

Green Code Engineering Ltd 12 Berghem, Blythe Rd, Hammersmith, London W14 0HN

Contact Phone: 02087400463 Email: info@greencodeholdings.com

71 Goldhurst Terrace London NW6 3HA

Structural Calculations Prepared by: **Cilem P** Checked by: **Islam F**

Job Number: JN-GCE-173 Issue Date: May 2023

Rev:- 0

Green Code E	ngineering Ltd	Calculat	ion Sh	eet
		Job No	JN-GC	CE-173
Project:	71 Goldhurst Terrace, London NW6 3HA	Page No	1	Rev
		Date	Issue	Date:
Element	Contents	Date Rev'd		
ltem	Page			
Introduction Sheet	02			
Loadings	03			
Structural Calculation	IS			
Foundation Depth	70-72			
Timber Work Calcs	100-102			

Green Code	Engineering Ltd		Calculat	ion Sheet
	0 0		Job No	JN-GCE-173
Project:	71 Goldhurst Terrace, Lo	ondon NW6 3HA	Page No	2 Rev
Flowerst	la tra du esti e a		Date	Issue Date:
Element			Date Rev'd	
Works				
	Refurbishment	Outbuilding		
Use	Existing	N/A		
	Proposed	Residential		
Storeys	Existing	0		
	Proposed	1		
Basement	Yes / No	No		
Building Class		Class 1		
Walling	Existing	N/A		
	Proposed	Cavity Wall		
Ditet				
Brick stresses	Proposed	N/A 1 N/mm2 (ULS)		
Foundations	Existing	N/A		
	Proposed	Trench Fill		
Founding Stratum	Material	Assumed London Clay		
	Depth	1.2m min. Deep		
Soils Report	Bearing Pressure	Assumed 100 kN/m ²		
Upper Floors	Existing	N/a		
	Proposed	-		
Grd Floor	Existing	N/A		
	Proposed	Beam and Block		
Roof	Existing	N/A		
	Proposed	Flat Roof		
Stability	Existing	N/A		
	Proposed	Externall walls		
Architect	DPL Arhitectural Design Studio			

Green Code Engineering Ltd			Calculation Sheet		
				Job No	JN-GCE-173
Project 71 Goldhurst	Terrace, London	NW6 3HA		Page No	3 Rev
				Date	Issue Date:
Loadings				Date Rev'd	
				•	•
Pitched Roofs			Roof Space (unh	abitable)	
tiles	0.65		joists		0.15
battens/felt	0.15		soffit		0.15
rafters	0.15		Dead		0.30
Dead on slope	0.95		Live		0.25
Dead on plan		1.25	D + L (kN/m2)		0.55
Live		0.75			
D + L (kN/m2)		2.00			
Flat Roofs			Timber Floors (in	cluding loft	floors)
mastic/asphalt	0.40		boards		0.17
insulation	0.10		joists		0.18
deck	0.15		soffit		<u>0.15</u>
joists	0.15		Dead		0.50
soffit	0.15		imposed		1.50
Dead	0.95		Partitions		<u>0.50</u>
Live	0.75		D+L(kN/m2)		2.50
D + L (kN/m2)	1.70				
Walling (kN/m2)					
102 brick	2.10		100 blk		1.50
plaster	0.15		2 x plaster		0.30
	2.25				1.80
102 brick	2.10		140 blk		2.10
2 x plaster	0.30		2 x plaster		0.30
	2.40				2.40
215 brick	4.30		Stud ptn		
plaster	0.15		studs/ins		0.20
	4.45		2 x plaster		0.30
					0.50
215 brick	4.30				
2 x plaster	0.30		Cavity wall		
	4.60		brick		2.10
			100 blk		1.50
215 brick	4.30		plaster		0.15
render	0.40				3.75
plaster	0.15				
	4.85		tile hung wall		
			tiles		0.65
215 block	3.25		ply		0.15
render	0.40		Studs/ins/plaster		0.40
plaster	0.15				1.20
	3.80				

GOE	Project 71 Goldhurst Terrace Kilburn, NW6 3HA					
Green Code Engineering	Calcs for Fou				Start page no./	Revision 70
Green Code holdings 12 Berghem Mews, Blythe Road London, W14 0HN	Calcs by CP	Calcs date 24/05/2023	Checked by IF	Checked date	Approved by IF	Approved date
FOUNDATIONS NEAR TREES	2.12 of NHBC I	Part 4: Foundatio	ons - Chapter 4	1.2		
			-		Tedds calcula	ation version 2.0.0
Site Details						
Distance west of London		W = 0 mi				
Reduction depth due to climate	variations - cl.4	4.2.4 Z₀ = 0.00 m	1			
Soil Details						
Plasticity index from lab tests		I _p = 40 %				
Percentage of particles < 425 μ	m	p ₄₂₅ = 100 9	%			
Modified plasticity index - cl. 4.2	2.4	$I'_p = I_p \times p_{42}$	₅ / 100 % = 40 9	%		
Volume change potential - Tabl	e 1	High				
Details for Tree - 1						
Species of tree		Broad leaf	- Holly			
tree is to be removed from the s	site, and H _{act} is	greater than or e	qual to 50% of I	H _m , with no fur	ther planting all	owed.
Water demand of tree - Table 3	i	Low				
Mature height of tree - Table 3		H _{m1} = 12.00) m			
Influence radius - Table 3b		$r_{inf1} = 0.5 \times$	H _{m1} = 6.00 m			
Measured height of tree		H _{act1} = 7.00	m			
Distance from centre of tree to f	face of foundation	ions $D_1 = 2.00 \text{ m}$	1 0			
Ellective height of tree - Table 3						
	(Influence Radiu	ls)				
12.00 m Eff. Ht. (7.00 m Act. Ht.)	1.52 m	Foundation Depth F	Profile 0 m			
(Max End Denth)	L ↑	(Mi	n. Fnd. Depth)			
(max. r nd. Deputy						
(Fo	l <mark>4 _E →</mark> l pundatiœ Location) ∾i					
Minimum foundation depth - Tal Look up value for foundation de	ble 4B pth - Chart 1 S	Z _{min} = 1.00 Soils with HIGH vo	m blume change p	ootential		
		$I \log 1 = 1$.53 m			

Look up value for foundation depth - Chart 1 Soils with HIGH volume change potential

Required foundation depth

$$\begin{split} & Z_{\text{LookUp2}} = \textbf{1.51} \text{ m} \\ & Z_{\text{req2}} = Z_{\text{LookUp2}} \text{ - } Z_{\text{c}} = \textbf{1.51} \text{ m} \end{split}$$

Green Code holdings 12 Berghem Mews, Blythe Road London, W14 0HN	Project 71 C	Job no. GCE 173				
	Calcs for	Foundation	Near Trees		Start page no./Re 7	evision 72
	Calcs by CP	Calcs date 24/05/2023	Checked by IF	Checked date	Approved by IF	Approved date

Summary Table

Tree	Name	Distance (m)	Measured Height (m)	Effective Height (m)	Tree to be removed	Required Foundation Depth (m)
1	Holly	2.0	7.0	12.0	Yes	1.53
2	Ash	11.0	20.0	23.0	No	1.51

	Project	Job no.				
GOE	71 Goldhurst Terrace Kilburn, NW6 3HA				GCE 173	
Green Code Engineering	Calcs for		Start page no./Revision			
Green Code Engineering LTD 12 Berghem Mews, Blythe Rd London W14 0HN		100				
	Calcs by CP	Calcs date 24/05/2023	Checked by IF	Checked date	Approved by IF	Approved date

Applied loading

Beam loads

Flat roof dead(0.8x0.5x0.95) Flat roof live(0.8x0.5x0.75) Green roof dead(0.8x0.5x2)

Load combinations

Load combination 1

Dead full UDL 0.400 kN/m Imposed full UDL 0.300 kN/m Dead full UDL 0.800 kN/m Dead self weight of beam \times 1

M _{max} = 2.230 kNm	M _{min} = 0.000 kNm
	Imposed \times 1.00
Support B	$\text{Dead}\times 1.00$
	Imposed \times 1.00
Span 1	$\text{Dead}\times 1.00$
	Imposed \times 1.00
Support A	$Dead \times 1.00$

Maximum moment Design moment Maximum shear Design shear

Analysis results

	Project	Job no.					
	/10	Soldhurst Terrad	GCE 173				
Green Code Engineering	Calcs for	Flat Doof Joint			Start page no./Revision		
Green Code Engineering LTD							
12 Berghem Mews, Blythe Rd	Calcs by CP	Calcs date 24/05/2023	Checked by IF	Checked date	Approved by IF	Approved date	
		2 11 001 2020					
Total load on beam		W _{tot} = 5.24	8 kN				
Reactions at support A		RA_max = 2.0	6 24 kN	R _{A_min} =	2.624 kN		
Unfactored dead load reaction	at support A	R _{A_Dead} = 2.	. 114 kN				
Unfactored imposed load reac	tion at support A	R _{A_Imposed} =	0.510 kN				
Reactions at support B		R _{B_max} = 2.0	6 24 kN	$R_{B_{min}} =$	2.624 kN		
Unfactored dead load reaction	at support B	$R_{B_{Dead}} = 2.$. 114 kN				
Unfactored imposed load reac	tion at support B	$R_{B_{Imposed}} =$	0.510 kN				
∮ 527 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	← 100→			>			
Timber section details							
Breadth of sections		b = 47 mm					
Depth of sections	_	h = 225 mn	n				
Number of sections in membe	r						
Timber etrength close		$b_b = N \times b = 47 \text{ mm}$					
Timber strength class		624					
Member details							
Service class of timber		1					
Load duration		Long term					
Length of bearing		L _{s1} = 3400	m				
Section properties	or		h - 10575 mm	2 ²			
	ei	$A = N \times D \times$	$h^2 / 6 = 30650$	r- •••			
Section modulus		$Z_x = N \times D$	$\times 11^{-7} 0 - 39050$				
		$Z_y = h \times (N)$	\times D) ² / 0 = 828	38 mm°			
Second moment of area		$I_x = N \times D \times$	$n^{\circ}/12 = 4461$	3281 mm ⁻			
		$I_y = n \times (N \times N)$	× b) ³ / 12 = 194	6681 mm⁴			
Radius of gyration		$I_{x} = \sqrt{(I_{x} / A)}$) = 65.0 mm				
		$I_y = \sqrt{(I_y / A)}$	= 13.6 mm				
Modification factors							
Duration of loading - Table 17		K ₃ = 1.00					
Bearing stress - Table 18		K ₄ = 1.00	(
l otal depth of member - cl.2.1	0.6	K ₇ = (300 n	$nm / h)^{0.11} = 1.0$)3			
Load shanng - Cl.2.9		№ 8 = 1 .00					
Lateral support - cl.2.10.8	adapa firma bi bi b	lia lia -					
Ends neid in position and both	eages tirmly held						
Actual depth to breadth refe	auo - Taple 19	1.UU	- 1 70				
		117 (N × D)	- 4.13	PASS - La	ateral suppoi	rt is adequate	

	1				-			
	Project	0 I II I T	Job no.					
	71	Goldhurst Terrad	GCE 173					
Green Code Engineering	Calcs for		.		Start page no./F	Revision		
Green Code Engineering LTD				1		102		
12 Berghem Mews, Blythe Rd	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
London W14 0HN	CP	24/05/2023	IF		IF			
Compression perpendicular t	o grain							
Permissible bearing stress (no v	wane)	$\sigma_{c_{adm}} = \sigma_{cp}$	$_1 imes \mathbf{K}_3 imes \mathbf{K}_4 imes \mathbf{K}_4$	² 8 = 2.400 N/mm ²	2			
Applied bearing stress		$\sigma_{c_a} = R_{B_ma}$	$_{\rm ax}$ / (N × b × L _b)) = 0.558 N/mm ²				
		$\sigma_{c_a} / \sigma_{c_adm}$	= 0.233					
PASS - Applied compressive stress is less than permissible compressive stress at bearing						ess at bearing		
Bending parallel to grain								
Permissible bending stress		σ_{m_adm} = $\sigma_m \times K_3 \times K_7 \times K_8$ = 7.741 N/mm ²						
Applied bending stress		σ _{m_a} = M / Z _x = 5.624 N/mm ²						
		σm a / σm adm = 0.727						
		PASS - Applied	bending stre	ess is less than	permissible b	ending stress		
Shear parallel to grain								
Permissible shear stress		$\tau_{adm} = \tau \times K$	3 × K8 = 0.710	N/mm ²				
Applied shear stress		$\tau_a = 3 \times F / (2 \times A) = 0.372 \text{ N/mm}^2$						
		$\tau_a / \tau_{adm} = 0.524$						
		PASS - Applied shear stress is less than permissible shear stress						
Deflection								
Modulus of elasticity for deflecti	on	E = E _{min} = 7200 N/mm ²						
Permissible deflection	δ_{adm} = min(0.551 in, 0.003 × L _{s1}) = 10.200 mm							
Bending deflection	δ _{b_s1} = 8.361 mm							
Shear deflection	δ _{v_s1} = 0.562 mm							
Total deflection	Total deflection		$\delta_{a} = \delta_{b_{s1}} + \delta_{v_{s1}} = 8.924 \text{ mm}$					
		δ_{a} / δ_{adm} = (.875					
		PASS - Total deflection is less than permissible deflection						