by ab	Calcs date 19/10/2022	Checked by	Checked date	Approved by	Approved da	
Line loads		$F_{P_v} = P_{G1}$	+ P _{Q1} + P _{G2} + I	P _{Q2} = 16 kN/m			
Total		$F_{total_v} = F_{st}$	em + F _{base} + F _{P.}	_v + F _{water_v} = 47 .	6 kN/m		
Horizontal forces on wall							
Surcharge load		$F_{sur_h} = K_A$	× $\cos(\delta_{r.k})$ × Su	ırcharge _Q × h _{eff} =	• 8.9 kN/m		
Saturated retained soil		F _{sat_h} = K _A	× $\cos(\delta_{r.k})$ × (γ_s	r - γw) × (h _{sat} + h _b	_{ase}) ² / 2 = 16.8	kN/m	
Water		$F_{water_h} = \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 45.6 \text{ kN/m}$					
Base soil	F_{pass_h} = -K _P × cos($\delta_{b,k}$) × γ_b × (d _{cover} + h _{base}) ² / 2 = -2.9 kN/m					/m	
Total	F _{total_h} = F _{sur_h} + F _{sat_h} + F _{water_h} + F _{moist_h} + F _{pass_h} = 68.4 kN/m					N/m	
Moments on wall							
Wall stem	M _{stem} = F _{stem} × x _{stem} = 23.3 kNm/m						
Wall base		M _{base} = F _{bas}	$x_{base} = 7.4$	kNm/m			
Surcharge load		M _{sur} = -F _{sur}	_h × x _{sur_h} = -13	. 5 kNm/m			
Line loads		M _P = (P _{G1} -	+ P _{Q1}) × p ₁ + (F	P _{G2} + P _{Q2}) × p ₂ =	15.7 kNm/m		
Saturated retained soil		M _{sat} = -F _{sat}	_h × X sat_h = -17	.1 kNm/m			
Water		M _{water} = -F _w	ater_h × Xwater_h =	= -46.4 kNm/m			
Moist retained soil		M _{moist} = -F _n	noist_h × X moist_h =	0 kNm/m			
Total		M _{total} = M _{ste}	m + M _{base} + M _s	ur + MP + Msat + N	/I _{water} + M _{moist} =	-30.6 kNm/	
Check bearing pressure							
Propping force to stem		F _{prop_stem} =	$(F_{total_v} \times I_{base})$	2 - M _{total}) / (h _{prop}	+ t _{base}) = 20.2 k	:N/m	
Propping force to base		F _{prop_base} =	Ftotal_h - Fprop_ste	_{em} = 48.2 kN/m			
Moment from propping force		$M_{prop} = F_{pro}$	p_stem × (hprop +	t _{base}) = 61.6 kNn	n/m		
Distance to reaction		$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}})$	+ M _{prop}) / F _{total_}	v = 650 mm			
Eccentricity of reaction		$e = \overline{x} - I_{bas}$	_e / 2 = 0 mm				
Loaded length of base		I _{load} = I _{base} =	= 1300 mm				
Bearing pressure at toe	$q_{toe} = F_{total_v} / I_{base} \times (1 - 6 \times e / I_{base}) = 36.6 \text{ kN/m}^2$						
Bearing pressure at heel		-	•	6 × e / I _{base}) = 36	.6 kN/m ²		
Factor of safety		•	_{earing} / max(q _{toe}	, q _{heel}) = 1.365 xceeds maximu			

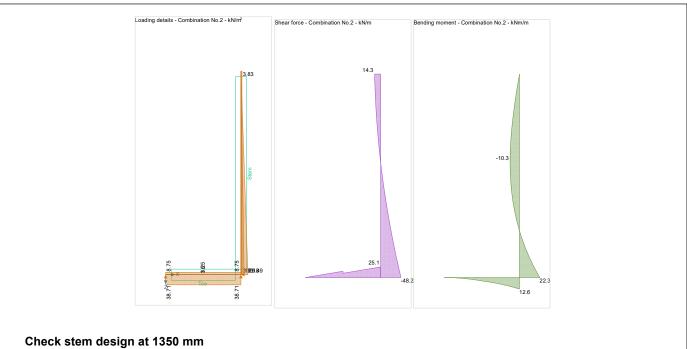
RETAINING WALL DESIGN


In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.16

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C32/40
Characteristic compressive cylinder strength	f _{ck} = 32 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 40 N/mm ²
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 40 N/mm ²
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.0 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05}$ = 0.7 × f_{ctm} = 2.1 N/mm ²
Secant modulus of elasticity of concrete	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 33346 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{cc} = 0.85$
Design compressive concrete strength - exp.3.15	f_{cd} = $\alpha_{cc} \times f_{ck}$ / γ_{C} = 18.1 N/mm ²
Maximum aggregate size	h _{agg} = 20 mm


Tekla Tedds	Project				Job no.			
		28 Charle	otte Street		1	964		
Rodrigues Associates	Calcs for				Start page no./F	Revision		
1 Amwell Street, London EC1R 1UL		BF side re	taining wall		C	5.4		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
	ab	19/10/2022						
			I	1	4			
Ultimate strain - Table 3.1		ε _{cu2} = 0.003	85					
Shortening strain - Table 3.1		ε _{cu3} = 0.003	35					
Effective compression zone hei	ght factor	$\lambda = 0.80$						
Effective strength factor		η = 1.00						
Bending coefficient k ₁		K ₁ = 0.40						
Bending coefficient k ₂		$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$						
Bending coefficient k ₃		K ₃ = 0.40						
Bending coefficient k4		K4 = 1.00 ×	(0.6 + 0.0014/	/ _{εcu2}) =1.00	₁₂) =1.00			
Reinforcement details								
Characteristic yield strength of r	reinforcement	f _{vk} = 500 N/	mm ²					
Modulus of elasticity of reinforce		$E_s = 20000$						
Partial factor for reinforcing stee		γs = 1.15						
Design yield strength of reinforce		$f_{yd} = f_{yk} / \gamma_s$	- 425 N/mm ²					
	ement	iyu — iyk / _/ 3	- 400 10/11/1					
Cover to reinforcement								
Front face of stem		c _{sf} = 25 mm						
Rear face of stem		c _{sr} = 50 mn						
Top face of base		c _{bt} = 25 mn	า					

c_{bb} = **75** mm

Bottom face of base

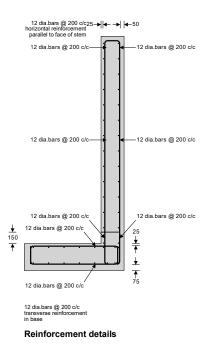
Tekla. Tedds	Project	28 Charlo	otte Street		Job no. 19	64
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for BF side retaining wall			Start page no./Revision C5. 5		
	Calcs by ab	Calcs date 19/10/2022	Checked by	Checked date	Approved by	Approved date

Depth of section	h = 300 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 12.8 kNm/m
Depth to tension reinforcement	d = h - c_{sf} - ϕ_{sx} - ϕ_{sfM} / 2 = 257 mm
	$K = M / (d^2 \times f_{ck}) = 0.006$
	$K' = (2 \times \eta \times \alpha_{cc} / \gamma_{C}) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_c)) ^{0.5} , 0.95) × d = 244 mm
Depth of neutral axis	x = 2.5 × (d – z) = 32 mm
Area of tension reinforcement required	$A_{sfM.req} = M / (f_{yd} \times z) = 121 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{sfM,prov} = \pi \times \phi_{sfM}^2 / (4 \times s_{sfM}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 404 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{sfM.max} = 0.04 × h = 12000 mm ² /m
	max(A _{sfM.req} , A _{sfM.min}) / A _{sfM.prov} = 0.715

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.006$
Required tension reinforcement ratio	$\rho = A_{sfM.req} / d = 0.000$
Required compression reinforcement ratio	ρ' = A _{sfM.2.req} / d ₂ = 0.000
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sfM.req} / A_{sfM.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)}) \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times (f_{$
	N/mm ²) × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 40
Actual span to depth ratio	h _{prop} / d = 10.5
	PASS - Span to depth ratio is less than deflection control limit


Tekla Tedds	Project	Job no. 1964					
Rodrigues Associates	Calcs for	20 01141	otte Street		Start page no./Revision		
1 Amwell Street, London EC1R 1UL		BF side re	taining wall		C5. 6		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved d	
	ab	19/10/2022					
Crack control - Section 7.3							
Limiting crack width		w _{max} = 0.3	mm				
Variable load factor - EN1990 -	Table A1.1	$\psi_2 = 0.6$					
Serviceability bending moment		M _{sls} = 8.7 k	Nm/m				
Tensile stress in reinforcement			A _{sfM.prov} × z) = 6	3.4 N/mm ²			
Load duration		Long term	,				
Load duration factor		kt = 0.4					
Effective area of concrete in tens	sion	A _{c.eff} = min	2.5 × (h - d), (ł	n - x) / 3, h / 2)			
		A _{c.eff} = 892		, ,			
Mean value of concrete tensile s	trength		3.0 N/mm ²				
Reinforcement ratio		$\rho_{p,eff} = A_{sfM}$	prov / A _{c.eff} = 0.0	06			
Modular ratio		$\alpha_{e} = E_{s} / E_{d}$					
Bond property coefficient		k ₁ = 0.8					
Strain distribution coefficient		k ₂ = 0.5					
		$k_3 = 3.4$					
		k ₄ = 0.425					
Maximum crack spacing - exp.7.	11	$s_{r.max} = k_3 \times$	c_{sf} + $k_1 \times k_2 \times$	$k_4 \times \phi_{sfM} / \rho_{p.eff} =$	407 mm		
Maximum crack width - exp.7.8		$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$					
		w _k = 0.077 mm					
		$w_k / w_{max} =$					
		PASS	- Maximum c	rack width is le	ss than limitin	ng crack wi	
Check stem design at base of	stem						
Depth of section		h = 300 mr	n				
Rectangular section in flexure							
Design bending moment combin	ation 1	M = 27.8 k	Nm/m				
Depth to tension reinforcement		d = h - c _{sr} -	$\phi_{sr} / 2 = 244 \text{ m}$	ım			
		$K = M / (d^2)$	× f _{ck}) = 0.015				
		K' = (2 × η	× α _{cc} /γ _C)×(1 - λ	\times (δ - K ₁)/(2 \times K	2))×(λ × (δ - K ₁))/(2 × K ₂))	
		K' = 0.207					
			K' > K -	No compressio	n reinforceme	ent is requi	
Lever arm		z = min(0.5	5 + 0.5 × (1 - 2	$ imes$ K / (η $ imes$ $lpha_{ ext{cc}}$ / $\gamma_{ ext{c}}$	c)) ^{0.5} , 0.95) × d	= 232 mm	
Depth of neutral axis		x = 2.5 × (c	l – z) = 31 mm				
Area of tension reinforcement re	quired	A _{sr.req} = M /	(f _{yd} × z) = 276	mm²/m			
Tension reinforcement provided		12 dia.bars	@ 200 c/c				
Area of tension reinforcement pr	ovided	$A_{sr.prov} = \pi$	$\langle \phi_{sr}^2 / (4 \times s_{sr}) \rangle$	= 565 mm²/m			
Minimum area of reinforcement	exp.9.1N			_{/k} , 0.0013) × d =	384 mm²/m		
Maximum area of reinforcement	-)4 × h = 12000				
	x - 7		A _{sr.min}) / A _{sr.prov}				
	PASS - Area o	f reinforcement	, ,		a of reinforce	ment requi	
					Library item: Recta	-	
Deflection control - Section 7.4	4						
Reference reinforcement ratio		$\rho_0 = \sqrt{f_{ck}} / f_{ck}$	1 N/mm²) / 100	0 = 0.006			

Reference reinforcement ratio	ρ₀ = √(f _{ck} / 1 N/mm²) / 1000 = 0.006
Required tension reinforcement ratio	ρ = A _{sr.req} / d = 0.001
Required compression reinforcement ratio	ρ' = A _{sr.2.req} / d ₂ = 0.000
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$

Tekla Tedds		28 Charl	1964			
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	BF side re	Start page no./F	Revision 5.7		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved
	ab	19/10/2022				
Limiting span to depth ratio - ex	0.7.16.a	min(K₅ × K	ь × [11 + 1.5 ×	√(f _{ck} / 1 N/mm²) :	$\times 00/0 + 3.2 \times$	√(f _{ck} / 1
			[ρ₀ / ρ - 1) ^{3/2}], 4	. ,		(1007)
Actual span to depth ratio		$h_{prop} / d = 1$, -			
				oth ratio is less	than deflectio	n control l
Crack control - Section 7.3						
Limiting crack width		w _{max} = 0.3	mm			
Variable load factor - EN1990 -	Table A1.1	ψ2 = 0.6				
Serviceability bending moment		M _{sls} = 19.2	kNm/m			
Tensile stress in reinforcement		σ_{s} = M _{sls} / ((A _{sr.prov} × z) = 1	46.6 N/mm ²		
Load duration		Long term				
Load duration factor		kt = 0.4				
Effective area of concrete in ten	sion	A _{c.eff} = min	(2.5 × (h - d), (h - x) / 3, h / 2)		
		A _{c.eff} = 898	33 mm²/m			
Mean value of concrete tensile s	strength	f _{ct.eff} = f _{ctm} =	= 3.0 N/mm ²			
Reinforcement ratio		$\rho_{p.eff} = A_{sr.p}$	rov / A _{c.eff} = 0.0	06		
Modular ratio		$\alpha_{e} = E_{s} / E_{s}$	cm = 5.998			
Bond property coefficient		k ₁ = 0.8				
Strain distribution coefficient		k ₂ = 0.5				
		k ₃ = 3.4				
		k4 = 0.425				
Maximum crack spacing - exp.7	.11	s _{r.max} = k ₃ >	$\mathbf{c}_{sr} + \mathbf{k}_1 \times \mathbf{k}_2 \times \mathbf{k}_2$	$k_4 \times \phi_{sr} / \rho_{p.eff} = 4$	194 mm	
Maximum crack width - exp.7.8		$W_k = S_{r.max}$	× max(σs – kt ×	$(f_{ct.eff} / \rho_{p.eff}) \times (1)$	+ $\alpha_e \times \rho_{p.eff}$), 0.	6 × σs) / Es
		w _k = 0.217	mm			
		w _k / w _{max} =	0.724			
		PASS	- Maximum c	rack width is le	ss than limitin	ig crack w
Rectangular section in shear	Section 6.2					
Design shear force		V = 60.2 k	N/m			
		$C_{Rd,c} = 0.1$	8 / γc = 0.120			
		k = min(1 -	⊦ √(200 mm / c	i), 2) = 1.905		
Longitudinal reinforcement ratio		ρ⊨ = min(A₅	r.prov / d, 0.02)	= 0.002		
		v _{min} = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^3$	^{/2} × f _{ck} ^{0.5} = 0.521	N/mm²	
Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (1))$	00 N ² /mm ⁴ × ρ_l ×	f_{ck}) ^{1/3} , V_{min}) × d	
		V _{Rd.c} = 127	. 1 kN/m			
		$V / V_{Rd.c} =$	0.474			
		PAS	SS - Design sl	near resistance o	exceeds desig	n shear f
Check stem design at prop						
Depth of section		h = 300 mi	n			
Rectangular section in shear	Section 6.2					
Design shear force		V = 17.6 k	N/m			
		$C_{\text{Rd,c}} = 0.12$	8 / γ _C = 0.120			
		k = min(1 -	⊦ √(200 mm / c	i), 2) = 1.905		
Longitudinal reinforcement ratio		$\rho_1 = \min(A_s)$	_{r1.prov} / d, 0.02)	= 0.002		
		v _{min} = 0.03	5 N ^{1/2} /mm × k ³	^{∕2} × f _{ck} ^{0.5} = 0.521	N/mm ²	
Design shear resistance - exp.6	.2a & 6.2b			00 N ² /mm ⁴ × ρ_l ×		
- 1		-		1.1	,,	

Tekla Tedds	-	28 Charle	otte Street		1 Start page no./R	964		
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	Calcs for BF side retaining wall						
	Calcs by ab	Calcs date 19/10/2022	Checked by	Checked date	Approved by	Approved		
		V / V _{Rd.c} = (PAS		ear resistance (exceeds desig	n shear f		
Horizontal reinforcement para	llel to face of s		-					
Minimum area of reinforcement	– cl.9.6.3(1)	A _{sx.req} = ma	$x(0.25 \times A_{sr.prov})$, 0.001 \times t _{stem}) =	300 mm²/m			
Maximum spacing of reinforcem Transverse reinforcement provid		s _{sx_max} = 40 12 dia.bars						
Area of transverse reinforcemer	nt provided	$A_{sx.prov} = \pi$	$\langle \phi_{sx}^2 / (4 \times s_{sx}) \rangle$) = 565 mm²/m				
	PASS - Area of	reinforcement	provided is g	greater than are	a of reinforcer	nent requ		
Check base design at toe								
Depth of section	Depth of section							
Rectangular section in flexure	- Section 6.1							
Design bending moment combin		M = 16.4 ki	Nm/m					
Depth to tension reinforcement	Depth to tension reinforcement			nm				
	$K = M / (d^2)$	$K = M / (d^2 \times f_{ck}) = 0.007$						
		K' = (2 × η K' = 0.207	× α _{cc} /γc)×(1 - λ	$\lambda \times (\delta - K_1)/(2 \times K_1)$	2))×(λ × (δ - K ₁)	/(2 × K ₂))		
			K' > K -	No compressio	n reinforceme	nt is requ		
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / (η × α _{cc} / γ _c)) ^{0.5} , 0.95) × d = 256 mm							
Depth of neutral axis		x = 2.5 × (d – z) = 34 mm						
Area of tension reinforcement re	equired	$A_{bb.req} = M / (f_{yd} \times z) = 147 \text{ mm}^2/\text{m}$						
Tension reinforcement provided		12 dia.bars	12 dia.bars @ 200 c/c					
Area of tension reinforcement p	rovided	$A_{bb,prov} = \pi$	$\times \phi_{bb}^2$ / (4 \times s _{bb}) = 565 mm²/m				
Minimum area of reinforcement	- exp.9.1N	A _{bb.min} = ma	$ax(0.26 \times f_{ctm} / f_{ctm})$	f _{yk} , 0.0013) × d =	423 mm²/m			
Maximum area of reinforcement	- cl.9.2.1.1(3)	$A_{bb.max} = 0.0$	04 × h = 14000) mm²/m				
		max(A _{bb.req} ,	Abb.min) / Abb.pro	ov = 0.748				
	PASS - Area of	reinforcement	provided is g	greater than are	a of reinforcer Library item: Rectan	-		
Crack control - Section 7.3					-			
Limiting crack width		w _{max} = 0.3 I	mm					
Variable load factor - EN1990 -	Table A1.1	ψ2 = 0.6						
Serviceability bending moment		M _{sls} = 12.4						
Tensile stress in reinforcement			$A_{bb.prov} \times z$) = 8	5.8 N/mm ²				
Load duration		Long term						
Load duration factor	sion	$k_t = 0.4$	25, /h1) /l	(2 + 1)				
Effective area of concrete in ten	5011	A _{c.eff} = min(A _{c.eff} = 105 4		n - x) / 3, h / 2)				
Mean value of concrete tensile	strength	$A_{c.eff} = 1054$ $f_{ct.eff} = f_{ctm} =$						
Reinforcement ratio			rov / A _{c.eff} = 0.00)5				
Modular ratio		$\alpha_{\rm e} = E_{\rm s} / E_{\rm c}$						
Bond property coefficient		k ₁ = 0.8						
Strain distribution coefficient		k ₂ = 0.5						
		k ₃ = 3.4						
		k ₄ = 0.425						
Maximum crack spacing - exp.7	.11	$s_{r.max} = k_3 \times$	$c_{bb} \textbf{ + } k_1 \times k_2 \times \\$	$k_4 \times \phi_{bb}$ / $\rho_{p.eff}$ =	635 mm			
Maximum crack width - exp.7.8		$w_k = s_{r.max} \times$	\propto max(σ_s – k _t ×	$(f_{\text{ct.eff}} \ / \ \rho_{\text{p.eff}}) \times (1$	+ $\alpha_{e} \times \rho_{p.eff}$), 0.0	$6 \times \sigma_s$) / E		

Tekla Tedds	oject		Project Job no. 28 Charlotte Street 1964					
		1964						
0	lcs for	Start page no./F						
1 Amwell Street, London EC1R 1UL	BF side retaining wall					5.9		
Ca	,	Calcs date	Checked by	Checked date	Approved by	Approved d		
	ab	19/10/2022						
		w _k / w _{max} =	0.545					
		PASS	- Maximum c	rack width is le	ss than limitin	g crack wi		
Rectangular section in shear - Section	ection 6.2							
Design shear force		V = 32.8 kN/m						
		$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$						
		k = min(1 +	√(200 mm / d	l), 2) = 1.862				
Longitudinal reinforcement ratio		ρ _l = min(A _{bb.prov} / d, 0.02) = 0.002						
		$v_{min} = 0.035 \; N^{1/2} / mm \times k^{3/2} \times f_{ck}^{0.5} = \textbf{0.503} \; N / mm^2$						
Design shear resistance - exp.6.2a	& 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (1))$	00 N ² /mm ⁴ \times ρ_{l} \times	$f_{ck})^{1/3},v_{min})\times d$			
		V _{Rd.c} = 135	. 3 kN/m					
		$V / V_{Rd.c} = 0$).242					
		PAS	S - Design sh	ear resistance	exceeds desig	ın shear fo		
Secondary transverse reinforcen	nent to base -	Section 9.3						
Minimum area of reinforcement - c	1.9.3.1.1(2)	$A_{bx,req}$ = 0.2 × $A_{bb,prov}$ = 113 mm ² /m						
Maximum spacing of reinforcement	t – cl.9.3.1.1(3	3) s _{bx_max} = 450 mm						
Transverse reinforcement provided		12 dia.bars	@ 200 c/c					
Area of transverse reinforcement p	rovided	$A_{bx.prov} = \pi$	$\times \phi_{bx}^2$ / (4 \times s _{bx}) = 565 mm²/m				
PA	SS - Area of I	reinforcement	provided is g	greater than are	a of reinforcer	nent requi		

Tekla. Tedds			64			
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	Start page no./Re C6				
	Calcs by AB	Calcs date 19/10/2022	Checked by	Checked date	Approved by	Approved date

RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.22

Description	Unit	Provided	Required	Utilisation	Result
Support 1	•				•
Tension reinf.	mm²/m	565	415	0.734	PASS
Tension bar spacing	mm	200	300	0.667	PASS
Shear	kN/m	133.7	38.0	0.284	PASS
Span 1					
Tension reinf.	mm²/m	565	344	0.609	PASS
Tension bar spacing	mm	200	300	0.667	PASS
Allow. span-to-depth ratio		20.09	40.00	0.502	PASS
Support 2					
Tension reinf.	mm²/m	565	415	0.734	PASS
Tension bar spacing	mm	200	300	0.667	PASS
Shear	kN/m	133.7	38.0	0.284	PASS
Cover	•				
Min cover top	mm	30	22	0.733	PASS
Min cover bottom	mm	75	22	0.293	PASS

4400-

Slab definition Slab reference name basement slab h = **300** mm Overall slab depth Number of spans N_{spans} = 1 First support Monolithic Last support Monolithic Nominal cover to top reinforcement cnom t = 30 mm Nominal cover to bottom reinforcement c_{nom_b} = **75** mm Loading Ratio of quasi-permanent to ultimate load r_q = **0.620 Concrete properties** Concrete strength class C32/40 Characteristic cylinder strength f_{ck} = 32 N/mm² Partial factor (Table 2.1N) γ_C = **1.50** Compressive strength factor (cl. 3.1.6) α_{cc} = 0.85 f_{cd} = **18.1** N/mm² Design compressive strength (cl. 3.1.6) f_{ctm} = 0.30 N/mm² × (f_{ck} / 1 N/mm²)^{2/3} = **3.0** N/mm² Mean axial tensile strength (Table 3.1) Maximum aggregate size d_g = **20** mm **Reinforcement properties** f_{yk} = **500** N/mm² Characteristic yield strength Partial factor (Table 2.1N) γs = 1.15 Design yield strength (fig. 3.8) $f_{yd} = f_{yk} / \gamma_S = 434.8 \text{ N/mm}^2$

Tekla Tedds Rodrigues Associates		28 Unario	otte Street			964
1 Amwell Street, London EC1R 1UL	Calcs for	BF	slab		Start page no./F	C6. 2
	Calcs by AB	Calcs date 19/10/2022	Checked by	Checked date	Approved by	Approved
Concrete cover to reinforcem						
Nominal cover to top reinforcer		C _{nom t} = 30	mm			
Nominal cover to bottom reinfo		$C_{\text{nom } b} = 75$				
Fire resistance period to top of	slab	R _{top} = 60 m				
Fire resistance period to botton		R _{btm} = 30 m				
Axis distance to top reinft (Tabl	e 5.8)	a _{fi_t} = 20 mi	m			
Axis distance to bottom reinft (Гable 5.8)	a _{fi_b} = 10 m	m			
Max bar diameter in top		φ _{max_t} = 12 ι	mm			
Max bar diameter in bottom		φ _{max_b} = 12	mm			
Min. top cover requirement with	regard to bond	$\mathbf{c}_{\min,b_t} = \phi_{\max}$	_{ax_t} = 12 mm			
Min. btm cover requirement wit	h regard to bond	$C_{min,b_b} = \phi_m$	_{ax_b} = 12 mm			
Reinforcement fabrication		Not subjec	t to QA syste	em		
Cover allowance for deviation		$\Delta c_{dev} = 10$ r				
Min. required nominal cover to	top reinft	C _{nom t min} =	max(a _{fit} - o _{max}	t_t / 2, c_{min,b_t} + Δc_b	_{dev}) = 22.0 mm	
Min. required nominal cover to	-			 ıx_b / 2, c _{min,b_b} + ∆		
·				is sufficient cov		
				ufficient cover t	-	
Bending design checks						
Redistribution ratio		δ = 1.0				
Limiting value of K			√ 8 - 0 18 √ 8 ²	- 0.21 = 0.208		
-				0.21 0.200		
Reinforcement design at mic Length of span 1	ispan of span 1	(ci.o.1)	m			
Design bending moment		$M_{p1} = 4400$ M				
Reinforcement provided			. bars at 200	mm centres		
Area provided		A _{sp1} = 565				
Effective depth to tension reinfo	orcement		om_b - φ _{p1} / 2 = 3	219.0 mm		
K factor			$\times d_{p1}^2 \times f_{ck}$ =			
				Compression re	inforcement is	s not reau
Lever arm		z = min(0.9		× (1 + √(1 - 3.53		
		z = 208.0 n		ι ι	,,,,	
Area of reinforcement required	for bendina		1 / (f _{yd} × z) = 3	07 mm²/m		
Minimum area required	5		,	√f _{yk}), 0.0013) × b	× d _{p1} = 344 mr	m²/m
Area of reinforcement required				_{1 min}) = 344 mm²/i		
1				reinforcement p		equate (0.
Check reinforcement spacing	n					
Reinforcement service stress)	$\sigma_0 = (f_{\rm obs} / \gamma_0)$) $\times \min((\mathbf{A}_{opt}))$	n/A _{sp1}), 1.0) × r _q =	146 5 N/mm	2
Maximum allowable spacing (T	able 7.3N)	S _{max p1} = 30	, , , , =	1.7 (spi), 1.0) × 1q	140.0	
Maximum anowable spacing (1		s _{p1} = 200 m				
Actual bar spacing				S - The reinforce	ment spacing	is accept
Actual bar spacing					,	-
	port 1 (cl 6 1)					
Reinforcement design at sup	port 1 (cl.6.1)	M _{n1} = 27 8	kNm/m			
Reinforcement design at sup Design bending moment	port 1 (cl.6.1)	M₀₁ = 27.8 12 mm dia		mm centres		
Reinforcement design at sup Design bending moment Reinforcement provided	port 1 (cl.6.1)	12 mm dia	. bars at 200	mm centres		
Reinforcement design at sup Design bending moment		12 mm dia A _{sn1} = 565 r	. bars at 200			

Tekla Tedds	Project	28 Charl	otte Street		Job no.	1964		
Rodrigues Associates	Calcs for				Start page no./	Revision		
1 Amwell Street, London EC1R 1UL		BF	slab		C6. 3			
	Calcs by AB	Calcs date 19/10/2022	Checked by	Checked date	Approved by	Approve		
	·		K < K'-	Compression re	inforcement i	s not rec		
Lever arm		z = min(0.9		2 × (1 + √(1 - 3.53				
		z = 250.8 r	nm					
Area of reinforcement required	for bending	$A_{sn1_m} = M_r$	1 / (f _{yd} × z) = 2	2 55 mm²/m				
Minimum area required		$A_{sn1}min} = n$	$\max(0.26 \times (f_{ctn}))$	$_{n}/f_{yk}), 0.0013) imes b$	× d _{n1} = 415 mi	m²/m		
Area of reinforcement required		A _{sn1_req} = m	hax(A _{sn1_m} , A _{sn}	_{1_min}) = 415 mm²/r	n			
		PASS - Are	ea of tension	reinforcement p	rovided is ad	equate (
Check reinforcement spacing								
Reinforcement service stress		σs = (f _{yk} / γs	s) × min((A _{sn1 r}	m/Asn1), 1.0) × rq =	121.5 N/mm	2		
Maximum allowable spacing (Ta	able 7.3N)	s _{max_n1} = 30	, =					
Actual bar spacing		s _{n1} = 200 n	nm					
			PASS	6 - The reinforce	ment spacing	is acce		
Reinforcement design at sup	oort 2 (cl.6.1)							
Design bending moment	, ,	M _{n2} = 27.8	kNm/m					
Reinforcement provided		12 mm dia	. bars at 200	mm centres				
Area provided		A _{sn2} = 565	mm²/m					
Effective depth to tension reinfo	Effective depth to tension reinforcement		$d_{n2} = h - c_{nom_t} - \phi_{n2} / 2 = 264.0 \text{ mm}$					
(factor		K = M _{n2} / (I	$\mathbf{b} \times \mathbf{d}_{n2}^2 \times \mathbf{f}_{ck}$ =	0.012				
			K < K' -	Compression re	inforcement i	s not red		
Lever arm		z = min(0.9	95 × d _{n2} , d _{n2} / 2	2 × (1 + √(1 - 3.53	× K)))			
		z = 250.8 r	nm					
Area of reinforcement required	for bending	$A_{sn2_m} = M_r$	₂ / (f _{yd} × z) = 2	2 55 mm²/m				
Minimum area required		$A_{sn2}_{min} = n$	$\max(0.26 \times (f_{ctn}))$	n/fyk), 0.0013) × b	× d _{n2} = 415 mi	m²/m		
Area of reinforcement required		$A_{sn2_req} = max(A_{sn2_m}, A_{sn2_min}) = 415 \text{ mm}^2/\text{m}$						
		PASS - Are	ea of tension	reinforcement p	rovided is ad	equate (
Check reinforcement spacing								
Reinforcement service stress		$\sigma_s = (f_{yk} / \gamma_s)$	$s) \times min((A_{sn2_r})$	m/Asn2), 1.0) × rq =	121.5 N/mm	2		
Maximum allowable spacing (Ta	able 7.3N)	s _{max_n2} = 30)0 mm					
Actual bar spacing		s _{n2} = 200 n	nm					
			PASS	6 - The reinforce	ment spacing	is accep		
Shear design checks								
Shear resistance constant (cl. 6	.2.2)	$C_{Rd,c} = 0.18$	3 N/mm² / γc =	• 0.12 N/mm ²				
Shear capacity check at supp	ort 1							
Shear force		V ₁ = 38.0	kN/m					
Effective depth factor (cl. 6.2.2)		k = min(2.0), 1 + (200 mm	n / d _{n1}) ^{0.5}) = 1.870				
Reinforcement ratio		ρ _l = min(0.	02, A_{sn1} / (b ×	d _{n1})) = 0.0021				
Minimum shear resistance (Exp	. 6.3N)			< k ^{1.5} × (f _{ck} / 1 N/m	$(m^2)^{0.5} \times b \times d_n$	1		
		_	1 33.7 kN/m	L (100	(E (A NU - 200)	1 3 3 3		
Shear resistance (Exp. 6.2a)		V _{Rd,c1} = ma V _{Rd,c1} = 13		$_{d,c} imes k imes (100 imes ho_{l} imes$	(Tck/1 N/mm ²)) ⁽	× b ×		
				PASS - Shear o	apacity is ad	equate (i		

Shear force

V₂ = 38.0 kN/m

Tekla Tedds	Project				Job no.	24				
		28 Charle	otte Street		19	964				
Rodrigues Associates	Calcs for		Start page no./Re							
1 Amwell Street, London EC1R 1UL		BF	C6. 4							
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date				
	AB	19/10/2022								
Effective depth factor (cl. 6.2.2)		k = min(2.0	, 1 + (200 mm /	(d _{n2}) ^{0.5}) = 1.870						
Reinforcement ratio			02, A_{sn2} / (b × d _n							
Minimum shear resistance (Exp.	. 6.3N)			x ^{1.5} × (f _{ck} / 1 N/mr	$(n^2)^{0.5} \times b \times d_{n^2}$					
		$V_{\text{Rd,c}}$ min = 1		(,					
Shear resistance (Exp. 6.2a)				\times k \times (100 \times o \times (1	f _{ck} /1 N/mm ²)) ^{0.3}	$^{333} \times b \times d_{n2}$				
				$V_{Rd,c2} = max(V_{Rd,c_min}, C_{Rd,c} \times k \times (100 \times \rho_l \times (f_{ck}/1 \text{ N/mm}^2))^{0.333} \times b \times d_{n2})$ $V_{Rd,c2} = 133.7 \text{ kN/m}$						
		V Ru,cz IOC		PASS - Shear ca	apacity is ade	quate (0.284)				
Deflection checks										
Basic span-to-depth ratio defl	ection check s	pan 1 (cl. 7.4.2)	1							
Reference reinforcement ratio		$\rho_0 = (f_{ck} / 1)$	N/mm²) ^{0.5} / 100	0 = 0.0057						
Required tension reinforcement	ratio	ρ = max(0.0	035, A _{sp1_m} / (b	× d _{p1})) = 0.0035	;					
Required compression reinforce	ment ratio	$\rho' = A_{scp1 red}$	$(b \times d_{p1}) = 0.$	0000						
Structural system factor (Table 7		Κ _δ = 1.0								
Basic span-to-depth ratio limit	,	× [11 + 1.5 × (f _{ck}	/1 N/mm²) ^{0.5} × ρ	$0/\rho + 3.2 \times (f_{ck}/1)$	N/mm ²) ^{0.5} × (00/	/ρ - 1) ^{1.5}]				
(Exp. 7.16a)	_	ratio _{lim1 bas} =			<i>,</i> 4	. , .				
Modified span-to-depth ratio limi	it									
		min(40 × Kձ. mir	n(1.5. (500 N/mi	m ² / f _{yk}) \times (A _{sp1} / A	(sp1 m)) × ratiolir	$m_{1 \text{ bas}}) = 40.00$				
Actual span-to-depth ratio			/ d _{p1} = 20.09		-p ·_··//	,				
				Span-to-depth	ratio is accep	otable (0.502)				
Reinforcement sketch										
The following sketch is indicative	o only. Noto the	t additional rainf	orcomont movel	he required in as	cordonco with	clausos				

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

14 CO		12 1 10 10 - T
	12 _¢ @200	
T	τεφωεύο	Ť

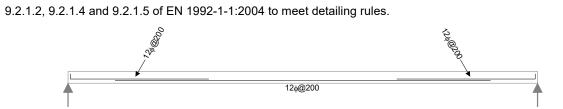
Tekla. Tedds	Project	Job no. 1964				
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	Start page no./Revision C6B. 1				
	Calcs by AB	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved date

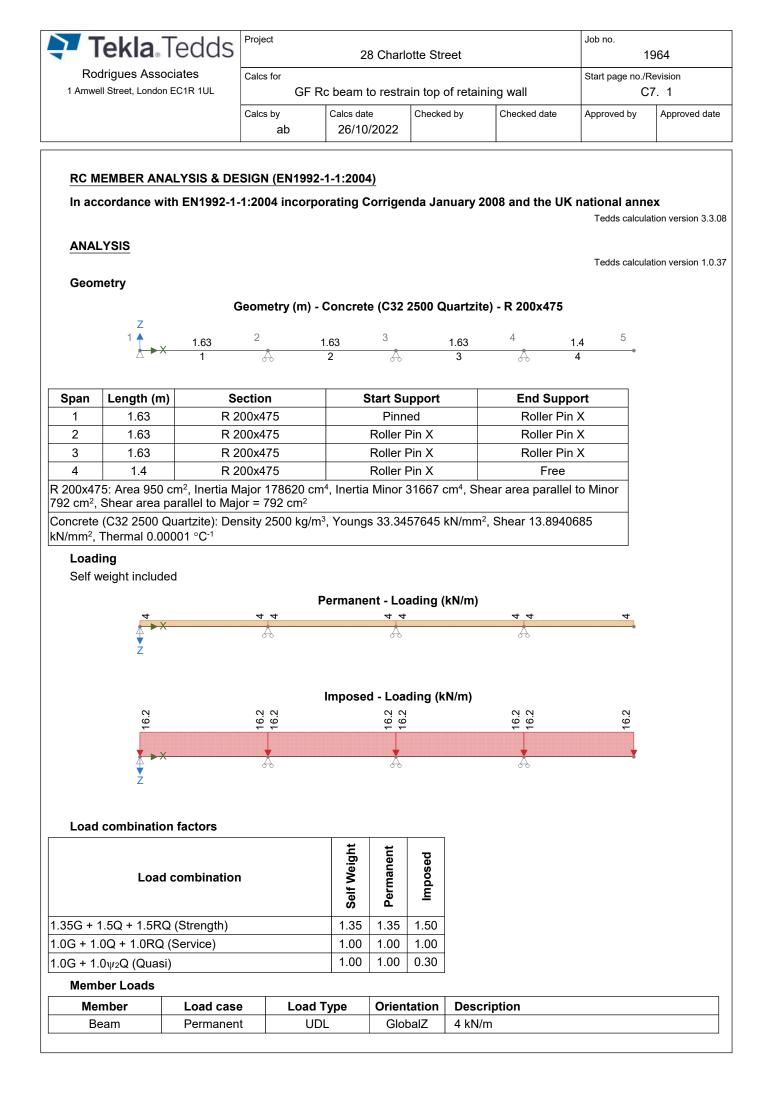
RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.22

Description	Unit	Provided	Required	Utilisation	Result
Support 1			·		
Tension reinf.	mm²/m	565	415	0.734	PASS
Tension bar spacing	mm	200	300	0.667	PASS
Shear	kN/m	118.6	22.5	0.190	PASS
Span 1					
Tension reinf.	mm²/m	565	344	0.609	PASS
Tension bar spacing	mm	200	300	0.667	PASS
Allow. span-to-depth ratio		20.09	40.00	0.502	PASS
Support 2					
Tension reinf.	mm²/m	565	415	0.734	PASS
Tension bar spacing	mm	200	300	0.667	PASS
Shear	kN/m	118.6	22.5	0.190	PASS
Cover					
Min cover bottom	mm	75	22	0.293	PASS


_____4400_____


→ →

Slab definition	
Slab reference name	basement slab
Overall slab depth	h = 300 mm
Number of spans	N _{spans} = 1
First support	Simple
Last support	Simple
Nominal cover to bottom reinforcement	c _{nom_b} = 75 mm
Loading	
Ratio of quasi-permanent to ultimate load	$r_{\rm q} = 0.620$
Concrete properties	
Concrete strength class	C32/40
Characteristic cylinder strength	f _{ck} = 32 N/mm ²
Partial factor (Table 2.1N)	γc = 1.50
Compressive strength factor (cl. 3.1.6)	α _{cc} = 0.85
Design compressive strength (cl. 3.1.6)	f _{cd} = 18.1 N/mm ²
Mean axial tensile strength (Table 3.1)	f_{ctm} = 0.30 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.0 N/mm ²
Maximum aggregate size	d _g = 20 mm
Reinforcement properties	
Characteristic yield strength	f _{yk} = 500 N/mm ²
Partial factor (Table 2.1N)	γs = 1.15
Design yield strength (fig. 3.8)	f _{yd} = f _{yk} / γ _S = 434.8 N/mm ²
Concrete cover to reinforcement	
Nominal cover to bottom reinforcement	c _{nom_b} = 75 mm

Tekla Tedds		28 Charl	otte Street		1	964
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for	BF sla	ab uplift		Start page no./F	Revision 6B. 2
	Calcs by AB	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved
Fire resistance period to bottom	of slab	R _{btm} = 30 n	nin			
Axis distance to bottom reinft (T	able 5.8)	a _{fi_b} = 10 m	ım			
Max bar diameter in bottom		φ _{max_b} = 12	mm			
Min. btm cover requirement with	regard to bone		_{nax_b} = 12 mm			
Reinforcement fabrication		-	ct to QA syste	m		
Cover allowance for deviation		$\Delta c_{dev} = 10$				
Min. required nominal cover to b	oottom reinft			_{x_b} / 2, c _{min,b_b} + ∆ ufficient cover t		
Bending design checks						
Redistribution ratio		δ = 1.0				
Limiting value of K			$\times \delta$ - 0.18 $\times \delta^2$	- 0.21 = 0.208		
Reinforcement design at mid	enan of enan '					
Length of span 1	shan ni shau .	l (cl.6.1) l1 = 4400 n	m			
Design bending moment		M _{p1} = 24.8				
Reinforcement provided		•	. bars at 200	mm centres		
Area provided		A _{sp1} = 565				
Effective depth to tension reinfo	rcement		om_b - \$\$p1 / 2 = 2	219.0 mm		
K factor		$\mathbf{p} \times \mathbf{d}_{p1^2} \times \mathbf{f}_{ck}$ =				
			K < K' - (Compression re	inforcement is	s not requ
Lever arm		z = min(0.9 z = 208.0 r		× (1 + √(1 - 3.53	× K)))	
Area of reinforcement required f	or bending	$A_{sp1} = M_{r}$	₅₁ / (f _{yd} × z) = 2	74 mm²/m		
Minimum area required	0			/f _{yk}), 0.0013) × b	× d _{⊳1} = 344 mr	n²/m
Area of reinforcement required		$A_{sp1_{req}} = m$	nax(A _{sp1_m} , A _{sp1}	_ _{min}) = 344 mm²/i reinforcement p	n	
Check reinforcement spacing						
Reinforcement service stress		$\sigma_{s} = (f_{yk} / \gamma_{s})$	$s) \times min((A_{sp1_n}))$	$_{n}/A_{sp1}), 1.0) \times r_{q} =$	130.4 N/mm	2
Maximum allowable spacing (Ta	ble 7.3N)	S _{max_p1} = 3 ()0 mm			
Actual bar spacing		s _{p1} = 200 n	nm			
			PASS	- The reinforce	ment spacing	is accept
Shear design checks						
Shear resistance constant (cl. 6	.2.2)	$C_{Rd,c} = 0.18$	3 N/mm² / γ _C =	0.12 N/mm ²		
Shear capacity check at supp	ort 1					
Shear force		V ₁ = 22.5	kN/m			
Reinforcement provided			. bars at 200	mm centres		
Area provided		A _{sd1} = 565				
Effective depth			om_b - \$\$_d_1 / 2 = 2			
Effective depth factor (cl. 6.2.2)		•		1 / d _{d1}) ^{0.5}) = 1.956		
Reinforcement ratio			02, A_{sd1} / (b × 0			
Minimum shear resistance (Exp	. 6.3N)			$k^{1.5} \times (f_{ck} / 1 N/m)$	$(m^2)^{0.5} \times b \times d_d$	1
		$V_{Rd,c_{min}} = r$		1 (100	/	
Shear resistance (Exp. 6.2a)		V _{Rd,c1} = ma V _{Rd,c1} = 11	$X(V_{Rd,c_{min}}, C_{Rd})$	$_{l,c} \times \mathbf{k} \times (100 \times \rho_l \times$	(T _{ck} /1 N/mm ²)) ⁰	×b×0

Tekla Tedds	Project	28 Charl	Job no.	964				
Rodrigues Associates	Calcs for	20 01141						
1 Amwell Street, London EC1R 1UL	Calcs IO	BF sla	Start page no./Revision C6B. 3					
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat		
	AB	26/10/2022	Chicoked by		, pproved by	, pproved d		
Shear capacity check at supp	ort 2							
Shear force		V ₂ = 22.5 k	κN/m					
Reinforcement provided		12 mm dia	. bars at 200	mm centres				
Area provided		A _{sd2} = 565	mm²/m					
Effective depth		$d_{d2} = h - c_n$	om_b - φ _{d2} / 2 = 2	219.0 mm				
Effective depth factor (cl. 6.2.2)		k = min(2.0), 1 + (200 mm	n / d _{d2}) ^{0.5}) = 1.956	5			
Reinforcement ratio		$\rho_1 = min(0.02, A_{sd2} / (b \times d_{d2})) = 0.0026$						
Minimum shear resistance (Exp	. 6.3N)	$V_{Rd,c_{min}} = 0$	0.035 N/mm ² ×	k ^{1.5} × (f _{ck} / 1 N/n	$(10^{10.5} \times b \times d_{d})$	2		
		V _{Rd,c_min} = 1	118.6 kN/m					
Shear resistance (Exp. 6.2a)	$V_{\text{Rd,c2}} = \text{max}(V_{\text{Rd,c}_\text{min}}, C_{\text{Rd,c}} \times k \times (100 \times \rho_l \times (f_{\text{ck}}/1 \text{ N/mm}^2))^{0.333} \times b \times d_{\text{d2}})^{0.333} \times b \times d_{\text{d2}})^{0.33} \times b \times d_{\text{d2}}$							
		V _{Rd,c2} = 113	8.6 kN/m					
				PASS - Shear	capacity is ad	equate (0.1		
Deflection checks								
	ection check	span 1 (cl. 7.4.2)					
Basic span-to-depth ratio defl								
		$\rho_0 = (f_{ck} / 1)$	N/mm ²) ^{0.5} / 10	00 = 0.0057				
Reference reinforcement ratio	ratio			00 = 0.0057 (b × d _{p1})) = 0.003	35			
Reference reinforcement ratio Required tension reinforcement		$\rho = \max(0.$		(b × d _{p1})) = 0.003	5			
Reference reinforcement ratio Required tension reinforcement Required compression reinforce	ement ratio	$\rho = \max(0.$	0035, A _{sp1_m} /	(b × d _{p1})) = 0.003	5			
Reference reinforcement ratio Required tension reinforcement Required compression reinforce Structural system factor (Table	ement ratio 7.4N)	ρ = max(0. ρ' = A _{scp1_re} K _δ = 1.0	0035, A _{sp1_m} / (_{eq} / (b × d _{p1}) = ((b × d _{p1})) = 0.003).0000		ο/ρ - 1) ^{1.5}]		
Basic span-to-depth ratio defl Reference reinforcement ratio Required tension reinforcement Required compression reinforce Structural system factor (Table 7 Basic span-to-depth ratio limit (Exp. 7.16a)	ement ratio 7.4N)	ρ = max(0. ρ' = A _{scp1_re} K _δ = 1.0	0035, A _{sp1_m} / (_{kq} / (b × d _{p1}) = (k/1 N/mm ²) ^{0.5} ×	(b × d _{p1})) = 0.003).0000		o/ρ - 1) ^{1.5}]		
Reference reinforcement ratio Required tension reinforcement Required compression reinforce Structural system factor (Table Basic span-to-depth ratio limit (Exp. 7.16a)	ement ratio 7.4N) ratio _{lim1_bas} = K	$\rho = \max(0)$ $\rho' = A_{scp1_re}$ $K_{\delta} = 1.0$ $\delta \times [11 + 1.5 \times (f_{cl})]$	0035, A _{sp1_m} / (_{kq} / (b × d _{p1}) = (k/1 N/mm ²) ^{0.5} ×	(b × d _{p1})) = 0.003).0000		o/ρ - 1) ^{1.5}]		
Reference reinforcement ratio Required tension reinforcement Required compression reinforce Structural system factor (Table Basic span-to-depth ratio limit (Exp. 7.16a)	ement ratio 7.4N) ratio _{lim1_bas} = K it	$\rho = \max(0)$ $\rho' = A_{scp1_re}$ $K_{\delta} = 1.0$ $\delta \times [11 + 1.5 \times (f_{cl})]$	0035, A _{sp1_m} / (_{eq} / (b × d _{p1}) = (k/1 N/mm ²) ^{0.5} × = 33.47	(b × d _{p1})) = 0.003 0.0000 ρ ₀ /ρ + 3.2 × (f _{ck} / ²	l N/mm²) ^{0.5} × (ρ			
Reference reinforcement ratio Required tension reinforcement Required compression reinforce Structural system factor (Table Basic span-to-depth ratio limit	ement ratio 7.4N) ratio _{lim1_bas} = K it	$\rho = \max(0)$ $\rho' = A_{scp1_re}$ $K_{\delta} = 1.0$ $\kappa_{\delta} \times [11 + 1.5 \times (f_{cl} + 1.$	0035, A _{sp1_m} / (_{eq} / (b × d _{p1}) = (k/1 N/mm ²) ^{0.5} × = 33.47	(b × d _{p1})) = 0.003 0.0000 ρ ₀ /ρ + 3.2 × (f _{ck} / ²	l N/mm²) ^{0.5} × (ρ			
Reference reinforcement ratio Required tension reinforcement Required compression reinforce Structural system factor (Table Basic span-to-depth ratio limit (Exp. 7.16a) Modified span-to-depth ratio lim	ement ratio 7.4N) ratio _{lim1_bas} = K it	$\rho = \max(0)$ $\rho' = A_{scp1_re}$ $K_{\delta} = 1.0$ $\kappa_{\delta} \times [11 + 1.5 \times (f_{cl} + 1.$	0035, $A_{sp1_m} / (b_{q} / (b \times d_{p1})) = 0$ $a_q / (b \times d_{p1}) = 0$	(b × d _{p1})) = 0.003 0.0000 ρ ₀ /ρ + 3.2 × (f _{ck} / ²	l N/mm²) ^{0.5} × (ρ A _{sp1_m})) × ratio	lim1_bas) = 40		

Tekla Tedds	Project Jack 28 Charlotte Street					64
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for GF R	Start page no./Revision C7. 2				
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved date

Member	Load case	Load Type	Orientation	Description
Beam	Imposed	UDL	GlobalZ	16.2 kN/m

Results

Reactions

Load case: Self Weight

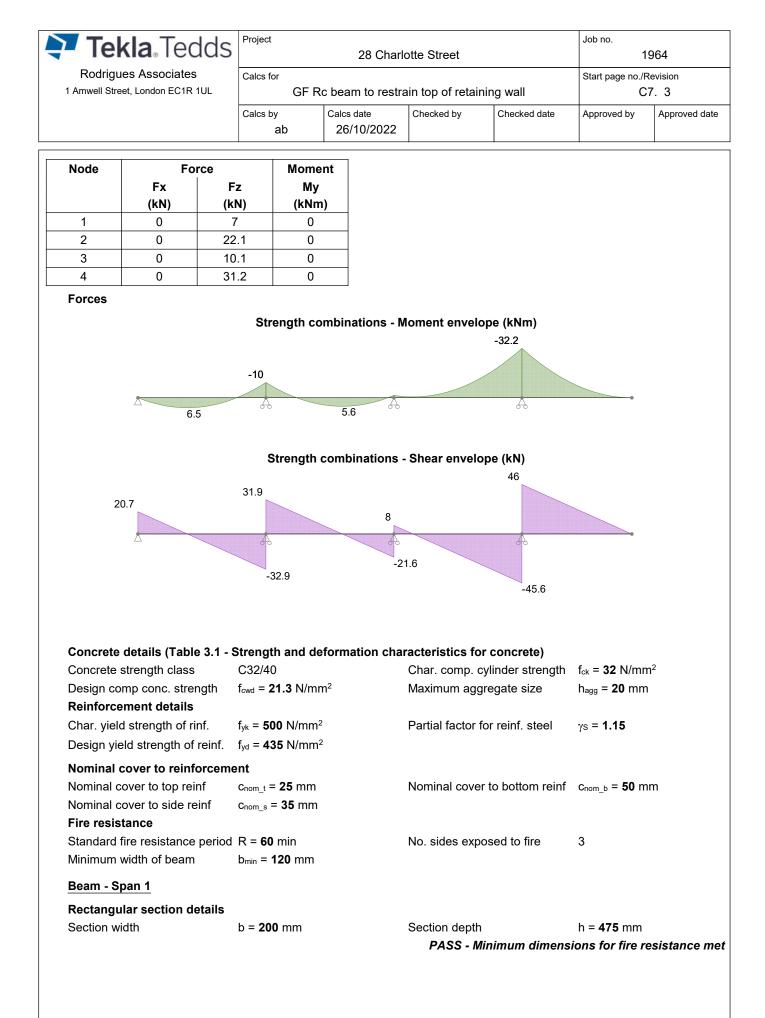
Node	Fo	Moment		
	Fx Fz		My	
	(kN)	(kN)	(kNm)	
1	0	1.5	0	
2	0	4.6	0	
3	0	2.1	0	
4	0	6.5	0	

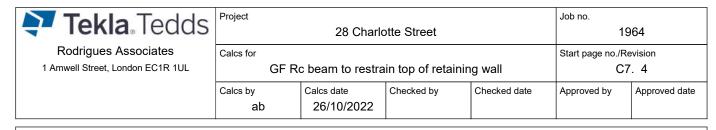
Load case: Permanent

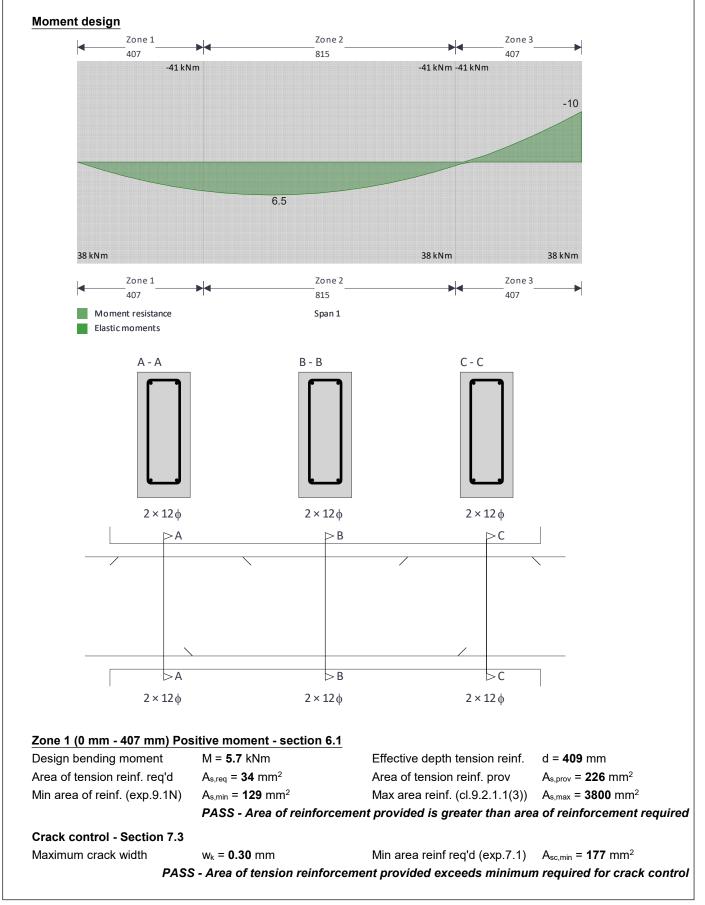
Node	Force		Moment	
	Fx Fz		Му	
	(kN)	(kN)	My (kNm)	
1	0	2.5	0	
2	0	7.9	0	
3	0	3.6	0	
4	0	11.1	0	

Load case: Imposed

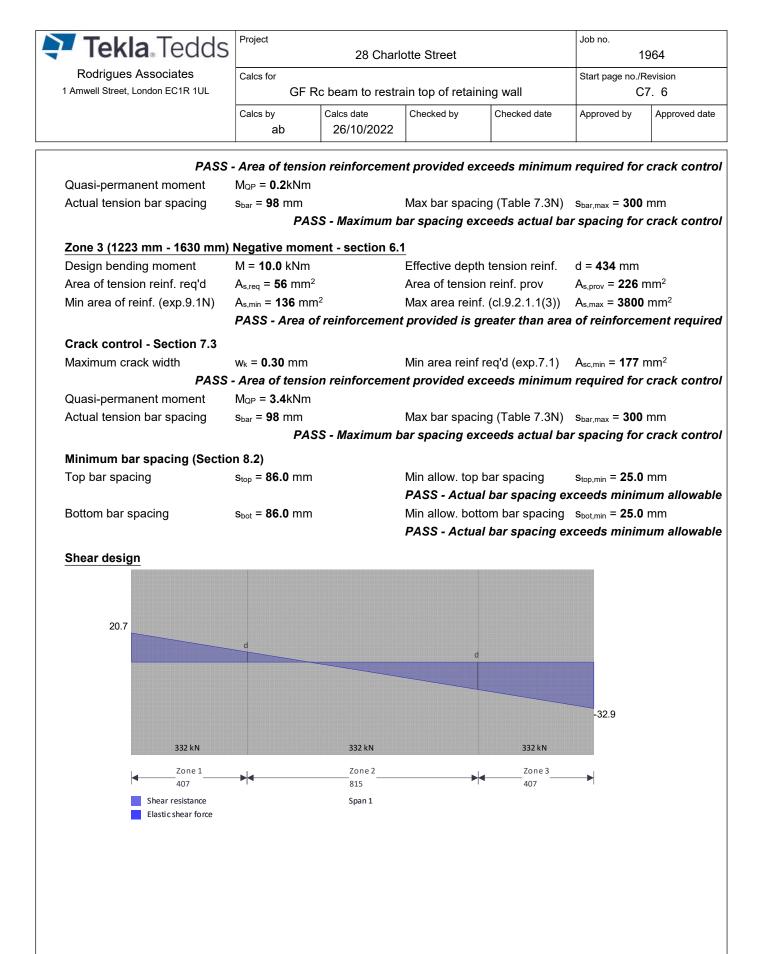
Node	Force		Moment		
	Fx Fz		Му		
	(kN)	(kN)	(kNm)		
1	0	10.2	0		
2	0	32	0		
3	0	14.6	0		
4	0	45.1	0		

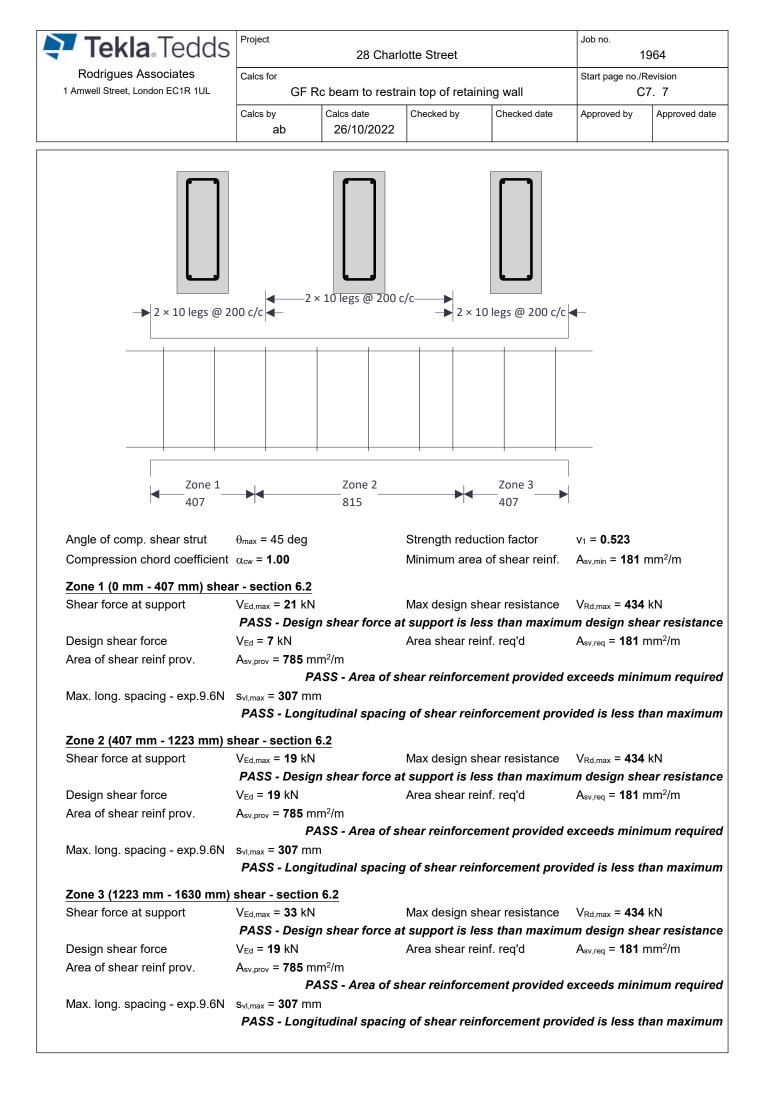

Load combination: 1.35G + 1.5Q + 1.5RQ (Strength)

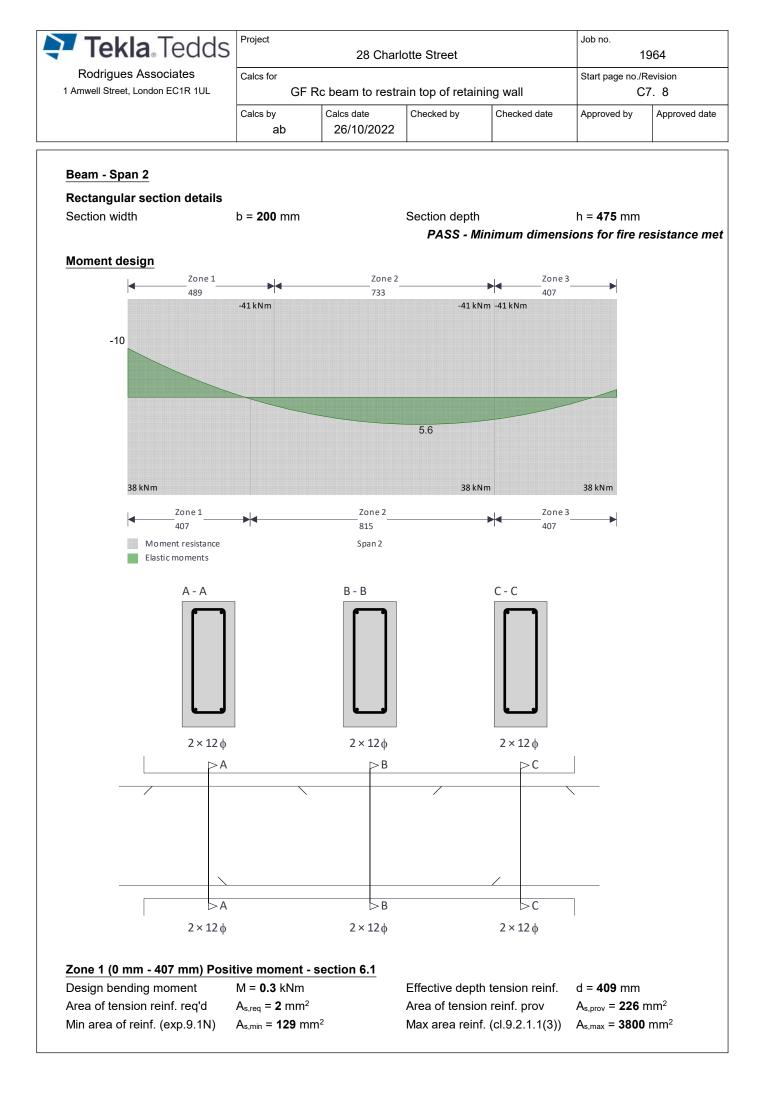

			• •
Node	Fo	rce	Moment
	Fx Fz		Му
	(kN)	(kN)	(kNm)
1	0	20.7	0
2	0	64.8	0
3	0	29.6	0
4	0	91.5	0


Load combination: 1.0G + 1.0Q + 1.0RQ (Service)

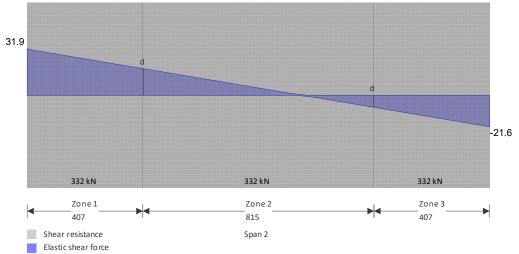
Node	Force		Moment	
	Fx Fz		Му	
	(kN)	(kN)	(kNm)	
1	0	14.2	0	
2	0	44.4	0	
3	0	20.3	0	
4	0	62.8	0	

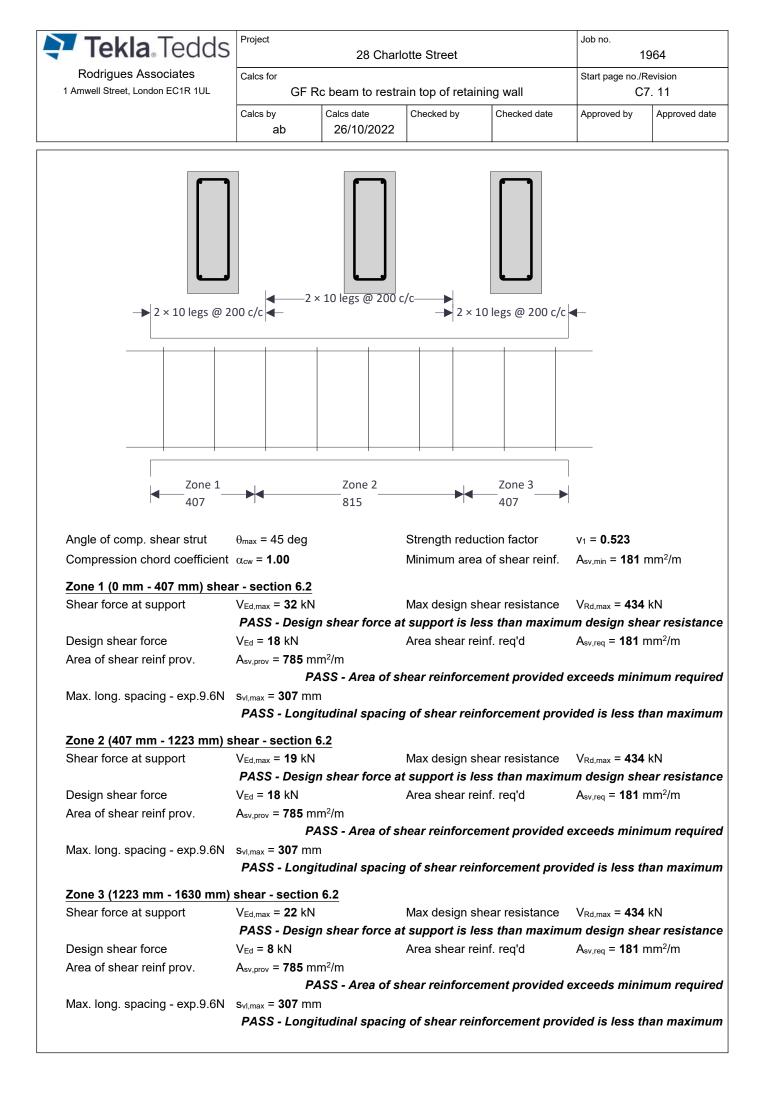

Load combination: $1.0G + 1.0\psi_2Q$ (Quasi)

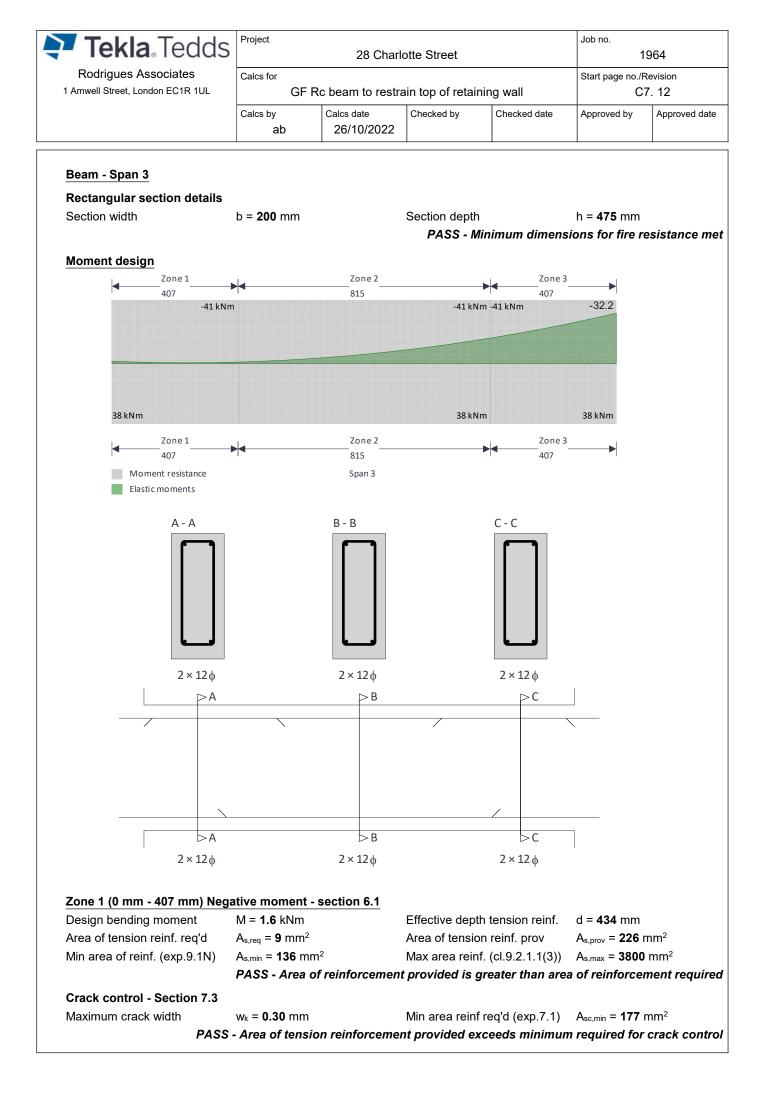




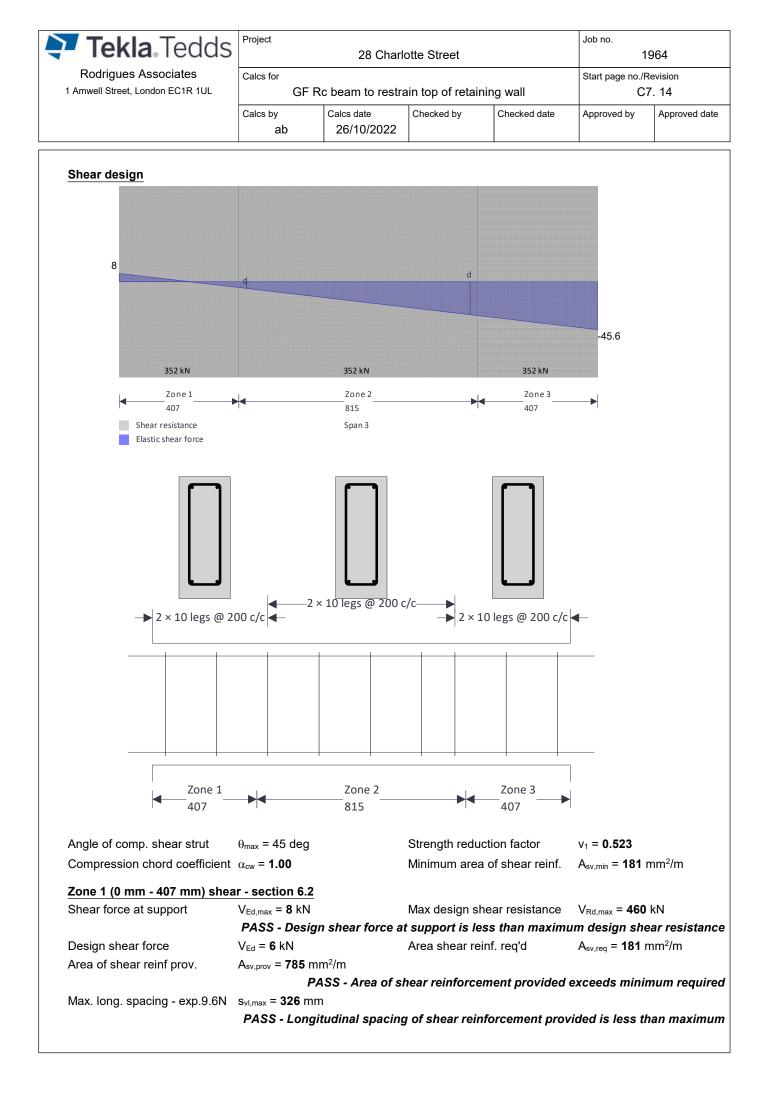
Tekla Tedds	Project	28 Char	lotte Street		Job no. 1	964	
Rodrigues Associates	Calcs for				Start page no./Revision		
1 Amwell Street, London EC1R 1UL	GF	Rc beam to restr	ain top of retai	ning wall		7.5	
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved of	
Quasi-permanent moment	M _{QP} = 1.9 kNm	1					
Actual tension bar spacing	s _{bar} = 98 mm		Max bar spac	ing (Table 7.3N)	S _{bar,max} = 300	mm	
	PA	SS - Maximum I	bar spacing ex	ceeds actual b	ar spacing for	crack con	
Zone 1 (0 mm - 407 mm) Neg	native moment	- section 6 1					
Design bending moment	M = 1.6 kNm	- Section 0.1	Effective dent	th tension reinf.	d = 434 mm		
Area of tension reinf. req'd	$A_{s,req} = 9 \text{ mm}^2$			on reinf. prov	A _{s,prov} = 226 r	nm ²	
Min area of reinf. (exp.9.1N)	A _{s,min} = 136 m			nf. (cl.9.2.1.1(3))	-		
	-	of reinforcemen					
				greater than are		nentrequ	
Crack control - Section 7.3						2	
Maximum crack width	w _k = 0.30 mm			f req'd (exp.7.1)			
		ion reinforceme	nt provided ex	xceeas minimu	m requirea for	сгаск соп	
Quasi-permanent moment	M _{QP} = 0.0 kNm	1					
Actual tension bar spacing	s _{bar} = 98 mm	00 14	Max bar spacing (Table 7.3N) s _{bar,max} = 300 m mum bar spacing exceeds actual bar spacing for c				
	PA	55 - Maximum I	oar spacing ex	ceeds actual b	ar spacing for	сгаск соп	
Minimum bar spacing (Secti	on 8.2)						
Top bar spacing	s _{top} = 86.0 mm		Min allow. top bar spacing PASS - Actual bar spacing ex		s _{top,min} = 25.0 mm cceeds minimum allowa		
Bottom bar spacing	s _{bot} = 86.0 mm	า		ttom bar spacing			
			PASS - Actu	al bar spacing e	exceeds minim	um allowa	
Zono 2 (407 mm 1222 mm)	Positivo momo	nt contion 6 1					
Zone 2 (407 mm - 1223 mm) Design bending moment	M = 6.5 kNm	ent - Section 6.1	Effective dept	th toncion roinf	d = 409 mm		
Area of tension reinf. req'd	A _{s,req} = 38 mm	2	Effective depth tension reinf. Area of tension reinf. prov		$A_{s,prov} = 226 \text{ mm}^2$		
Min area of reinf. (exp.9.1N)	A _{s,min} = 129 m		Max area reinf. (cl.9.2.1.1(3))		-		
		of reinforcemen					
	7700 - 7700	orrennoreennen		greater than are		nentrequ	
Crack control - Section 7.3						2	
Maximum crack width	w _k = 0.30 mm				$A_{sc,min} = 177 \text{ mm}^2$		
		ion reinforceme	nt provided ex	xceeds minimu	m required for	crack con	
Quasi-permanent moment	M _{QP} = 2.2 kNm	1					
Actual tension bar spacing	s _{bar} = 98 mm	00 14		ing (Table 7.3N)	-		
	PA	SS - Maximum I	uar spacing ex	kceeas actual b	ar spacing for	Crack CON	
Deflection control - Section	7.4						
Allow. span to depth ratio	span_to_dept		Actual span to		span_to_dep		
		PAS	S - Actual spa	n to depth ratio	is within the a	llowable l	
Minimum bar spacing (Secti	on 8.2)						
Top bar spacing	s _{top} = 86.0 mm	1	Min allow. top PASS - Actu	bar spacing al bar spacing e	s _{top,min} = 25.0		
Bottom bar spacing	s _{bot} = 86.0 mm	ı	Min allow. bo	ttom bar spacing of al bar spacing e	Sbot,min = 25.0	mm	
7 0 /1000 /000							
Zone 3 (1223 mm - 1630 mm	•	ient - section 6.	_		d _ 400		
Design bending moment	M = 0.7 kNm		-	th tension reinf.	d = 409 mm		
Area of tension reinf. req'd	$A_{s,req} = 4 \text{ mm}^2$		Area of tensio	-	$A_{s,prov} = 226 r$		
Min area of reinf. (exp.9.1N)	A _{s,min} = 129 m			nf. (cl.9.2.1.1(3))			
	PASS - Area	of reinforcemen	t provided is	greater than are	ea of reinforcei	nent requi	
Crack control - Section 7.3							

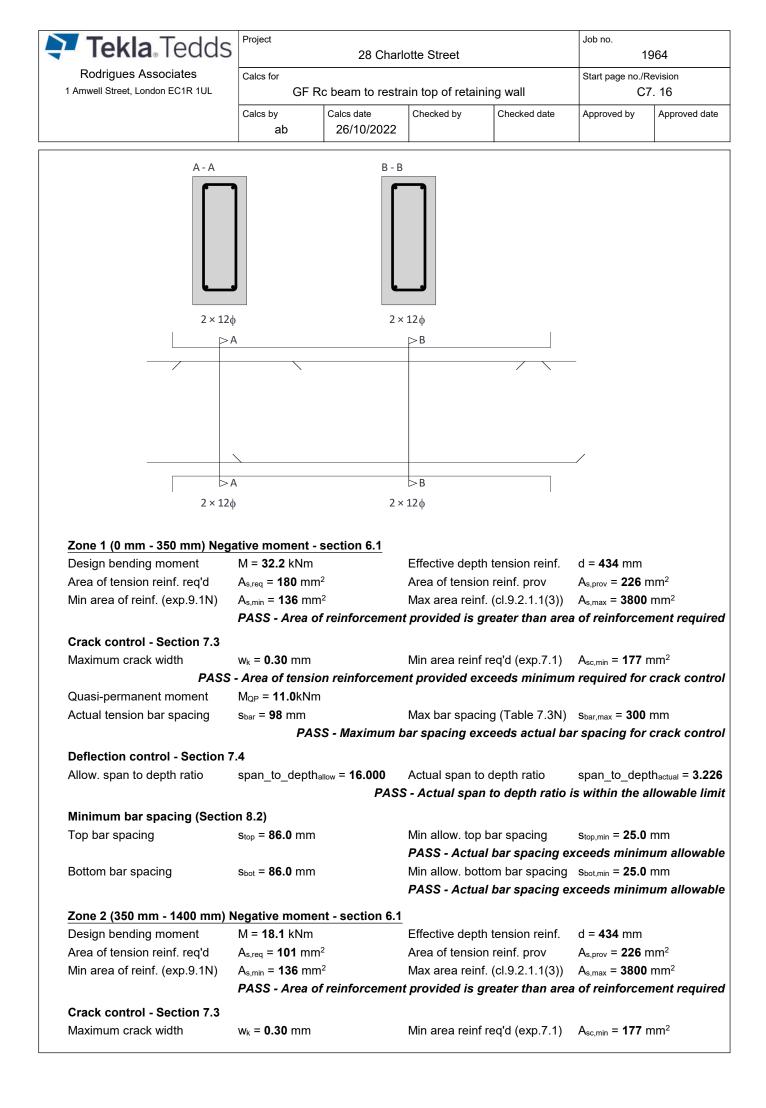




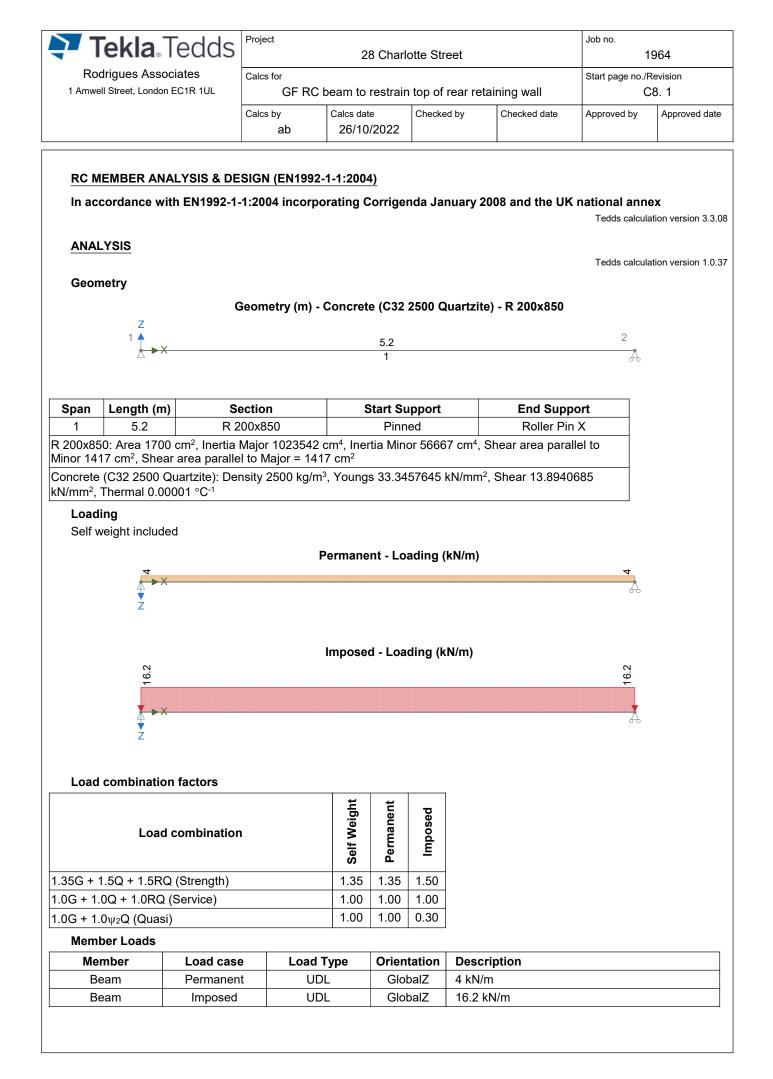

Tekla Tedds		28 Charl	otte Street		1964 Start page no./Revision		
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for GF F	GF Rc beam to restrain top of retaining wall					
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved of	
	PASS - Area o	of reinforcement	t provided is g	reater than are	a of reinforce	ment requ	
Crack control - Section 7.3							
Maximum crack width	w _k = 0.30 mm			req'd (exp.7.1)			
	S - Area of tension	on reinforceme	nt provided ex	ceeds minimu	m required for	crack con	
Quasi-permanent moment	M _{QP} = 0.1 kNm						
Actual tension bar spacing	s _{bar} = 98 mm	C. Marinarum k	=	ing (Table 7.3N)			
	PAS	SS - Maximum b	ar spacing ex	ceeds actual b	ar spacing for	сгаск соп	
Zone 1 (0 mm - 489 mm) Neg	gative moment -	section 6.1					
Design bending moment	M = 10.0 kNm		-	h tension reinf.	d = 434 mm		
Area of tension reinf. req'd	$A_{s,req} = 56 \text{ mm}^2$			n reinf. prov	A _{s,prov} = 226		
Min area of reinf. (exp.9.1N)	A _{s,min} = 136 mn			f. (cl.9.2.1.1(3))			
	PASS - Area o	of reinforcement	t provided is g	reater than are	a of reinforce	ment requ	
Crack control - Section 7.3							
Maximum crack width	w _k = 0.30 mm			req'd (exp.7.1)			
	S - Area of tension	on reinforceme	nt provided ex	ceeds minimu	m required for	crack con	
Quasi-permanent moment		M _{QP} = 3.4 kNm					
Actual tension bar spacing	s _{bar} = 98 mm	.	-	ing (Table 7.3N)			
	PAS	SS - Maximum b	ar spacing ex	ceeds actual D	ar spacing for	Crack con	
Minimum bar spacing (Secti	-						
Top bar spacing	s _{top} = 86.0 mm		-	bar spacing	S _{top,min} = 25.0		
				al bar spacing e			
Bottom bar spacing	s _{bot} = 86.0 mm			tom bar spacing			
			PASS - Actua	al bar spacing e	exceeas minin	ium allowa	
Zone 2 (407 mm - 1223 mm)		nt - section 6.1					
Design bending moment	M = 5.6 kNm		-	h tension reinf.	d = 409 mm		
Area of tension reinf. req'd	A _{s,req} = 33 mm ²		Area of tensio		$A_{s,prov} = 226 \text{ mm}^2$		
Min area of reinf. (exp.9.1N)	A _{s,min} = 129 mn			f. (cl.9.2.1.1(3))			
	PASS - Area o	of reinforcement	t provided is g	greater than are	a of reinforce	ment requ	
Crack control - Section 7.3							
Maximum crack width	w _k = 0.30 mm			req'd (exp.7.1)			
	S - Area of tension	on reinforcemei	nt provided ex	ceeds minimul	m required for	crack con	
Quasi-permanent moment	M _{QP} = 1.9 kNm						
Actual tension bar spacing	s _{bar} = 98 mm	SS - Maximum b	•	ing (Table 7.3N)			
			ar spacing ex	ceeus actual D	ar spacing for		
Deflection control - Section							
Allow. span to depth ratio	span_to_depth		Actual span to	-	span_to_dep		
		PASS	- Actual spar	n to depth ratio	is within the a	illowable I	
Minimum bar spacing (Secti	-						
Top bar spacing	s _{top} = 86.0 mm		Min allow. top		Stop,min = 25.0		
				al bar spacing e			
Bottom bar spacing	s _{bot} = 86.0 mm			tom bar spacing			
			PASS - Actua	al bar spacing e	exceeds minin	num allowa	
Zone 3 (1223 mm - 1630 mm) Positive mome	ent - section 6.1					
Design bending moment	M = 4.5 kNm		Effective dept	h tension reinf.	d = 409 mm		
Area of tension reinf. req'd	A _{s,req} = 27 mm ²)	Area of tensio	a nation fragments	As,prov = 226	2	

	_						
Tekla Tedds	Project	Job no. 1	964				
Rodrigues Associates							
1 Amwell Street, London EC1R 1UL		Calcs for GF Rc beam to restrain top of retaining wall				Start page no./Revision C7. 10	
				-			
	Calcs by	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved date	
	ab	20/10/2022					
Min area of reinf. (exp.9.1N)	A _{s.min} = 129 mm	2	Max area reinf.	(cl.9.2.1.1(3))	A _{s.max} = 3800	mm ²	
	PASS - Area of	reinforcemen			-		
Crack control - Section 7.3							
Maximum crack width	w _k = 0.30 mm		Min area reinf ı	req'd (exp.7.1)	A _{sc,min} = 177	mm ²	
PASS	- Area of tensio	n reinforceme	nt provided exc	ceeds minimun	n required for	crack contro	
Quasi-permanent moment	M _{QP} = 1.5 kNm		-		-		
Actual tension bar spacing	s _{bar} = 98 mm		Max bar spacir	ng (Table 7.3N)	s _{bar,max} = 300	mm	
	PAS	S - Maximum b	par spacing exc	eeds actual ba	ar spacing for	crack contro	
Zone 3 (1223 mm - 1630 mm)	Negative mome	ent - section 6.	1				
Design bending moment	M = 1.6 kNm		—	tension reinf.	d = 434 mm		
Area of tension reinf. req'd	$A_{s,req} = 9 \text{ mm}^2$		Area of tension reinf. prov		A _{s,prov} = 226 mm ²		
Min area of reinf. (exp.9.1N)	A _{s,min} = 136 mm	2	Max area reinf.	(cl.9.2.1.1(3))	A _{s,max} = 3800	mm ²	
	PASS - Area of	reinforcemen	t provided is gi	reater than area	a of reinforce	ment required	
Crack control - Section 7.3							
Maximum crack width	w _k = 0.30 mm		Min area reinf ı	req'd (exp.7.1)	A _{sc,min} = 177	mm²	
PASS	- Area of tensio	n reinforceme	nt provided exc	ceeds minimun	n required for	crack contro	
Quasi-permanent moment	M _{QP} = 0.5 kNm						
Actual tension bar spacing	s _{bar} = 98 mm		Max bar spacir	ng (Table 7.3N)	s _{bar,max} = 300	mm	
	PAS	S - Maximum b	bar spacing exc	ceeds actual ba	ar spacing for	crack contro	
Minimum bar spacing (Section	on 8.2)						
Top bar spacing	s _{top} = 86.0 mm		Min allow. top I	bar spacing	s _{top,min} = 25.0	mm	
			PASS - Actual	l bar spacing e	xceeds minin	um allowable	
Bottom bar spacing	s _{bot} = 86.0 mm		Min allow. botto	om bar spacing	Sbot,min = 25.0	mm	


Shear design



Tekla Tedds	Project	28 Char	lotte Street		1	964
Rodrigues Associates	Calcs for			. "	Start page no./	
1 Amwell Street, London EC1R 1UL	GF	Rc beam to restr	ain top of retail	ning wall	С	7. 13
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved of
		20/10/2022				
Quasi-permanent moment	M _{QP} = 0.5 kNm	I				
Actual tension bar spacing	s _{bar} = 98 mm		Max bar spac	ing (Table 7.3N)	S _{bar,max} = 300	mm
	PA	SS - Maximum I	bar spacing ex	xceeds actual b	ar spacing for	crack con
Minimum bar spacing (Secti	on 8.2)					
Top bar spacing	s _{top} = 86.0 mm	1	Min allow. top PASS - Actu	o bar spacing al bar spacing e	Stop,min = 25.0 Exceeds minin	
Bottom bar spacing	s _{bot} = 86.0 mm	ı		ttom bar spacing		
				al bar spacing e		
Z 0 (40Z	N					
Zone 2 (407 mm - 1223 mm)			-	th tomoion voinf	al — 424 mana	
Design bending moment	M = 16.4 kNm		-	th tension reinf.	d = 434 mm	mm²
Area of tension reinf. req'd	A _{s,req} = 91 mm		Area of tensio	•	$A_{s,prov} = 226$	
Min area of reinf. (exp.9.1N)	$A_{s,min} = 136 mi$			nf. (cl.9.2.1.1(3))		
	rass - Area	or reinforcemen	i proviaea is (greater than are	a oi reintorce	ment requi
Crack control - Section 7.3						
Maximum crack width	w _k = 0.30 mm			f req'd (exp.7.1)		
			nt provided ex	xceeds minimui	m required for	crack con
Quasi-permanent moment	M _{QP} = 5.6 kNm	l				
Actual tension bar spacing	s _{bar} = 98 mm		•	ing (Table 7.3N)		
-		SS - Maximum I	•	ting (Table 7.3N) Acceeds actual b		
-	PA	SS - Maximum I	•			
Actual tension bar spacing	PA		•	xceeds actual b		crack con
Actual tension bar spacing Deflection control - Section	PA 7.4	h _{allow} = 60.000	b ar spacing ex Actual span to	xceeds actual b	ar spacing for span_to_dep	crack con
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio	PA 7.4 span_to_deptI	h _{allow} = 60.000	b ar spacing ex Actual span to	xceeds actual b	ar spacing for span_to_dep	crack con
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti	PA 7.4 span_to_deptl on 8.2)	h _{allow} = 60.000 PAS	bar spacing ex Actual span to S - Actual span	xceeds actual b o depth ratio n to depth ratio	ar spacing for span_to_dep is within the a	crack con oth _{actual} = 3.3
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio	PA 7.4 span_to_deptl on 8.2)	h _{allow} = 60.000 PAS	bar spacing ex Actual span to S - Actual span Min allow. top	xceeds actual be o depth ratio n to depth ratio	ar spacing for span_to_dep is within the a stop,min = 25.0	crack con oth _{actual} = 3. allowable l mm
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing	PA 7.4 span_to_depti fon 8.2) s _{top} = 86.0 mm	h _{allow} = 60.000 <i>PAS</i> :	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actual	o depth ratio n to depth ratio b bar spacing al bar spacing e	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin	oth _{actual} = 3.3 allowable l mm aum allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti	PA 7.4 span_to_deptl on 8.2)	h _{allow} = 60.000 <i>PAS</i> :	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actua Min allow. bot	xceeds actual b o depth ratio <i>n to depth ratio</i> o bar spacing al bar spacing e ttom bar spacing	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin g Sbot,min = 25.0	oth _{actual} = 3.3 allowable I mm num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing	PA 7.4 span_to_depti on 8.2) s _{top} = 86.0 mm s _{bot} = 86.0 mm	h _{allow} = 60.000 <i>PAS</i> :	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actua Min allow. bot PASS - Actua	o depth ratio n to depth ratio b bar spacing al bar spacing e	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin g Sbot,min = 25.0	oth _{actual} = 3.3 allowable I mm num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing <u>Zone 3 (1223 mm - 1630 mm</u>	PA 7.4 span_to_depti on 8.2) s _{top} = 86.0 mm s _{bot} = 86.0 mm) Negative mon	hallow = 60.000 PAS	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actua Min allow. bot PASS - Actua 1	xceeds actual be o depth ratio <i>n to depth ratio</i> o bar spacing al bar spacing e ttom bar spacing e	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin sbot,min = 25.0 exceeds minin	oth _{actual} = 3.3 allowable I mm num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing <u>Zone 3 (1223 mm - 1630 mm</u> Design bending moment	<i>PA</i> 7.4 span_to_deptl 50n 8.2) Stop = 86.0 mm Sbot = 86.0 mm <u>) Negative mon</u> M = 32.2 kNm	hallow = 60.000 PAS n n n <u>ent - section 6</u> .	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actua Min allow. bot PASS - Actua 1 Effective dept	xceeds actual be o depth ratio in to depth ratio o bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b sbot,min = 25.0 exceeds minin d = 434 mm	oth _{actual} = 3.3 allowable I mm num allowa mm num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd	<i>PA</i> 7.4 span_to_depti on 8.2) s _{top} = 86.0 mm s _{bot} = 86.0 mm <u>) Negative mon</u> M = 32.2 kNm A _{s,req} = 180 mm	hallow = 60.000 <i>PAS</i> n n <u>nent - section 6.</u> m ²	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actua Min allow. bot PASS - Actua Effective dept Area of tensio	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e al bar spacing e th tension reinf. on reinf. prov	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin g sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226	oth _{actual} = 3.7 allowable la mm num allowa num allowa num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing <u>Zone 3 (1223 mm - 1630 mm</u> Design bending moment	<i>PA</i> 7.4 span_to_deptil 5 5 5 5 5 5 5 5	hallow = 60.000 <i>PAS</i> n n <u>nent - section 6.</u> m ² m ²	Actual span to Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensio Max area rein	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e th tension reinf. on reinf. prov nf. (cl.9.2.1.1(3))	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm A _{s,prov} = 226 f A _{s,max} = 3800	mm num allowa num allowa num allowa num allowa num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd	<i>PA</i> 7.4 span_to_deptil 5 5 5 5 5 5 5 5	hallow = 60.000 <i>PAS</i> n n <u>nent - section 6.</u> m ² m ²	Actual span to Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensio Max area rein	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e al bar spacing e th tension reinf. on reinf. prov	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm A _{s,prov} = 226 f A _{s,max} = 3800	mm num allowa num allowa num allowa num allowa num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd	<i>PA</i> 7.4 span_to_deptil 5 5 5 5 5 5 5 5	hallow = 60.000 <i>PAS</i> n n <u>nent - section 6.</u> m ² m ²	Actual span to Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensio Max area rein	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e th tension reinf. on reinf. prov nf. (cl.9.2.1.1(3))	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm A _{s,prov} = 226 f A _{s,max} = 3800	mm num allowa num allowa num allowa num allowa num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N)	<i>PA</i> 7.4 span_to_deptil 5 5 5 5 5 5 5 5	hallow = 60.000 PAS n n <u>ment - section 6.</u> m ² m ² of reinforcemen	Actual span to Actual span to S - Actual span Min allow. top PASS - Actua Min allow. bot PASS - Actua I Effective dept Area of tensio Max area rein t provided is g	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e th tension reinf. on reinf. prov nf. (cl.9.2.1.1(3))	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin sbot,min = 25.0 exceeds minin d = 434 mm A _{s,prov} = 226 f A _{s,max} = 3800 ea of reinforce.	mm num allowa num allowa num allowa num allowa num allowa num allowa num allowa
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width	<i>PA</i> 7.4 span_to_deptil on 8.2) stop = 86.0 mm Sbot = 86.0 mm M = 32.2 kNm A _{s,req} = 180 mm A _{s,req} = 136 mm <i>PASS - Area</i> of wk = 0.30 mm	hallow = 60.000 PAS n n ment - section 6. m ² m ² of reinforcemen	Actual span to Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensic Max area rein to provided is g Min area reint	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e th tension reinf. on reinf. prov nf. (cl.9.2.1.1(3)) greater than are	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 i As,max = 3800 ea of reinforce Asc,min = 177	crack con oth _{actual} = 3. allowable l mm num allowa num allowa num allowa num ² mm ² ment requi
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width	<i>PA</i> 7.4 span_to_deptil on 8.2) stop = 86.0 mm Sbot = 86.0 mm M = 32.2 kNm A _{s,req} = 180 mm A _{s,req} = 136 mm <i>PASS - Area</i> of wk = 0.30 mm	hallow = 60.000 PAS n n <u>n nent - section 6.</u> m ² m ² of reinforcement	Actual span to Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensic Max area rein to provided is g Min area reint	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e th tension reinf. on reinf. prov of. (cl.9.2.1.1(3)) greater than are f req'd (exp.7.1)	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 i As,max = 3800 ea of reinforce Asc,min = 177	crack con oth _{actual} = 3.1 allowable l mm num allowa num allowa num allowa num ² mm ² ment requi
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS	<i>PA</i> 7.4 $span_to_deptiles 5.5 stop = 86.0 mm s_{bot} = 86.0 mm5.5 shot = 86.0 mm6.1 Megative monM = 32.2 kNmAs,req = 180 mmAs,req = 180 mmAs,req = 136 mmPASS - Area5.5 Area of tensiMQP = 11.0 kNmSbar = 98 mm$	hallow = 60.000 PAS n n <u>ment - section 6.</u> m ² m ² of reinforcement ion reinforcement m	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensic Max area reint to provided is g Min area reint nt provided ex Max bar spac	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e th tension reinf. on reinf. prov nf. (cl.9.2.1.1(3)) greater than are f req'd (exp.7.1) xceeds minimun	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 As,max = 3800 ea of reinforces Asc,min = 177 m required for sbar,max = 300	crack con oth _{actual} = 3.1 allowable l mm num allowa num allowa num allowa num ² ment requi mm ² crack con mm
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment	<i>PA</i> 7.4 $span_to_deptiles 5.5 stop = 86.0 mm s_{bot} = 86.0 mm5.5 shot = 86.0 mm6.1 Megative monM = 32.2 kNmAs,req = 180 mmAs,req = 180 mmAs,req = 136 mmPASS - Area5.5 Area of tensiMQP = 11.0 kNmSbar = 98 mm$	hallow = 60.000 PAS n n <u>ment - section 6.</u> m ² m ² of reinforcement ion reinforcement m	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensic Max area reint to provided is g Min area reint nt provided ex Max bar spac	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e th tension reinf. on reinf. prov of. (cl.9.2.1.1(3)) greater than are f req'd (exp.7.1) xceeds minimul	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 As,max = 3800 ea of reinforces Asc,min = 177 m required for sbar,max = 300	crack con oth _{actual} = 3. allowable I mm num allowa mm ² mm ² ment requi mm ² crack con mm
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment	<i>PA</i> 7.4 $span_to_depth$ 5.5 $s_{top} = 86.0 mm$ $s_{bot} = 86.0 mm$ <i>S.5</i> 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	hallow = 60.000 PAS n n <u>ment - section 6.</u> m ² m ² of reinforcement ion reinforcement m	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensic Max area reint to provided is g Min area reint nt provided ex Max bar spac	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e th tension reinf. on reinf. prov nf. (cl.9.2.1.1(3)) greater than are f req'd (exp.7.1) xceeds minimun	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 As,max = 3800 ea of reinforces Asc,min = 177 m required for sbar,max = 300	crack con oth _{actual} = 3. allowable I mm num allowa mm ² mm ² ment requi mm ² crack con mm
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing	<i>PA</i> 7.4 $span_to_depth$ 5.5 $s_{top} = 86.0 mm$ $s_{bot} = 86.0 mm$ <i>S.5</i> 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	hallow = 60.000 PAS n n <u>ment - section 6.</u> m ² of reinforcement ion reinforcement m SS - Maximum I	bar spacing ex Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensic Max area reint to provided is g Min area reint nt provided ex Max bar spac	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e th tension reinf. on reinf. prov of. (cl.9.2.1.1(3)) greater than are f req'd (exp.7.1) xceeds minimul sing (Table 7.3N) xceeds actual be	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 As,max = 3800 ea of reinforces Asc,min = 177 m required for sbar,max = 300	crack con oth _{actual} = 3. allowable I mm num allowa num allowa num allowa num ² ment requi mm ² crack con mm crack con
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Minimum bar spacing (Secti	<i>PA</i> 7.4 span_to_deptil on 8.2) stop = 86.0 mm Sbot = 86.0 mm <i>Negative mon</i> <i>M</i> = 32.2 kNm <i>A</i> s,req = 180 mm <i>A</i> s,req = 180 mm <i>A</i> s,min = 136 mm <i>PASS - Area o</i> w _k = 0.30 mm <i>S - Area of tensi</i> M _{QP} = 11.0kNm Sbar = 98 mm <i>PA</i> fon 8.2)	hallow = 60.000 PAS n n <u>ment - section 6.</u> m ² of reinforcement ion reinforcement m SS - Maximum I	Actual span to Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bol PASS - Actual I Effective dept Area of tensic Max area reint to provided is g Min area reint nt provided ex Max bar spac bar spacing ex Min allow. top	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e th tension reinf. on reinf. prov of. (cl.9.2.1.1(3)) greater than are f req'd (exp.7.1) xceeds minimul sing (Table 7.3N) xceeds actual be	ar spacing for span_to_dep is within the a Stop,min = 25.0 exceeds minin Sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 As,max = 3800 ea of reinforce Asc,min = 177 m required for Sbar,max = 300 ar spacing for Stop,min = 25.0	crack con oth _{actual} = 3.3 allowable la mm num allowa mm ² mm ² ment requi mm ² crack con mm crack con
Actual tension bar spacing Deflection control - Section Allow. span to depth ratio Minimum bar spacing (Secti Top bar spacing Bottom bar spacing Zone 3 (1223 mm - 1630 mm Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Minimum bar spacing (Secti	<i>PA</i> 7.4 span_to_deptil on 8.2) stop = 86.0 mm Sbot = 86.0 mm <i>Negative mon</i> <i>M</i> = 32.2 kNm <i>A</i> s,req = 180 mm <i>A</i> s,req = 180 mm <i>A</i> s,min = 136 mm <i>PASS - Area o</i> w _k = 0.30 mm <i>S - Area of tensi</i> M _{QP} = 11.0kNm Sbar = 98 mm <i>PA</i> fon 8.2)	hallow = 60.000 PAS n n nent - section 6. m ² m ² of reinforcemen m SS - Maximum 1	Actual span to Actual span to S - Actual span Min allow. top PASS - Actual Min allow. bot PASS - Actual Effective dept Area of tensic Max area reint t provided is g Min area reint nt provided ex Max bar spac bar spacing ex Min allow. top PASS - Actual	xceeds actual be o depth ratio <i>n to depth ratio</i> b bar spacing al bar spacing e ttom bar spacing e ttom bar spacing e th tension reinf. on reinf. prov of. (cl.9.2.1.1(3)) greater than are f req'd (exp.7.1) xceeds minimul sing (Table 7.3N) xceeds actual be	ar spacing for span_to_dep is within the a stop,min = 25.0 exceeds minin b Sbot,min = 25.0 exceeds minin d = 434 mm As,prov = 226 f As,max = 3800 ea of reinforced Asc,min = 177 m required for Sbar,max = 300 ar spacing for Stop,min = 25.0 exceeds minin	crack con oth _{actual} = 3. allowable I mm num allowa mm num allowa mm ² ment requi mm ² crack con mm crack con mm num allowa



Tekla. Tedds Rodrigues Associates	Calcs for		otte Street		Start page no./I	1964 Revision
1 Amwell Street, London EC1R 1UL	-	Rc beam to restra	ain top of retair	ning wall		7. 15
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved
Zana 2 (407 mm - 4222 mm)		- 6 0				
Zone 2 (407 mm - 1223 mm) s Shear force at support	$V_{Ed,max} = 31 \text{ k}$		Max design sl	hear resistance	V _{Rd.max} = 460) kN
		ign shear force a	•			
Design shear force	V _{Ed} = 31 kN		Area shear re	inf. req'd	A _{sv,req} = 181	mm²/m
Area of shear reinf prov.	A _{sv,prov} = 785	mm²/m				
		PASS - Area of sl	hear reinforce	ement provided	exceeds mini	mum requ
Max. long. spacing - exp.9.6N						
	PASS - Lon	gitudinal spacing	g of shear rein	nforcement prov	vided is less t	han maxin
Zone 3 (1223 mm - 1630 mm)	shear - sectio	on 6.2				
Shear force at support	V _{Ed,max} = 46 k	N	Max design sl	hear resistance	V _{Rd,max} = 460) kN
		ign shear force a			-	
Design shear force	V _{Ed} = 31 kN		Area shear re	inf. req'd	A _{sv,req} = 181	mm²/m
Area of shear reinf prov.	A _{sv,prov} = 785					
Mary laws and size and 0 CNI		PASS - Area of sl	near reinforce	ement provided	exceeds mini	mum requ
Max. long. spacing - exp.9.6N		nm gitudinal spacin g	a of oboor roir	forcoment prov	vidad ia laas t	han mavin
	FA33 - LON	gituumai spacing	j ol sileal Tell	norcement prov		11a11 111aX111
Beam - Span 4						
Destaurulaure etter detelle						
Rectangular section details						
Section width	b = 200 mm		Section depth	I	h = 475 mm	
-	b = 200 mm		-	linimum dimens		resistance
Section width	b = 200 mm		-			resistance
-	b = 200 mm		-			resistance
Section width Moment design Zone1 350			PASS - M		sions for fire r	resistance
Section width Moment design Zone1 350	b = 200 mm		PASS - M			resistance
Section width Moment design Zone1 350			PASS - M		sions for fire r	resistance
Section width Moment design Zone1 350			PASS - M		sions for fire r	resistance
Section width Moment design Zone1 350			PASS - M		sions for fire r	resistance
Section width <u>Moment design</u> -32.2 -4			PASS - M		-41 kNm	resistance
Section width Moment design Zone1 350			PASS - M		sions for fire r	resistance
Section width Moment design -32.2 -32.2 Zone 1 350 -4 Zone 1 -32.2 Zone 1			PASS - M		-41 kNm	resistance
Section width Moment design -32.2	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width Moment design -32.2 -32.2 Zone 1 350 -4 Zone 1 -32.2 Zone 1	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	esistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 -350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance
Section width <u>Moment design</u> -32.2 -32.2 -32.4 350 -32.4 Zone 1 -350 -32.2 Moment resistance	1 kNm	Span 4	PASS - M		-41 kNm	resistance

Tekla Tedds	Project	Project				Job no.	
- Iekia ieuus		28 Charl	1964				
Rodrigues Associates	Calcs for Start page no./Revision		Revision				
1 Amwell Street, London EC1R 1UL	GF F	Rc beam to restr	ain top of retair	ing wall	C7. 18		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved dat	
	ab	26/10/2022					
Compression chord coefficient	α _{cw} = 1.00		Minimum area	of shear reinf.	A _{sv,min} = 181	mm²/m	
Zone 1 (0 mm - 350 mm) shea	ar - section 6.2						
Shear force at support	V _{Ed,max} = 46 kN		Max design sh	ear resistance	V _{Rd,max} = 460	kN	
	PASS - Desig	n shear force a	t support is le	ss than maximu	ım design she	ear resistan	
Design shear force	V _{Ed} = 32 kN		Area shear reinf. req'd		A _{sv,req} = 181 mm ² /m		
Area of shear reinf prov.	A _{sv,prov} = 785 m	1m²/m					
	P	ASS - Area of s	hear reinforce	ment provided	exceeds minii	num requir	
Max. long. spacing - exp.9.6N	s _{vl,max} = 326 mi	m					
	PASS - Long	itudinal spacing	g of shear rein	forcement prov	rided is less tl	nan maximu	
Zone 2 (350 mm - 1400 mm) s	hear - section	6.2					
Zone 2 (350 mm - 1400 mm) s Shear force at support	hear - section V _{Ed,max} = 32 kN		Max design sh	iear resistance	V _{Rd,max} = 460	kN	
/	V _{Ed,max} = 32 kN		•				
/	V _{Ed,max} = 32 kN	 	•	ss than maximu		ear resistan	
Shear force at support	V _{Ed,max} = 32 kN PASS - Desig	n shear force a	t support is le	ss than maximu	ım design she	ear resistan	
Shear force at support Design shear force	V _{Ed,max} = 32 kN <i>PASS - Desig</i> V _{Ed} = 32 kN A _{sv,prov} = 785 m	n shear force a	<i>t support is le</i> Area shear rei	ss than maximu nf. req'd	ı <i>m design she</i> A _{sv,req} = 181 r	e ar resistan mm²/m	
Shear force at support Design shear force	V _{Ed,max} = 32 kN PASS - Desig V _{Ed} = 32 kN A _{sv,prov} = 785 m P	n shear force a m²/m ASS - Area of s	<i>t support is le</i> Area shear rei	ss than maximu nf. req'd	ı <i>m design she</i> A _{sv,req} = 181 r	ear resistan mm²/m	

Tekla. Tedds	Project	roject 28 Charlotte Street			Job no. 1964	
Rodrigues Associates 1 Amwell Street, London EC1R 1UL	Calcs for GF RC b	beam to restrain	top of rear retai	ning wall	Start page no./Re C8	vision 5. 2
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved date

Results

Reactions

Load case: Self Weight

Node	Fo	Moment	
	Fx	Fz	Му
	(kN)	(kN)	(kNm)
1	0	10.8	0
2	0	10.8	0

Load case: Permanent

	•••••••••••		
Node	Fo	Moment	
	Fx	My (kNm)	
	(kN)	(kN)	(kNm)
1	0	10.4	0
2	0	10.4	0

Load case: Imposed

Node	Fo	Moment	
	Fx	Fz	Му
	(kN)	(kN)	(kNm)
1	0	42.1	0
2	0	42.1	0

Load combination: 1.35G + 1.5Q + 1.5RQ (Strength)

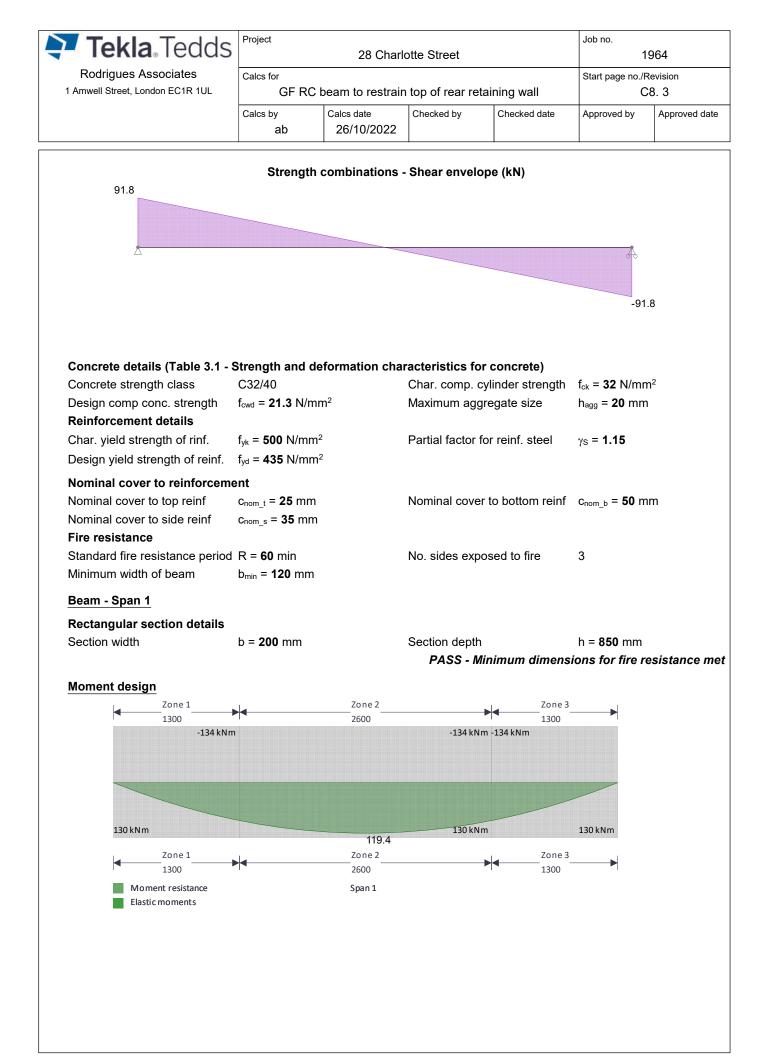
Node	Fo	Moment	
	Fx Fz		Му
	(kN)	(kN)	(kNm)
1	0	91.8	0
2	0	91.8	0

Load combination: 1.0G + 1.0Q + 1.0RQ (Service)

Node	Fo	Moment	
	Fx	Fz	Му
	(kN)	(kN)	(kNm)
1	0	63.4	0
2	0	63.4	0

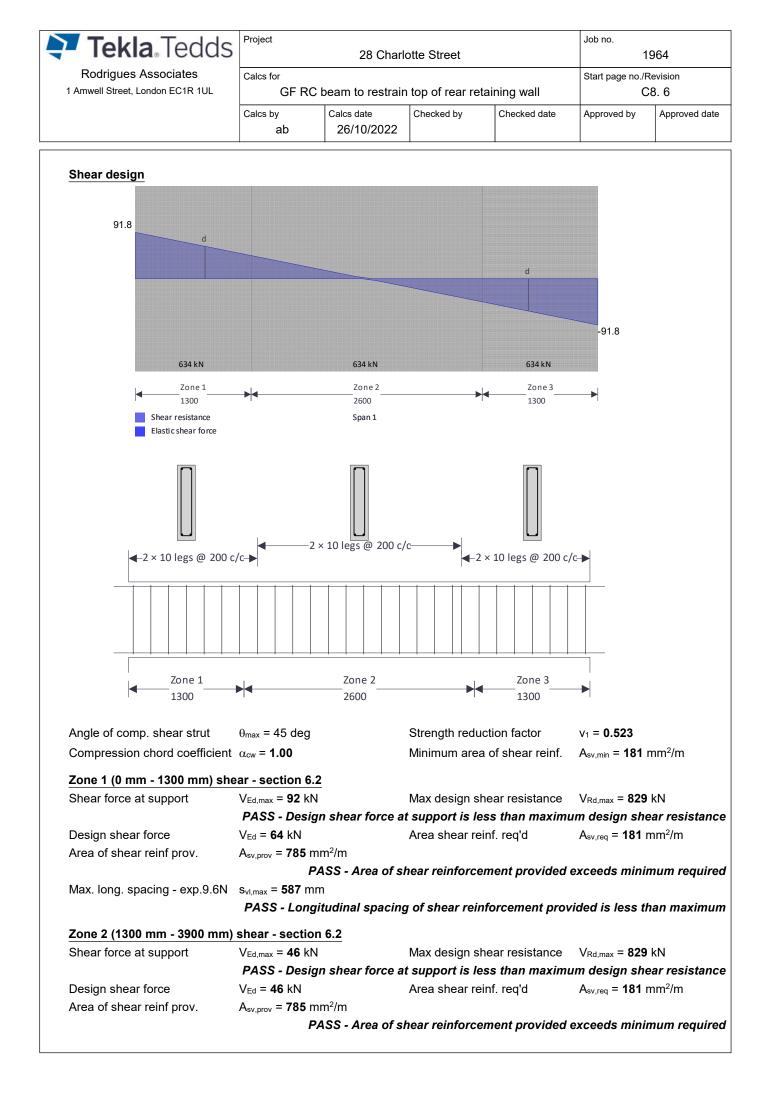
Load combination: 1.0G + 1.0 ψ_2 Q (Quasi)

Node	Fo	Moment	
	Fx	Fz	Му
	(kN)	(kN)	(kNm)
1	0	33.9	0
2	0	33.9	0


Forces

7

Strength combinations - Moment envelope (kNm)


119.4

A

Tekla Tedds	Project	28 Charl	otte Street		Job no. 1964		
Rodrigues Associates	Calcs for				Start page no./Revision		
1 Amwell Street, London EC1R 1UL	GF RC b	peam to restrain	top of rear ret	taining wall	C	8.4	
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da	
	ab	26/10/2022					
A - A		B - B		C - C			
Π		\square					
		216					
2 × 16φ		2 × 16φ		2 × 16φ			
	\	> B	/	> C			
				/			
A		> B		> C			
2 × 16φ		2 × 16φ		2 × 16φ			
Zone 1 (0 mm - 1300 mm) Po	sitive moment - M = 89.6 kNm	section 6.1	Effective dept	h tension reinf.	d = 782 mm		
Design bending moment Area of tension reinf. req'd	M = 89.6 kinff $A_{s,req} = 277 \text{ mm}^2$	2	Area of tensio		a = 782 mm A _{s,prov} = 402 r	mm²	
•	$A_{s,req} = 217$ mm $A_{s,min} = 246$ mm ²			f. (cl.9.2.1.1(3))	-		
Min area of reinf (exp 9 1N)			Max aroa rom				
Min area of reinf. (exp.9.1N)		reinforcement	t provided is a	areater than are	a of reinforce	ment reaui	
		reinforcement	t provided is g	greater than are	a of reinforcei	ment requi	
Crack control - Section 7.3	PASS - Area of	reinforcement		-		-	
Crack control - Section 7.3 Maximum crack width	PASS - Area of w _k = 0.30 mm		Min area reinf	f req'd (exp.7.1)	A _{sc,min} = 313	mm ²	
Crack control - Section 7.3 Maximum crack width	PASS - Area of		Min area reinf	f req'd (exp.7.1)	A _{sc,min} = 313	mm ²	
Crack control - Section 7.3 Maximum crack width PASS	<i>PASS - Area of</i> w _k = 0.30 mm <i>- Area of tensio</i> M _{QP} = 33.0kNm s _{bar} = 94 mm	n reinforcemei	Min area reinf n t provided ex Max bar spaci	f req'd (exp.7.1) cceeds minimun ing (Table 7.3N)	A _{sc,min} = 313 i n required for s _{bar,max} = 300	mm² crack cont mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment	<i>PASS - Area of</i> w _k = 0.30 mm <i>- Area of tensio</i> M _{QP} = 33.0kNm s _{bar} = 94 mm	n reinforcemei	Min area reinf n t provided ex Max bar spaci	f req'd (exp.7.1) Acceeds minimun	A _{sc,min} = 313 i n required for s _{bar,max} = 300	mm² crack cont mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PAS	n reinforcemei S - Maximum b	Min area reinf n t provided ex Max bar spaci	f req'd (exp.7.1) cceeds minimun ing (Table 7.3N)	A _{sc,min} = 313 i n required for s _{bar,max} = 300	mm² crack cont mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment	<i>PASS - Area of</i> w _k = 0.30 mm <i>- Area of tension</i> M _{QP} = 33.0kNm s _{bar} = 94 mm <i>PAS</i> gative moment - M = 29.9 kNm	n reinforcemei S - Maximum b	Min area reinf nt provided ex Max bar spaci nar spacing ex Effective dept	f req'd (exp.7.1) cceeds minimun ing (Table 7.3N) cceeds actual ba ch tension reinf.	A _{sc,min} = 313 i n required for s _{bar,max} = 300 ar spacing for d = 807 mm	mm² crack cont mm crack cont	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd	<i>PASS - Area of</i> w _k = 0.30 mm <i>- Area of tension</i> M _{QP} = 33.0kNm s _{bar} = 94 mm <i>PAS</i> gative moment - M = 29.9 kNm A _{s,req} = 90 mm ²	n reinforcemei S - Maximum b section 6.1	Min area reinf nt provided ex Max bar spaci par spacing ex Effective dept Area of tensio	f req'd (exp.7.1) cceeds minimun ing (Table 7.3N) cceeds actual ba ch tension reinf. on reinf. prov	A _{sc,min} = 313 m n required for s _{bar,max} = 300 ar spacing for d = 807 mm A _{s,prov} = 402 m	mm² crack cont mm crack cont mm²	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PAS: gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ²	n reinforcemei S - Maximum b • section 6.1	Min area reinf nt provided ex Max bar spaci car spacing ex Effective dept Area of tensio Max area rein	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3))	A _{sc,min} = 313 m n required for s _{bar,max} = 300 ar spacing for d = 807 mm A _{s,prov} = 402 m A _{s,max} = 6800	mm ² crack cont mm crack cont mm ² mm ²	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ner Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N)	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PAS: gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ²	n reinforcemei S - Maximum b • section 6.1	Min area reinf nt provided ex Max bar spaci car spacing ex Effective dept Area of tensio Max area rein	f req'd (exp.7.1) cceeds minimun ing (Table 7.3N) cceeds actual ba ch tension reinf. on reinf. prov	A _{sc,min} = 313 m n required for s _{bar,max} = 300 ar spacing for d = 807 mm A _{s,prov} = 402 m A _{s,max} = 6800	mm ² crack cont mm crack cont mm ² mm ²	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PASS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ² PASS - Area of	n reinforcemei S - Maximum b • section 6.1	Min area reinf nt provided ex Max bar spaci oar spacing ex Effective dept Area of tensio Max area rein t provided is g	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforce	mm ² crack cont mm crack cont mm ² mm ² ment requin	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PASS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ² PASS - Area of w _k = 0.30 mm	n reinforcemen S - Maximum b • section 6.1 2 2 7 reinforcement	Min area reinf nt provided ex Max bar spaci ar spacing ex Effective dept Area of tensio Max area rein t provided is g Min area reinf	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1)	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforce $A_{sc,min} = 313 m$	mm ² crack cont mm crack cont mm ² mm ² ment requin mm ²	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ner Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PASS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ² PASS - Area of w _k = 0.30 mm - Area of tension	n reinforcemen S - Maximum b • section 6.1 2 2 7 reinforcement	Min area reinf nt provided ex Max bar spaci ar spacing ex Effective dept Area of tensio Max area rein t provided is g Min area reinf	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1)	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforce $A_{sc,min} = 313 m$	mm ² crack cont mm crack cont mm ² mm ² ment requin mm ²	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment	PASS - Area of wk = 0.30 mm - Area of tension MQP = 33.0kNm sbar = 94 mm PASS gative moment - M = 29.9 kNm As,req = 90 mm² As,min = 254 mm² PASS - Area of wk = 0.30 mm - Area of tension MQP = 0.0kNm	n reinforcemen S - Maximum b • section 6.1 2 2 7 reinforcement	Min area reinf t provided ex Max bar spaci par spacing ex Effective dept Area of tensio Max area reinf t provided is g Min area reinf nt provided ex	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforcer $A_{sc,min} = 313 m$ n required for	mm ² crack cont mm crack cont mm ² mm ² ment requin mm ² crack cont	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ner Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PAS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 0.0kNm s _{bar} = 94 mm	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcemen	Min area reinf nt provided ex Max bar spaci par spacing ex Effective dept Area of tensio Max area reinf t provided is g Min area reinf nt provided ex Max bar spaci	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1)	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforce $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$	mm ² crack cont mm crack cont mm ² ment requin mm ² crack cont mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm S _{bar} = 94 mm PASS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 0.0kNm S _{bar} = 94 mm	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcemen	Min area reinf nt provided ex Max bar spaci par spacing ex Effective dept Area of tensio Max area reinf t provided is g Min area reinf nt provided ex Max bar spaci	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum ing (Table 7.3N)	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforce $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$	mm ² crack cont mm crack cont mm ² ment requin mm ² crack cont mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm S _{bar} = 94 mm PASS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 0.0kNm S _{bar} = 94 mm	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcemen	Min area reinf nt provided ex Max bar spaci par spacing ex Effective dept Area of tensio Max area reinf t provided is g Min area reinf nt provided ex Max bar spaci	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforce $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$	mm² crack cont mm crack cont mm² ment requin mm² crack cont mm crack cont	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PASS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ² PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 0.0kNm s _{bar} = 94 mm PASS	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcemen	Min area reinf at provided ex Max bar spaci ar spacing ex Effective dept Area of tensio Max area reinf the provided is g Min area reinf at provided ex Max bar spaci ar spacing ex Min allow. top	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba	$A_{sc,min} = 313 m$ In required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforces $A_{sc,min} = 313 m$ In required for $s_{bar,max} = 300$ ar spacing for $s_{top,min} = 25.0$	mm² crack cont mm crack cont mm² mm² mm² crack cont mm crack cont mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PASS gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ² PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 0.0kNm s _{bar} = 94 mm PASS	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcemen	Min area reinf at provided ex Max bar spaci- bar spacing ex Effective dept Area of tensio Max area reinf t provided is g Min area reinf at provided ex Max bar spaci- bar spacing ex Min allow. top PASS - Actua	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba bar spacing	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforces $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for $s_{top,min} = 25.0$ xceeds minime	mm² crack cont mm crack cont mm² mm² ment requii mm² crack cont mm crack cont mm crack cont	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Minimum bar spacing (Section Top bar spacing	PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 33.0kNm s _{bar} = 94 mm PAS: gative moment - M = 29.9 kNm A _{s,req} = 90 mm ² A _{s,min} = 254 mm ² PASS - Area of w _k = 0.30 mm - Area of tension M _{QP} = 0.0kNm s _{bar} = 94 mm PAS: on 8.2) s _{top} = 78.0 mm	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcemen	Min area reinf at provided ex Max bar spacing ar spacing ex Effective depti Area of tensio Max area reinf t provided is g Min area reinf at provided ex Max bar spacing ar spacing ex Min allow. top PASS - Actua Min allow. bot	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba bar spacing al bar spacing e	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforceing $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for $s_{top,min} = 25.0$ xceeds minimized	mm² crack cont mm crack cont mm² ment requin mm² crack cont mm crack cont mm crack cont mm mm mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Minimum bar spacing (Section Top bar spacing	PASS - Area of $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 33.0 \text{ kNm}$ $s_{bar} = 94 \text{ mm}$ PASS gative moment - M = 29.9 kNm $A_{s,req} = 90 \text{ mm}^2$ $A_{s,req} = 90 \text{ mm}^2$ $A_{s,min} = 254 \text{ mm}^2$ $PASS - Area of$ $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 0.0 \text{ kNm}$ $s_{bar} = 94 \text{ mm}$ PASS on 8.2) $s_{top} = 78.0 \text{ mm}$ $s_{bot} = 78.0 \text{ mm}$	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcement S - Maximum b	Min area reinf at provided ex Max bar spaci- par spacing ex Effective depti- Area of tensio Max area reinf at provided is g Min area reinf at provided ex Max bar spaci- par spacing ex Min allow. top PASS - Actua Min allow. bot PASS - Actua	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba ch tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba bar spacing al bar spacing en tom bar spacing en	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforceing $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for $s_{top,min} = 25.0$ xceeds minimized	mm² crack com mm crack com mm² ment requin mm² crack com mm crack com mm crack com	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Minimum bar spacing (Section Top bar spacing Bottom bar spacing	PASS - Area of $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 33.0 \text{ kNm}$ $s_{bar} = 94 \text{ mm}$ PASS gative moment - M = 29.9 kNm $A_{s,req} = 90 \text{ mm}^2$ $A_{s,req} = 90 \text{ mm}^2$ $A_{s,min} = 254 \text{ mm}^2$ $PASS - Area of$ $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 0.0 \text{ kNm}$ $s_{bar} = 94 \text{ mm}$ PASS on 8.2) $s_{top} = 78.0 \text{ mm}$ $s_{bot} = 78.0 \text{ mm}$	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcement S - Maximum b	Min area reinf at provided ex Max bar spaci- ar spacing ex Effective depti- Area of tensio Max area reinf at provided is g Min area reinf at provided ex Max bar spaci- bar spacing ex Min allow. top PASS - Actual Min allow. bot PASS - Actual	f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba ch tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) cceeds minimum ing (Table 7.3N) cceeds actual ba bar spacing al bar spacing en tom bar spacing en	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforceing $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for $s_{top,min} = 25.0$ xceeds minimized	mm² crack cont mm crack cont mm² mm² ment requin mm² crack cont mm crack cont mm crack cont mm	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Minimum bar spacing (Section Top bar spacing Bottom bar spacing Zone 2 (1300 mm - 3900 mm)	PASS - Area of $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 33.0 \text{kNm}$ $s_{bar} = 94 \text{ mm}$ PASS gative moment - M = 29.9 kNm $A_{s,req} = 90 \text{ mm}^2$ $A_{s,min} = 254 \text{ mm}^2$ PASS - Area of $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 0.0 \text{kNm}$ $s_{bar} = 94 \text{ mm}$ PASS on 8.2) $s_{top} = 78.0 \text{ mm}$ $s_{bot} = 78.0 \text{ mm}$	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcement S - Maximum b	Min area reinf at provided ex Max bar spaci ar spacing ex Effective dept Area of tensio Max area reinf t provided is g Min area reinf at provided is g Min area reinf at provided ex Max bar spaci ar spacing ex Min allow. top PASS - Actua Min allow. bot PASS - Actua	f req'd (exp.7.1) aceeds minimum ing (Table 7.3N) aceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) aceeds minimum ing (Table 7.3N) aceeds actual ba bar spacing al bar spacing en tom bar spacing en al bar spacing en al bar spacing en bar spacing en bar spacing en bar spacing en bar spacing en com bar spacing en	$A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 m$ $A_{s,max} = 6800$ a of reinforces $A_{sc,min} = 313 m$ n required for $s_{bar,max} = 300$ ar spacing for $s_{top,min} = 25.0$ xceeds minimized	mm² crack cont mm crack cont mm² ment requin mm² crack cont mm crack cont mm crack cont mm um allowa	
Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Zone 1 (0 mm - 1300 mm) Ne Design bending moment Area of tension reinf. req'd Min area of reinf. (exp.9.1N) Crack control - Section 7.3 Maximum crack width PASS Quasi-permanent moment Actual tension bar spacing Minimum bar spacing (Section Top bar spacing Bottom bar spacing Zone 2 (1300 mm - 3900 mm) Design bending moment	PASS - Area of $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 33.0 \text{kNm}$ $s_{bar} = 94 \text{ mm}$ PASS gative moment - M = 29.9 kNm $A_{s,req} = 90 \text{ mm}^2$ $A_{s,min} = 254 \text{ mm}^2$ PASS - Area of $w_k = 0.30 \text{ mm}$ - Area of tension $M_{QP} = 0.0 \text{kNm}$ $s_{bar} = 94 \text{ mm}$ PASS on 8.2) $s_{top} = 78.0 \text{ mm}$ $s_{bot} = 78.0 \text{ mm}$ M = 119.4 kNm	n reinforcemen S - Maximum b section 6.1 reinforcement n reinforcement S - Maximum b	Min area reinf at provided ex Max bar spaci- ar spacing ex Effective depti- Area of tensio Max area reinf at provided is g Min area reinf at provided ex Max bar spaci- max bar spaci- pass - Actual Min allow. bot PASS - Actual	f req'd (exp.7.1) aceeds minimum ing (Table 7.3N) aceeds actual ba th tension reinf. on reinf. prov f. (cl.9.2.1.1(3)) greater than area f req'd (exp.7.1) aceeds minimum ing (Table 7.3N) aceeds actual ba bar spacing al bar spacing e tom bar spacing e tom bar spacing e th tension reinf.	$A_{sc,min} = 313 \text{ m}$ n required for $s_{bar,max} = 300$ ar spacing for d = 807 mm $A_{s,prov} = 402 \text{ m}$ $A_{s,max} = 6800$ a of reinforced $A_{sc,min} = 313 \text{ m}$ n required for $s_{bar,max} = 300$ ar spacing for $s_{bar,max} = 300$ ar spacing for $s_{bot,min} = 25.0$ xceeds minimandow $bot,min = 25.0xceeds minimandow d = 782 mmA_{s,prov} = 402 \text{ m}$	mm² crack cont mm crack cont mm² mm² ment requin mm² crack cont mm crack cont mm um allowal mm um allowal mm	

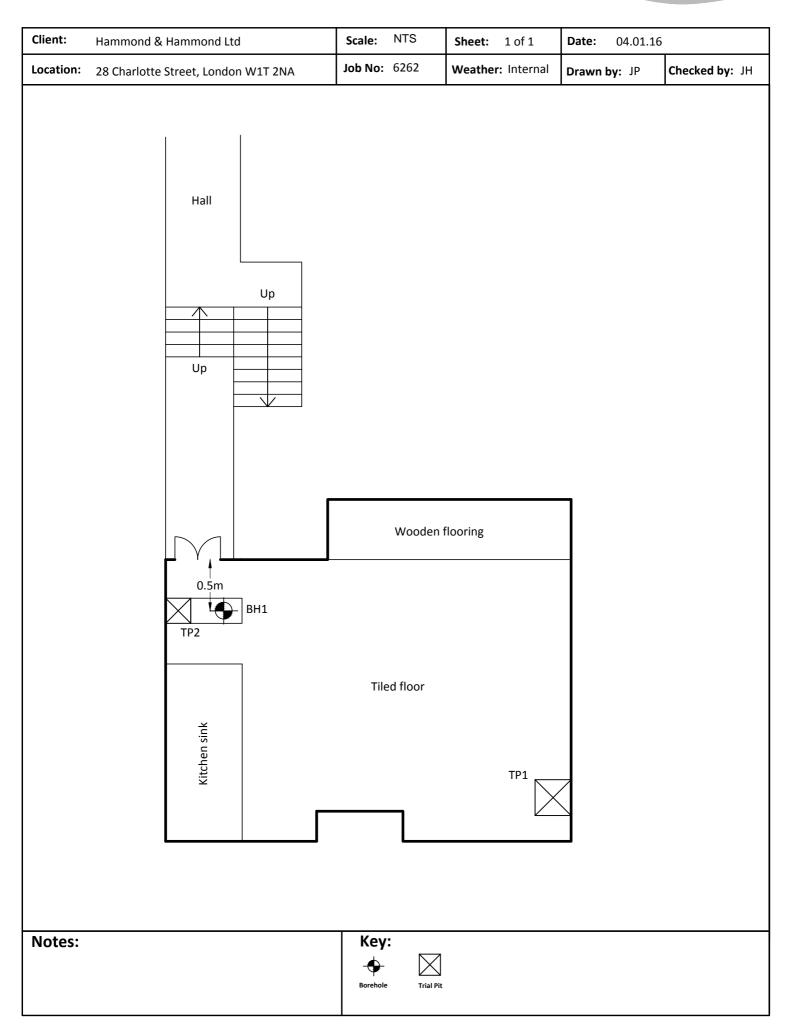
Tekla Tedds	Project	28 Charl	otte Street		Job no. 1	964
Rodrigues Associates	Calcs for					Revision
1 Amwell Street, London EC1R 1UL	GF RC	beam to restrain	n top of rear retaining wall		C8. 5	
	Calcs by ab	Calcs date 26/10/2022	Checked by	Checked date	Approved by	Approved o
Crack control - Section 7.3						
Maximum crack width	w _k = 0.30 mm		Min area rein	f req'd (exp.7.1)	A _{sc,min} = 313	mm²
PASS	S - Area of tensio	on reinforceme	nt provided ex	xceeds minimul	m required for	crack con
Quasi-permanent moment	M _{QP} = 44.0 kNm	ı				
Actual tension bar spacing	s _{bar} = 94 mm		Max bar spac	ing (Table 7.3N)	S _{bar,max} = 300	mm
	PAS	SS - Maximum b	oar spacing ex	ceeds actual b	ar spacing for	crack con
Deflection control - Section	7.4					
Allow. span to depth ratio	span_to_depth	allow = 52.000	Actual span to	o depth ratio	span_to_dep	thactual = 6.0
	opato_aop			n to depth ratio		
Minimum har anacing (Coot	on 8 2)					
Minimum bar spacing (Section Top bar spacing	on 8.2) s _{top} = 78.0 mm		Min allow to-	baranaaina	0 <u>- 0</u> E 0	mm
Top bar spacing	Stop – 70.0 IIIII		Min allow. top	al bar spacing	Stop,min = 25.0	
Bottom bar spacing	s _{bot} = 78.0 mm			ttom bar spacing e		
bollom bar spacing	Sbot - 70.0 IIIII			al bar spacing		
				ai bai spacing e		
Zone 3 (3900 mm - 5200 mm)		ent - section 6.1	-			
Design bending moment	M = 89.6 kNm		Effective dept	th tension reinf.		
Area of tension reinf. req'd	A _{s,req} = 277 mm			on reinf. prov	-	
Min area of reinf. (exp.9.1N)	A _{s,min} = 246 mm			nf. (cl.9.2.1.1(3))		
	PASS - Area o	f reinforcemen	t provided is g	greater than are	ea of reinforce	ment requi
Crack control - Section 7.3						
Maximum crack width	w _k = 0.30 mm		Min area rein	f req'd (exp.7.1)	A _{sc,min} = 313	mm²
PASS	S - Area of tension	on reinforceme	nt provided ex	xceeds minimul	m required for	crack con
Quasi-permanent moment	M _{QP} = 33.0 kNm	ı				
Actual tension bar spacing	s _{bar} = 94 mm		-	ing (Table 7.3N)		
	PAS	SS - Maximum b	oar spacing ex	ceeds actual b	ar spacing for	crack con
Zone 3 (3900 mm - 5200 mm)) Negative mom	ent - section 6.	1			
Design bending moment	M = 29.9 kNm		Effective dept	th tension reinf.	d = 807 mm	
Area of tension reinf. req'd	A _{s,req} = 90 mm ²		Area of tension	on reinf. prov	A _{s,prov} = 402 I	mm²
Min area of reinf. (exp.9.1N)	A _{s,min} = 254 mm	1 ²	Max area rein	nf. (cl.9.2.1.1(3))	A _{s,max} = 6800	mm ²
	PASS - Area o	f reinforcemen	t provided is g	greater than are	a of reinforce	ment requi
Crack control - Section 7.3						
Maximum crack width	w _k = 0.30 mm		Min area reint	f req'd (exp.7.1)	A _{sc.min} = 313	mm ²
PASS	- Area of tensio	on reinforceme				
Quasi-permanent moment	M _{QP} = 0.0 kNm		-		-	
Actual tension bar spacing	s _{bar} = 94 mm		Max bar spac	ing (Table 7.3N)	S _{bar,max} = 300	mm
	PAS	SS - Maximum b	oar spacing ex	ceeds actual b	ar spacing for	crack con
Minimum bar spacing (Section	on 8.2)					
	s _{top} = 78.0 mm		Min allow. top	bar spacing	Stop,min = 25.0	mm
					•	
Top bar spacing			PASS - Actu	al bar snacing d	exceens minim	num all∩w≏
	s _{bot} = 78.0 mm		PASS - Actua Min allow, bot	<i>al bar spacing ϵ</i> ttom bar spacing		

Tekla Tedds	Project	28 Charl	otte Street		Job no.			
Rodrigues Associates	Calcs for	20 Grian				1964		
1 Amwell Street, London EC1R 1UL	GF RC b	Start page no./Revision C8. 7						
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved of		
	ab	26/10/2022						
Max lang angeing ave 0 CN								
Max. long. spacing - exp.9.6N			of choor roin	forcement prov	vidad is lass th	oon movin		
	-		o snear rem	iorcement prov	iueu is iess ii	iaii iiiaxiii		
Zone 3 (3900 mm - 5200 mm)		6.2						
Shear force at support	V _{Ed,max} = 92 kN		-	ear resistance	V _{Rd,max} = 829			
Design shear force	PASS - Design V _{Ed} = 64 kN	snear force a	Area shear rei		A _{sv,req} = 181 r			
0	A _{sv,prov} = 785 mn	n²/m	Alea Sileal lei	ni. requ	Asv,req - IOII	11111 /111		
			hear reinforce	ment provided	exceeds minir	num reau		
Max. long. spacing - exp.9.6N	s _{vl,max} = 587 mm							
	PASS - Longit	udinal spacing	of shear rein	forcement prov	rided is less th	nan maxin		

Appendix D – Site investigation

For

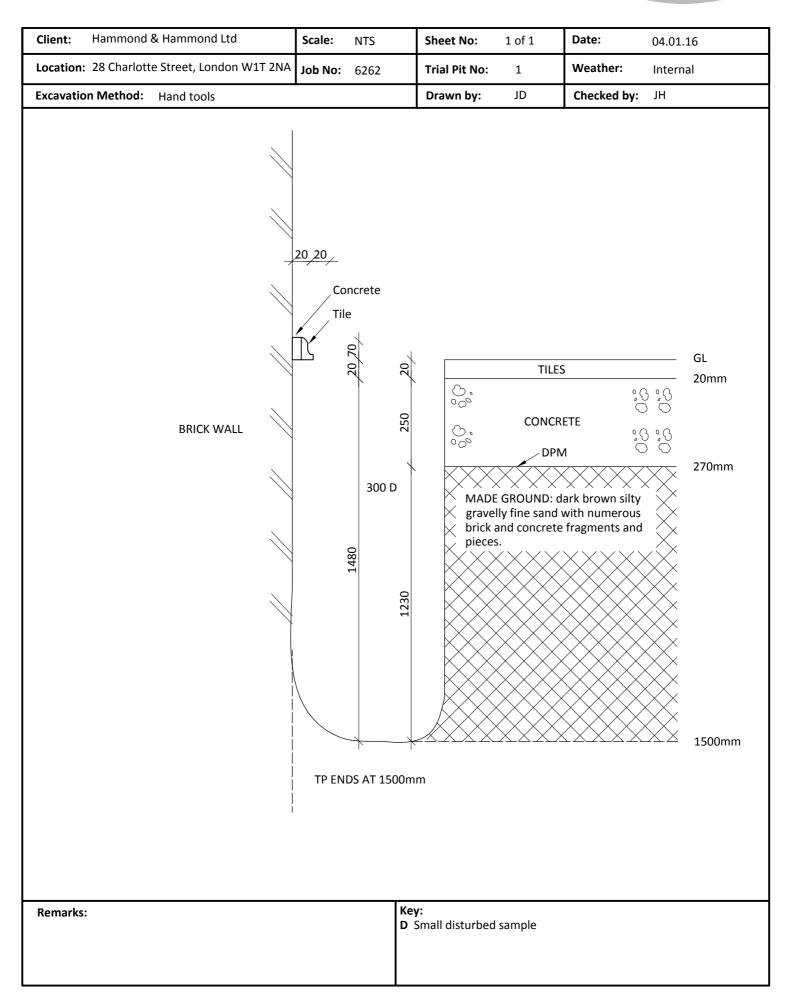
28, Charlotte Street

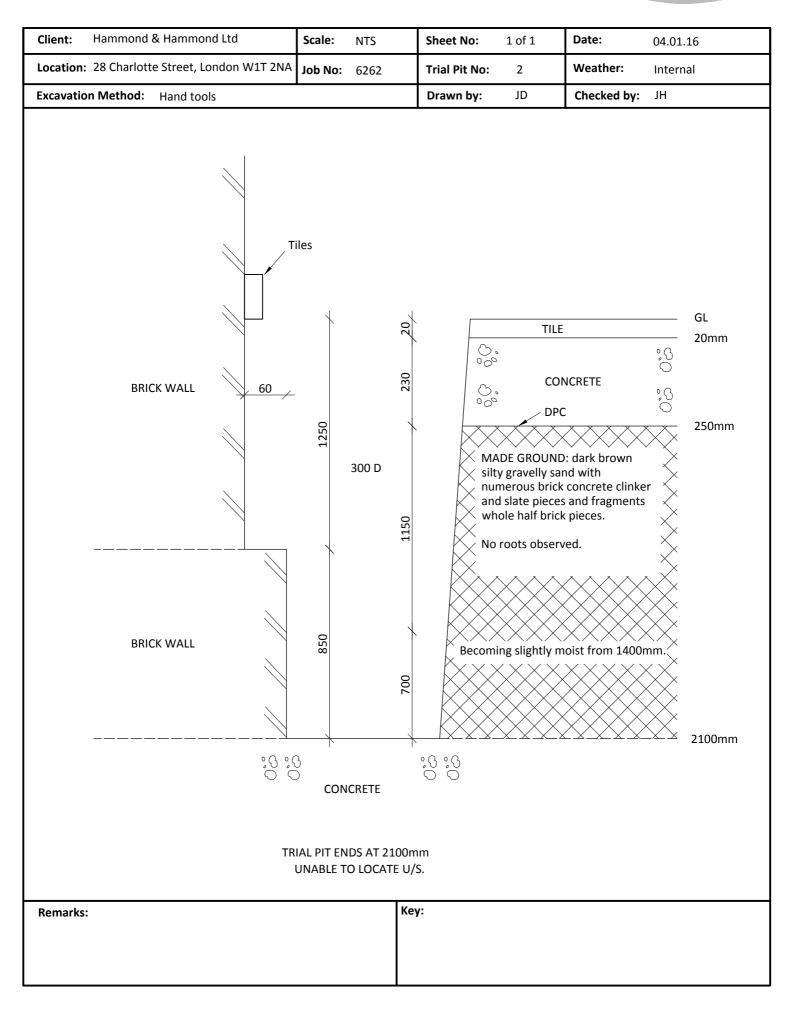

Fitzrovia

London W1T

rodriguesassociates

1 Amwell Street London EC1R 1UL Telephone 020 7837 1133 www.rodriguesassociates.com October 2022





Client:	Hammond & Hammond Ltd	Scale:	N.T.S.	Sheet No	b: 1 of 1	Wea	ther: Internal	Date: 1	1.01.16
Site:	te: 28 Charlotte Street, London W1T 2NA Jo		Job No: 6262		Borehole No: 1		Boring method: CFA 100mm		man
Depth Mtrs	Description of Strata	Thick- ness	Legend	Sample	Test Type R		Root Information	Depth to Water	Depth Mtrs
GL	TERRACOTTA TILES OVER CONCRETE	0.25		D			No. contractor o d		0.25
0.25	MADE GROUND: medium compact dark brown silty gravelly sand sand with numerous brick concrete and slate pieces			D			No roots observed.		0.5
	and fragments whole and half brick pieces.			D	M 1 1 1	8 5			1.0
		2.55	\otimes	D	1	6			1.5
1.8	Becoming slightly moist from 1.8m.			D		2			2.0
2.8				D	1	7 5			2.5
2.0	MADE GROUND: medium compact moist dark brown sandy gravelly silt with occasional brick fragments.	2.5		D	M 1 1 1	5			3.0
				D	1				3.5
				D	M 1 1 1				4.0
				D	1	7			4.5
5.3				D		3 1 8		5.3	5.0
5.5	SUSPECT NATURAL: wet medium dense mid grey silty gravelly SAND.	2.4		D	1	2			5.5
				D					6.0
				D	2	8 3 8 6			7.0
7.7 —	Very stiff mid grey silty CLAY with partings of grey and brown silt and fine sand.			D		30+ 30+			8.0
		2.3		D		30+ 30+			9.0
10.0			× × × × × × ×	D		30+			10.0
	BOREHOLE ENDS AT 10.0m.				13	30+			
Drawn Remark	by: DB Approved by: JH ss: Groundwater strike at 5.3m. Borehole wet and collapsed at 4.7m on completion. Metal standpipe installed to 9.0m.		V Pilo	all disturb con Vane (ackintosh F					

