

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

Records within 50m

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 85

Location	Hazard rating	Details
On site	Negligible	Ground conditions predominantly non-plastic.
20		

This data is sourced from the British Geological Survey.

Natural ground subsidence - Running sands

17.2 Running sands

Records within 50m

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 86

Location	Hazard rating	Details
On site	Low	Running sand conditions may be present. Constraints may apply to land uses involving excavation or the addition or removal of water.

Location	Hazard rating	Details
29m W	Very low	Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m

The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 88

Location	Hazard rating	Details
On site	Negligible	Compressible strata are not thought to occur.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 89

Location	Hazard rating	Details
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 90

Location	Hazard rating	Details
On site	Very low	Slope instability problems are not likely to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

Records within 50m

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on page 91

Location	Hazard rating	Details
On site	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.

This data is sourced from the British Geological Survey.

18 Mining, ground workings and natural cavities

18.1 Natural cavities

Records within 500m

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

This data is sourced from Stantec UK Ltd.

18.2 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

This data is sourced from the British Geological Survey.

18.3 Surface ground workings

Records within 250m	24	

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining, ground workings and natural cavities map on page 92

ID	Location	Land Use	Year of mapping	Mapping scale
А	43m SW	Unspecified Heap	1938	1:10560
А	51m SW	Unspecified Ground Workings	1920	1:10560
В	52m NE	Unspecified Pit	1869	1:10560
В	52m NE	Unspecified Pit	1879	1:10560
В	77m NE	Reservoir	1920	1:10560
В	86m NE	Reservoir	1965	1:10560
В	86m NE	Covered Reservoir	1974	1:10000
В	86m NE	Covered Reservoir	1996	1:10000
A	86m SW	Unspecified Ground Workings	1938	1:10560
В	86m NE	Reservoir	1949	1:10560
В	87m NE	Reservoir	1938	1:10560
A	95m SW	Unspecified Ground Workings	1920	1:10560
С	118m SW	Pond	1879	1:10560
С	118m SW	Pond	1869	1:10560
D	151m SE	Cemetery	1949	1:10560
D	151m SE	Cemetery	1958	1:10560
D	151m SE	Cemetery	1965	1:10560

ID	Location	Land Use	Year of mapping	Mapping scale
D	151m SE	Cemetery	1974	1:10000
D	151m SE	Cemetery	1996	1:10000
D	156m SE	Cemetery	1938	1:10560
D	159m SE	Cemetery	1894	1:10560
D	159m SE	Cemetery	1920	1:10560
D	174m SE	Cemetery	1879	1:10560
D	174m SE	Cemetery	1869	1:10560

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground workings

Records within 1000m	17
----------------------	----

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

Features are displayed on the Mining, ground workings and natural cavities map on page 92

ID	Location	Land Use	Year of mapping	Mapping scale
-	832m E	Unspecified Shaft	1965	1:10560
-	832m E	Unspecified Shaft	1974	1:10000
-	832m E	Unspecified Shaft	1995	1:10000
-	941m NE	Tunnels	1965	1:10560
-	941m NE	Tunnels	1974	1:10000
-	941m NE	Tunnels	1995	1:10000
-	941m NE	Tunnels	1958	1:10560
-	942m NE	Tunnel	1869	1:10560
-	942m NE	Tunnel	1879	1:10560
-	942m NE	Tunnel	1879	1:10560
-	959m NE	Tunnels	1965	1:10560
-	959m NE	Tunnels	1974	1:10000
-	959m NE	Tunnels	1995	1:10000

ID	Location	Land Use	Year of mapping	Mapping scale
-	959m NE	Tunnels	1958	1:10560
-	960m NE	Tunnel	1869	1:10560
_	960m NE	Tunnel	1879	1:10560
_	960m NE	Tunnel	1879	1:10560

This is data is sourced from Ordnance Survey/Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

This data is sourced from the British Geological Survey.

18.7 Mining cavities

Records within 1000m

Industry recognised national database of mining cavities. Degraded mines may result in hazardous subsidence (crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

This data is sourced from Stantec UK Ltd.

0

0

18.8 JPB mining areas

Records on site

Areas which could be affected by former coal and other mining. This data includes some mine plans unavailable to the Coal Authority.

This data is sourced from Johnson Poole and Bloomer.

18.9 Coal mining

Records on site

Areas which could be affected by past, current or future coal mining.

This data is sourced from the Coal Authority.

18.10 Brine areas

Records on site

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

18.11 Gypsum areas

Records on site

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.12 Tin mining

Records on site

Generalised areas that may be affected by historical tin mining.

This data is sourced from Groundsure.

0

0

0

0

0

18.13 Clay mining

Records on site

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).

19 Radon

19.1 Radon

Records on site

1

The Radon Potential data classifies areas based on their likelihood of a property having a radon level at or above the Action Level in Great Britain. The dataset is intended for use at 1:50,000 scale and was derived from both geological assessments and indoor radon measurements (more than 560,000 records). A minimum 50m buffer should be considered when searching the maps, as the smallest detectable feature at this scale is 50m. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain (1:100,000 scale).

Features are displayed on the Radon map on page 98

Location	Estimated properties affected	Radon Protection Measures required
On site	Less than 1%	None

This data is sourced from the British Geological Survey and UK Health Security Agency.

20 Soil chemistry

20.1 BGS Estimated Background Soil Chemistry

Records within 50m

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmium	Chromium	Nickel
On site	No data	No data	No data	No data	No data	No data	No data
29m W	No data	No data	No data	No data	No data	No data	No data

This data is sourced from the British Geological Survey.

20.2 BGS Estimated Urban Soil Chemistry

Records within 50m

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

Location	Arsenic (mg/kg)	Bioaccessible Arsenic (mg/kg)	Lead (mg/kg)	Bioaccessible Lead (mg/kg)	Cadmium (mg/kg)	Chromiu m (mg/kg)	Copper (mg/kg)	Nickel (mg/kg)	Tin (mg/k g)
On site	22	3.8	368	253	0.5	86	46	22	16
6m E	22	3.8	379	260	0.5	85	46	22	16
8m W	19	3.3	307	211	0.5	90	44	20	18
13m NE	21	3.7	370	254	0.5	86	47	21	17
14m NE	21	3.7	374	257	0.5	84	47	21	16
18m NW	19	3.3	327	225	0.5	88	46	20	20

This data is sourced from the British Geological Survey.

6

20.3 BGS Measured Urban Soil Chemistry

Records within 50m	1	
The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper,	Nickel,	

Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

Location	Arsenic	Cadmium	Chromium	Copper	Nickel	Lead	Tin	Sample
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Type
20m E	22.4	0.5	84.5	45.9	21.9	382.2	15.4	Topsoil

This data is sourced from the British Geological Survey.

21 Railway infrastructure and projects

21.1 Underground railways (London)

Records within 250m

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

21.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

This data is sourced from publicly available information by Groundsure.

21.3 Railway tunnels

Records within 250m

Railway tunnels taken from contemporary Ordnance Survey mapping.

This data is sourced from the Ordnance Survey.

21.4 Historical railway and tunnel features

Records within 250m

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

This data is sourced from Ordnance Survey/Groundsure.

21.5 Royal Mail tunnels

Records within 250m

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

0

0

0

0

This data is sourced from Groundsure/the Postal Museum.

21.6 Historical railways

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways. This data is sourced from Ordnance Survey and OpenStreetMap.

21.8 Crossrail 1

Records within 500m

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

21.9 Crossrail 2

Records within 500m

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

21.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

This data is sourced from HS2 ltd.

Contact us with any questions at: info@groundsure.com 08444 159 000

0

0

Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see <u>https://www.groundsure.com/sources-reference</u>.

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: <u>https://www.groundsure.com/terms-and-conditions-jan-2020/</u>.

APPENDIX D – PREVIOUS INVESTIGATION REPORT EXTRACTS

S	GEA	Geote	echnica Barn Widt	& Environment bury Hill Ware SG12 7QE	iates	Site 5 The Grove, London N6 6JU	Borehole Number BH1	
Boring Meth	hod e Cable Big	Casing 20	Diamete	r ed to 12.00m	Ground	Level (mOD) Client Mr Stephen Cameron	Job Number J21179
		Locatio	n		Dates 29	9/06/2021- 2/07/2021	Engineer Constructure	Sheet 1/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness) Description	Legend S
0.30 0.50 1.20-1.65 1.20-1.65 1.75 2.00-2.45 2.75 3.00-3.45 3.00-3.45 3.75 4.00-4.45 4.75 5.00-5.45 5.00-5.45 5.00-5.45	D1 B2 SPT N60=18 D3 D4 U5 D6 SPT N60=15 D7 D8 U9 D10 SPT N60=17 D11 D12	2.00	DRY	2,3/3,4,4,5 2,3/3,3,3,4 3,3/3,4,4,4			Made Ground (Brick paving) Made Ground (Sand and cement) Made Ground (Brown clayey sand with grave and brick fragments) Medium dense orange-brown clayey SAND with occasiona gravel Firm orange-brown sandy CLAY with bands of clayey sand	
6.50-6.95 6.50-6.95	SPT N60=22 D13	2.00	DRY	3,3/4,5,5,6				
7.50 8.00-8.45	D14 U15							
9.00 9.50-9.95	D16 SPT N60=35	2.00	DRY	4,5/6,7.8.10		9.00	Dense fine brown SAND	
9.50-9.95	D17							
Remarks Groundwate	r monitoring standpip	oe installed	d to a dep	oth of 10.00 m.			Scal (appro	≟ Logged x) By
							1:50 Figur	AT
							Figur 	21179.BH1

S	GEA	Geote	echnica Barn Widt	& Environmenta pury Hill Ware SG12 7QE	al Assoc	iates	Site 5 The Grove, London N6 6JU		Borehole Number
Boring Meth	od Cable	Casing	Diamete 0mm cas	r ed to 12.00m	Ground	Level (mOD)	Client Mr Stephen Cameron		Job Number
Percussion R	ig	15	0mm cas	ed to 16.00m					J21179
		Locatio	n		Dates 29 02	9/06/2021- 2/07/2021	Constructure		Sheet 2/3
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend S
						10.00	Firm grey and brown sandy CLAY with lenses of fine s	sand	· · · · · · · · · · · · · · · · · · ·
10.50	D18							-	· · · · · · · · · · · · · · · · · · ·
11.00-11.45 11.00-11.45	SPT N60=30 D19	11.00	DRY	3,4/5,6,7,9		(2.00)		-	▼ 2
12.00	D20			Fast Inflow(1) at 12.00m, rose to 11.50m in 20 mins.		12.00	Medium dense orange-brown fine SAND with bands o sandy clay	of	<u> </u>
12.50-12.95 12.50-12.95	SPT N60=51 D21	12.00	DRY	5,7/9,10,12,15					
13.50	D22					(3.00)			
14.00-14.45	D23			Fast Inflow(2) at 14.00m, rose to 11.00m in 20 mins.				-	×2
14.00-14.45	SPT N60=26	14.00	DRY	3,4/5,5,5,8					
15.00	D24					15.00	Firm grey sandy CLAY with lenses of fine sand		<u> </u>
15.50-15.95 15.50-15.95	SPT N60=36 D25	15.00	DRY	4,5/7,8,8,9				-	
16.50	D26							-	
17.00-17.45 17.00-17.45	SPT N60=40 D27	16.00	DRY	4,5/7,8,10,11				-	
18.00	D28			Fast Inflow(3) at 18.00m, rose to 15.00m in 20 mins.				-	∇3
18.50-18.95 18.50-18.95	SPT N60=31 D29	16.00	DRY	5,7/8,7,6,7				-	
19.50	D30							-	· · · · · · · · · · · · · · · · · · ·
20.00-20.45	SPT N60=36	16.00	DRY	6,7/7,8,8,9					· · · · · · ·
Remarks							(a	Scale approx)	Logged By
								1:50	AT
							F	Figure No J2117	o. ′9.BH1

G	GEA	Geote Widbury	echnical Barn Widb	& Environmenta ury Hill Ware SG12 7QE	al Assoc	iates	Site 5 The Grove, London N6 6JU		Boreho Numbe BH1	ole er 1
Boring Meth Demountable Percussion F	nod e Cable Rig	Casing 20 15	Diameter Omm case Omm case	ed to 12.00m ed to 16.00m	Ground	Level (mOD)	Client Mr Stephen Cameron		Job Numbe J2117	er 9
		Locatio	n		Dates 29 02	0/06/2021- 2/07/2021	Engineer Constructure		Sheet 3/3	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
20.00-20.45	D31						Complete at 20.45m	Scale	Logge	d
								(approx)	By AT	u
								Figure N	0. 70 BH1	

~	GEA	Geote	echnical & Environmen	tal Assoc	iates	Site	Number
Excavation Opendrive P	Method Percussive	Dimens	Barn Widbury Hill Ware SG12 70	Ground	Level (mOD)	Client Mr Stephen Cameron	Job Number
Sampler		Locatio	n	Dates 28	3/06/2021	Engineer Constructure	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend S
0.30 0.70 1.00-1.45 1.70 2.00-2.45 2.10 3.00-3.45 3.50 4.00-4.45 5.50 6.00-6.45	D1 D2 SPT D3 SPT D5 SPT D6 SPT D6 SPT		1,1/1,2,2,2 1,0/0,1,2,2 4,5/6,4,4,3 1,2/2,2,2,3 3,3/4,5,3,3 Water strike(1) at 6.00m. 2,2/2,3,3,3		(0.50) (0.80) (0.80) (0.70) (0.70) (0.70) (0.70) (0.70) (0.70) (0.70) (0.70) (0.70) (0.80) (0.70) (0.80)	Made Ground (dark brown clayey sand with gravel, brick fragments and occasional glass and ash fragments) Made Ground (brown nd dark brown very sandy slightly silty clay with gravel, brick and ash fragments) Firm becoming stiff orange-brown mottled grey slightly silty sandy CLAY Firm becoming stiff orange-brown mottled grey slightly silty sandy CLAY with sub-rounded fine to medium gravel Stiff becoming stiff orange-brown mottled grey slightly silty sandy CLAY Medium dense to dense brown and orange-brown silty slightly clayey fine to medium SAND Complete at 6.80m	
Remarks Borehole ter Groundwate	minated at a depth o r monitoring standpip	f 6.80 m d be installed	ue to density of the soil. I to 6.80 m.		<u>F</u>	Scale (approx 1:50 Figure J2) Logged By AT No. 1179.BH2

S	GEA	Geote	echnical & Environmen Barn Widbury Hill Ware SG12 70	tal Assoc	iates	Site 5 The Grove, London N6 6JU	Num	ıber ⊔3
Excavation Opendrive P	Method Percussive	Dimens	ions	Ground	Level (mOD)	Client Mr Stephen Cameron	Job Num	iber
Sampler		Locatio	n	Dates 29	9/06/2021	Engineer Constructure	J21 Shee 1	179 et /1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Leger	Vater
0.50 1.00-1.45 2.00-2.45 2.80 3.00-3.45	D1 SPT N60=7 SPT N60=17 D2 SPT N60=18		1,1/1,1,1,2 1,2/2,3,4,3 2,2/2,2,4,5		(2.00) (2.00) (1.00) (0.40) (0.40) (0.40)	Made Ground (dark brown clayey sand with gravel, brick fragments and occasional glass and ash fragments) Firm brown silty sandy CLAY with rounded to sub-rounded gravel Orange-brown SAND and fine to coarse sub-angular to sub-rounded gravel Firm brown silty sandy CLAY with rare fine to medium		
4.00-4.45 4.80 5.00-5.45	SPT N60=21 D3 SPT N60=62		2,2/3,4,3,5 5,9/10,11,12,11			Sib-rounded gravel		ו••••••••••••••••••••••••••••••••••••
5.80 6.00-6.45 6.45-6.90 7.00-7.33	D4 SPT N60=51 SPT N60=96 SPT 63/175		Water strike(1) at 6.00m. 5,7/7,7,10,12 13,13/14,19,19,16 13,15/21,22,20		(1.00)	NO RECOVERY Complete at 7.00m		×.
Remarks Borehole ter Groundwate	minated at a depth o	of 7.00 m o be installe	lue to density of the soil. d to 6.00 m.			Scale (approx 1:50 Figure) By AT	ged

GEA	A		www.gea-ltd.co	.uk Trial Pit No
	·	Herts	01727 824666 Notts 01509 6748	388 3A
Site 5 The Grove, London N6 6J	U			J21179
Client Mr Stephen Cameron				Sheet
Engineen Constructure				1'1 Dates
Engineer Constructure	I		h a	28/06/2021
Excavation Method Manual	Dimensions 300 x 520 x 700	Ground Level (mOD)	Location	
PLAN:	8			
2		1		
SECTION				
104]		Made Ground gravel, brick an Orange-brown SAND with occ	(brown clayey sand with nd concrete fragments) clayey fine to medium asional gravel	
Remarks: All dimensions in millimetres Sides of trial pit remained sta	ble during excavation			Scale: 01:20 Logged by:
Groundwater not encountered	d			AT

SUMMARY OF GEOTECHNICAL TESTING

L																			
Sample details					Classification Tests					Densit	y Tests	Ur	Undrained Triaxial Compression			Chemical Tests			
Location	Depth (m)	Sample Ref	Туре	Description	WC	LL %	PL %	PI %	<425 μm %	Bulk Mg/m³	Dry Mg/m³	Condition	Cell Pressure kPa	Deviator Stress kPa	Shear Stress kPa	рН	2:1 W/S SO4 g/L	W/S Mg mg/L	Other tests and comments
BH1	1.20		D	Orange brown mottled grey gravelly sandy silty CLAY.	12.1	39	18	21	50										
BH1	1.75		D													8.4	< 0.010		
BH1	2.00-2.45		U	Firm brown mottled grey CLAY	24.6					1.94	1.56	Undisturbed	40	90	45				
BH1	3.75		D													6.7	< 0.010		
BH1	8.00-8.45		U	Stiff orange brown mottled grey sandy CLAY.	9.2					2.02	1.85	Undisturbed	160	169	84				
BH1	9.50		D	Yellowish brown mottled brown silty SAND. Sand is fine.	23.9		NP		99										
BH1	13.50		D	Yellowish brown sandy silty CLAY.															Particle Size Distribution
BH1	14.00		D	Orange brown mottled grey sandy SILT / CLAY with rare fine gravel.	36.2	33	24	9.0	99										
BH1	18.50		D	Yellowish brown mottled grey silty SAND. Sand is fine.	25.7		NP		99										
BH2	1.70		D	Orange brown mottled grey sandy silty CLAY with rare fine to medium gravel.	25.1	43	18	25	98										

Sample type: B (Bulk disturb.) BLK (Block) C (Core) D (Disturbed) LB (Large Bulk dist.) U (Undisturbed)

Checked and Approved by	Project Number:	
CQL	GEO / 33547	CEOLARE)®
Joure		GEOLABS
<i>v</i>	5 THE GROVE	
S Burke - Senior Technician 29/07/2021	J21179	

NP=Non Plastic

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire, SG12 7QE
SUMMARY OF GEOTECHNICAL TESTING

			Sam	ble details		Classi	ificatio	on Tes	sts	Densit	y Tests	Ur	ndrained T	riaxial Corr	pression	С	hemical T	ests	
Location	Depth (m)	Sample Ref	Туре	Description	wc %	LL %	PL %	PI %	<425 μm %	Bulk Mg/m³	Dry Mg/m³	Condition	Cell Pressure kPa	Deviator Stress kPa	Shear Stress kPa	рН	2:1 W/S SO4 g/L	W/S Mg mg/L	Other tests and comments
BH2	2.10		D													7.9	< 0.010		
BH2	3.50		D	Yellowish brown very slightly silty slightly clayey SAND.															Particle Size Distribution
BH3	2.80		D													8.0	< 0.010		
BH3	5.80		D	Orange brown mottled grey sandy silty CLAY with rare fine to medium gravel.	35.5	41	21	20	99										
Sample type: B	(Bulk disturb.) BL	K (Block) C (Core) I	D (Disturb	ed) LB (Large Bulk dist.) U (Undisturbed)			NP=N	Non Pla	astic										

Checked and Approved by	Project Number:	
COL	GEO / 33547	
Joure		GEOLABS
The second second second second second	5 THE GROVE	
S Burke - Senior Technician 29/07/2021	J21179	

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire, SG12 7QE

BS EN ISO 17892-4 : 2016

PARTICLE SIZE DISTRIBUTION

Description

NST32 - DSD BH1 13:50 D - 33547-339788.XL8M Depth (m) Sample L

BH1 13.50 D

Yellowish brown sandy silty CLAY.

63 µm

Particle Proportions						
Cobbles	0.0					
Gravel	0.4					
Sand	51.1					
Silt & Clay	48.5					

Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire, SG12 7QE

BS EN ISO 17892-4 : 2016

PARTICLE SIZE DISTRIBUTION

Description

Yellowish brown very slightly silty slightly clayey SAND.

Version 112.210517

Location

Depth (m)

Sample Type

BH2

3.50

D

Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire, SG12 7QE

BS EN ISO 17892-8 : 2018

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location Depth (m) Sample Type

BH1 2.00-2.45 U Description:

Firm brown mottled grey CLAY

Specimen Details

Specimen conditions		Undisturbed
Length	(mm)	201.7
Diameter	(mm)	103.1
Moisture content	(%)	24.6
Bulk density	(Mg/m³)	1.94
Dry density	(Mg/m³)	1.56
Test Details		
Latex membrane thickness	(mm)	0.3
Specimen height prior to shearing	(mm)	201.6
Membrane correction	(kPa)	1.1
Mean rate of shear	(%/min)	2.0
Cell pressure	(kPa)	40
Strain at failure	(%)	19.8
Maximum deviator stress	(kPa)	90
Shear Stress Cu	(kPa)	45

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	30

Version 93.210726

S Burke - Senior Technician

29/07/2021

Tested by SB Checked and Approved by Project Number:

Project Name:

GEO / 33547

5 THE GROVE

J21179

Test Report By GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire, SG12 7QE Page 1 of 1 (Ref 1627574637)

BS EN ISO 17892-8 : 2018

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION

Location Depth (m) Sample Type

BH1 8.00-8.45 U

Description:

Stiff orange brown mottled grey sandy CLAY.

Specimen Details

Specimen conditions		Undisturbed
Length	(mm)	202.0
Diameter	(mm)	101.3
Moisture content	(%)	9.2
Bulk density	(Mg/m³)	2.02
Dry density	(Mg/m³)	1.85
Test Details		
Latex membrane thickness	(mm)	0.3
Specimen height prior to shearing	(mm)	201.9
Membrane correction	(kPa)	1.0
Mean rate of shear	(%/min)	2.0
Cell pressure	(kPa)	160
Strain at failure	(%)	16.3
Maximum deviator stress	(kPa)	169
Shear Stress Cu	(kPa)	84

Mode of failure

Orientation of the sample	Vertical
Distance from top of tube mm	150

9	Checked and Approved by
າ 93.21072	5 Burke
ersio	S Burke - Senior Technician

Tested by SB	Project Number:
Checked and Approved by	Floject Nullibel.

29/07/2021

Project Name:

GEO / 33547

GEOLABS

5 THE GROVE J21179

Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX Test Report By GEOLABS Limited Client : Geotechnical & Environmental Associates Limited, Widbury Barn, Widbury Hill, Ware, Hertfordshire, SG12 7QE

©			Client									
GEOLABS Project No.					33547			TEST RESTRICTION				
			Project Na	ime	5 THE C	GROVE	1					
The follor for the re	wing tests stricted to	s have be ests, pleas	en sched se supply	uled on f / details.	the abov	e project and	l <u>CANNOT</u> b	e performed	for the reason stated. If alter	native samples are available		
Laboratory ID	BH / TP No.	Sample Ref.	De (I	Depth (m)		Depth (m)		-	Test(s) Schedule	d	Reason for Restriction	Description
399298	BH1		4.00	4.45	U100	UU TXL			Sample filled with wax and too short to test with open cracks.	Firm brown CLAY.		
Comments / r	emarks									Test restriction raised by 5 Burke		

Alex Taylor Geotechnical & Environmental Associates Widbury Barn Widbury Hill Ware Hertfordshire SG127QE

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: AlexTaylor@gea-ltd.co.uk

Analytical Report Number : 21-84454

Project / Site name:	5 The Grove London	Samples received on:	01/07/2021
Your job number:	J21056	Samples instructed on/ Analysis started on:	01/07/2021
Your order number:		Analysis completed by:	08/07/2021
Report Issue Number:	1	Report issued on:	08/07/2021
Samples Analysed:	5 soil samples		

Signed: Keroline Harel

Karolina Marek PL Head of Reporting Team For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
eachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-84454

Project / Site name: 5 The Grove London

Lab Sample Number				1923806	1923807	1923808	1923809	1923810
Sample Reference				TP2	TP11	BH2	BH3	TP1
Sample Number				None Supplied				
Depth (m)				0.30	0.40	0.30	0.50	0.30
Date Sampled				28/06/2021	28/06/2021	28/06/2021	28/06/2021	28/06/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detec	Accreditatic Status					
		tion	ň					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	16	14	18	18	14
Total mass of sample received	kg	0.001	NONE	1.4	1.2	1.3	1.2	1.2
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	10.7	8.0	7.9	7.9	10.4
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	1.2	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1700	1100	950	1100	1500
Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.16	0.043	0.027	0.038	0.14
equivalent) Sulphide	ma/ka	1	MCERTS	24	3.6	< 1.0	< 1.0	1.5
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	32	29	82	6.0	52
Total Organic Carbon (TOC)	0/2	0.1	MCEDIC	0.5	29	2.2	2.6	0.3
	70	0.1	PICERTS	0.5	2.9	2.5	2.0	0.5
Total Bhanala								
Total Phenols	malka	1	MCEDIC	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	тд/кд	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.20	2.0	0.41	0.62	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.48	< 0.05	0.18	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.31	3.7	1.0	1.8	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.25	3.1	0.91	1.6	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	2.1	0.69	1.2	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.3	0.43	0.79	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	1.5	0.83	1.1	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.94	0.22	0.61	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.5	0.64	1.0	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.79	0.36	0.61	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.17	< 0.05	0.12	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.96	0.43	0.71	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	18.4	5.95	10.3	< 0.80
	5, 5							
Heavy Metals / Metalloids	malka	1	MCEDTC	10	26	27	20	12
Arsenic (aqua regia extractable)	mg/kg	1	MCEDTC	19	26	2/	30	12
Caumium (aqua regia extractable)	mg/kg	0.2	MCEDIC	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	mg/kg	4	MCEDIC	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
	mg/kg	1	MCEDTC	21	25	29	29	28
copper (aqua regia extractable)	mg/kg	1	MCEDIC	23	60	/5	//	14
	mg/kg	1	MCEDIC	330	600	800	690	82
Mickel (aqua regia extractable)	mg/kg	0.3	MCEDTO	0.7	1.1	1./	1.2	< 0.3
	mg/kg	1	MCEDTC	11	20	19	25	11
zerennum (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
בווור (מעומ ופעומ פגנומרומטופ)	<u>9</u> / kg	-	TIGENTS	59	190	210	2/0	53

Analytical Report Number: 21-84454

Project /	Site	name:	5	The	Grove	London

Lab Sample Number	ab Sample Number						1923809	1923810
Sample Reference	Sample Reference						BH3	TP1
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)				0.30	0.40	0.30	0.50	0.30
Date Sampled				28/06/2021	28/06/2021	28/06/2021	28/06/2021	28/06/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)		Limit of detection	Accreditation Status					
Petroleum Hydrocarbons		-						
TPH C10 - C40 mg/kg 10 MCERTS		MCERTS	46	74	16	62	< 10	

TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	11	21	3.1	15	< 1.0
TPH (C21 - C35)	mg/kg	1	MCERTS	24	42	13	41	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 21-84454

Project / Site name: 5 The Grove London

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1923806	TP2	None Supplied	0.3	Brown clay and sand with gravel.
1923807	TP11	None Supplied	0.4	Brown loam with gravel and vegetation.
1923808	BH2	None Supplied	0.3	Brown clay and loam with gravel.
1923809	BH3	None Supplied	0.5	Brown clay and loam with gravel and vegetation.
1923810	TP1	None Supplied	0.3	Brown clay and sand with gravel.

Analytical Report Number : 21-84454 Project / Site name: 5 The Grove London

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodiun hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	w	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

Analytical Report Number : 21-84454 Project / Site name: 5 The Grove London

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Four second as such as a station of the little	I amaluala have have semiad suble sou labour	have be the United Kinedaw		-	

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingd For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Widbury Barn Widbury Hill Ware Herts SG12 7QE

Generic Risk-Based Soil Screening Values

Sheet

Job Number J21179

1/1

Site

Agent

5 The Grove, London N6 6JU

Mr Stephen Cameron

Client

Constructure

Proposed End Use Residential with plant uptake

Soil pH 8

Soil Organic Matter content % 1.0

Contaminant	Screening Value mg/kg	Data Source	Contaminant	Screening Value mg/kg	Data Source
	Metals		A	nions	
Arsenic	37	C4SL	Soluble Sulphate	500 mg/l	Structures
Cadmium	26	C4SL	Sulphide	50	Structures
Chromium (III)	3000	LQM/CIEH	Chloride	400	Structures
Chromium (VI)	21	C4SL	0	Others	
Copper	2,330	LQM/CIEH	Organic Carbon (%)	6	Methanogenic potential
Lead	200	C4SL	Total Cyanide	140	WRAS
Elemental Mercury	1	SGV	Total Mono Phenols	184	SGV
Inorganic Mercury	170	SGV		PAH	
Nickel	97	LQM/CIEH	Naphthalene	2.20	C4SL exp & LQM/CIEH
Selenium	350	SGV	Acenaphthylene	170	LQM/CIEH
Zinc	3,750	LQM/CIEH	Acenaphthene	210	LQM/CIEH
Нус	drocarbons		Fluorene	160	LQM/CIEH
Benzene	0.2	C4SL	Phenanthrene	92	LQM/CIEH
Toluene	120	SGV	Anthracene	2,300	LQM/CIEH
Ethyl Benzene	65	SGV	Fluoranthene	260	LQM/CIEH
Xylene	42	SGV	Pyrene	560	LQM/CIEH
Aliphatic C5-C6	30	LQM/CIEH	Benzo(a) Anthracene	4.3	C4SL exp & LQM/CIEH
Aliphatic C6-C8	73	LQM/CIEH	Chrysene	8	C4SL exp & LQM/CIEH
Aliphatic C8-C10	19	LQM/CIEH	Benzo(b) Fluoranthene	7.7	C4SL exp & LQM/CIEH
Aliphatic C10-C12	93	LQM/CIEH	Benzo(k) Fluoranthene	12.1	C4SL exp & LQM/CIEH
Aliphatic C12-C16	740	LQM/CIEH	Benzo(a) pyrene	4.35	C4SL
Aliphatic C16-C35	45,000	LQM/CIEH	Indeno(1 2 3 cd) Pyrene	4.4	C4SL exp & LQM/CIEH
Aromatic C6-C7	See Benzene	LQM/CIEH	Dibenzo(a h) Anthracene	1.10	C4SL exp & LQM/CIEH
Aromatic C7-C8	See Toluene	LQM/CIEH	Benzo (g h i) Perylene	65	C4SL exp & LQM/CIEH
Aromatic C8-C10	27	LQM/CIEH	Screening value for PAH	62.1	B(a)P / 0.15
Aromatic C10-C12	69	LQM/CIEH	Chlorina	ted Solven	ts
Aromatic C12-C16	140	LQM/CIEH	1,1,1 trichloroethane (TCA)	11.7	LQM/CIEH
Aromatic C16-C21	250	LQM/CIEH	tetrachloroethane (PCA)	0.56	LQM/CIEH
Aromatic C21-C35	890	LQM/CIEH	tetrachloroethene (PCE)	1.01	LQM/CIEH
PRO (C ₅ –C ₁₀)	269	Calc	trichloroethene (TCE)	0.134	LQM/CIEH
DRO (C ₁₂ –C ₂₈)	46,130	Calc	1,2-dichloroethane (DCA)	0.0054	LQM/CIEH
Lube Oil (C ₂₈ –C ₄₄)	45,890	Calc	vinyl chloride (Chloroethene)	0.000953	LQM/CIEH
ТРН	1000	Trigger for speciated	tetrachloromethane (Carbon tetra	0.018	LQM/CIEH
		testing	trichloromethane (Chloroform)	0.888	LQM/CIEH

Notes

Concentrations measured below the above values may be considered to represent 'uncontaminated conditions' which pose 'LOW' risk to human

health. Concentrations measured in excess of these values indicate a potential risk which require further, site specific risk assessment.

SGV - Soil Guideline Value, derived from the CLEA model and published by Environment Agency 2009

LQM/CIEH - Generic Assessment Criteria for Human Health Risk Assessment 2nd edition (2009) derived using CLEA 1.04 model 2009

C4SL - Defra Category 4 Screening value based on Low Level of Toxicological Risk

C4SL exp & LQM/CIEH calculated using C4SL revisions to exposure assessment but LQM/CIEH health criteria values

Calc - sum of nearest available carbon range specified including BTEX for PRO fraction

B(a)P / 0.15 - GEA experience indicates that Benzo(a) pyrene (one of the most common and most carcinogenic of the PAHs) rarely exceeds 15% of the total PAH concentration, hence this Total PAH threshold is regarded as being conservative

APPENDIX E – EXPLORATORY HOLE LOGS

	\wedge							Trialpit	No
	TIER					Tri	al Pit Log	HDP	01
							_	Sheet 1	of 1
Projec	t 4 The G	Grove			t No.		Co-ords: -	Date	, 0.0.2
					5		Dimensions	Scale	<u>JZ3</u>
Locati	on: Camde	n					(m):	1:25	
Client	: Tier Co	nsult	T		1	1	Depth 1.20	Logge SM	؛d
ke r	Samp	les and I	n Situ Testing	Depth	Level	Legend	Stratum Description		
Wa. Stri	Depth	Туре	Results	(m)	(m)	Logone			
	0.60	ES		0.25			MADE GROUND: Dark brown, clayey, slightly g fine to medium SAND. Gravel is subangular to subrounded, fine to medium, pottery and flint. Occasional rootlets. MADE GROUND	ravelly,	-
				1.20			End of pit at 1.20 m		1 -
									2 -
									3 -
									4 -
Rema	rks: 1) H	and dug	pit to 1.20m in rear gar	den rais	ed borde	 er.		A	⊥ ⁵ –]]]S
Stabil	iry. Stab								

									Borehole No).
	TIER					Bo	reho	ole Log	WS101	
								0	Sheet 1 of 1	1
Projec	t Name:	4 The Gro	ve	-	Project No. TE1723		Co-ords:	-	Hole Type WS	
l ocati	on:	Camden					l evel:	119 55	Scale	
Looda		Canada					20101.	110.00	1:50	
Client	: 	Tier Cons	ult			1	Dates:	13/02/2023 -	SM	
Well	Water Strikes	Sample	s and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
17 <u>1</u> 8		Doptir (iii)			0.30	119.25		MADE GROUND: Dark brown, san rich SILT. Some roots and rootlets. MADE GROUND MADE GROUND: Dark brown, silty gravelly fine and medium SAND. G angular and subangular, fine to coa pottery.	dy organic , slightly Gravel is rse brick and	
		1.20 1.20 1.20	D SPTL S	N=5 (1,1/1,1,2,1)	1.65	117.90		MADE GROUND: Soft brown, sligh slightly sandy CLAY. Gravel is ang subrounded, fine to coarse, flint, bri	tly gravelly, ular to ck and rare	
	2.00 2.00 2.45 2.45		UT U	Ublow=40				MADE GROUND Firm, orangish brown, gravelly sand Gravel is subangular to subrounded coarse flint	dy CLAY. d, fine to	2 -
	2.45 SPTL 2.45 S N=5 (1,1/1,1,1 3.00 SPTL 3.00 S N=6 (0.0/1.1.2		N=5 (1,1/1,1,1,2)	2.50	117.05		Soft, orangish brown, mottled brow gravelly, sandy CLAY. Gravel is sul medium and coarse flint.	n, slightly brounded,	-	
	3	3.00 3.00 3.00 - 3.45	SPIL S D	N=6 (0,0/1,1,2,2)						3
		3.80 4.00 4.00	D SPTL S	N=12 (1,2/3,3,3,3)	3.70	115.85		Firm, orangish brown, very gravelly Gravel is subangular, fine to coarse	, sandy CLAY. flint.	4 -
		4.50 - 5.00	D		4.45	115.10		Firm orange. mottled grey, thinly lar sandy, silty CLAY.	minated,	-
		5.00 5.00	SPTL S	N=15 (1,1/3,3,5,4)	5.00	114.55		Medium dense dark brown, clayey, laminated, fine to medium SAND.	thinly	5 -
		5.50 - 6.00 6.00 6.00	D SPTL S	N=8 (1.1/2.2.2.2)	5.50	114.25		Firm, orangish brown, thinly lamina silty CLAY. Sand is fine.	ted sandy,	6
					6.45	113.10		End of borehole at 6.45 m		-
										7
										8 -
										9 —
										-
										10 —
Rema 1) Gro	rks oundwate	er encountere	ed at 5.	00m bgl. 2) Boreh	ole installed	l to 5.50m	depth on c	completion.	AGS	

4						_			Borehole No	0.
						Bo	reho	ole Log	WS102	2
								0	Sheet 1 of	1
Projec	t Name:	4 The Gro	ve	Р Т	roject No. E1723		Co-ords:	-	Hole Type	÷
Locati	on:	Camden					Level:	120.74	Scale	
Client:		Tier Cons	ult				Dates:	13/02/2023 -	Logged By	y
Wall	Water	Sample	s and	In Situ Testing	Depth	Level	Logond	Stratum Decoription		
vvei	Strikes	Depth (m)	Туре	Results	(m)	(m)			I	
					0.35	120.39		MADE GROUND: Dark brown, san frequent rootlets. MADE GROUND MADE GROUND: Dark brown, silty gravelly fine to medium SAND. Gr	, slightly	-
					0.80	119.94		angular to subrounded, fine to coar	se flint and	
		1.20	SPTL		1.10	119.64		MADE GROUND	tlad arango	1 -
		1.20	S	N=15 (1,1/3,4,4,4)	1 85	118 89		gravelly, clayey, fine to coarse SAN subangular and subrounded, fine to and brick.	D. Gravel is coarse, flint	-
		2.00 2.00 2.20 - 2.50	SPTL S D	N=13 (1,3/4,3,2,4)	2.15	118.59		MADE GROUND: Medium dense, r sandy, GRAVEL of subangular, fine brick and mortar. Medium cobble c	ed brown, to coarse, ontent of	2 -
					2.60	118.14		brick. MADE GROUND MADE GROUND: Orange, gravelly.	, medium to	-
		3.00 3.00 3.00 - 3.50	SPTL S D	N=7 (1,0/1,2,2,2)			$\begin{array}{c} X \\ \hline \\ X \\ \hline \\ X \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\$	coarse SAND. Gravel is subangula subrounded, fine to coarse, flint. MADE GROUND	ir and	3 -
		3.50 - 4.00	D		3.50	117.24	XX	Firm, sitty, slightly gravelity, sandy C is subangular and subrounded, fine flint.	to medium	-
		4.00 4.00	SPTL S	N=7 (1,1/2,1,2,2)				Loose, orange brown, mottled, thinl clayey, fine to medium SAND.	y laminated,	4 -
		4.80 - 5.00	D		4.80	115.94	×	Firm, pale greyish brown, mottled o	range, sandy,	F
		5.00	S	N=6 (1,1/1,1,2,2)	5.05	115.69		Loose, pale brown, very clayey, fine SAND.	e to medium	5
					5.60	115.14		Firm, pale greyish orange, silty, ver	y sandy	
					6.00	114.74		End of borehole at 6.00 m		6 -
										-
										7 -
										-
										8 -
										-
										9 -
										10 -
Rema 1) Gro	rks oundwate	er seepage e	ncount	ered at 3.70m bgl.	2) Backfille	d with aris	ings on co	pmpletion.	AGS]

									Borehole N	lo.
						Bo	reho	ole Log	WS103	3
		, ,						U	Sheet 1 of	1
Projec	t Name:	4 The Gro	ve	F	Project No. FE1723		Co-ords:	-	Hole Type WS	e
Locati	on.	Camden					l evel:	121 35	Scale	
Locati	011.	Canach						121.00	1:50	
Client		Tier Cons	ult				Dates:	13/02/2023 -	Logged By	У
Well	Water	Sample	s and I	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	1	
	SUIKES	Depth (m)	Туре	Results	(11)	(11)	******		dy SILT with	
					0.25	121.00		frequent rootlets.		-
					0.55	121.00		MADE GROUND MADE GROUND: Dark brown, silty	, slightly	1 -
					0.60	120.75		gravelly, fine to medium SAND. Gr	avel is	
								brick. Some rootlets.	se mini and	1 -
		1.20	SPTL		1.20	120.15		MADE GROUND MADE GROUND: Soft brown mott	led orange	-
		1.20 1.50 - 2.00	D S	N=3 (0,0/1,0,1,1)	1 55	110.80		brown, sandy, slightly gravelly CLA	Y. Gravel is	1 _
					1.55	119.00		rootlets.	frequent	
	2 00 SPTL							brown silty	2 -	
	2.00 SFIL S 2.00 UT Ublow=35			0.00	110.05		SAND with frequent rootlets.	brown, sity		
	2.00 UT Ublow=35 2.50 D		2.30	119.05		MADE GROUND Very soft, orangish brown, sandy C				
	2.50 D			2.70	118.65		Soft brown, slightly gravelly, sandy	CLAY. Gravel		
		3.00	SDTI				× × ×	Loose, orangish brown, mottled pal	e grey, thinly	2
	3.00 SPTL 3.00 S N=8 (1,1/2,2,2,2		N=8 (1,1/2,2,2,2)			×	laminated, silty, clayey, fine and me	dium SAND.	3 -	
						× × ×			-	
					3.55	117.80		Firm, orange, mottled brown, thinly	laminated,	
					0.70	117.00	× ^ × × ×	sandy CLAY. Loose, pale brown, mottled orange	/	1 -
		4.00 4.00	SPIL	N=11 (1,1/2,2,3,4)	,		* ^ × × ×	laminated, silty, fine and medium S	AND.	4 -
				(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 45	116.00	× × × × × × ×			
					4.45	110.90		Firm, orange brown, mottled brown	, thinly] -
								aninatou, sandy OLAT.		-
		5.00 5.00	SPTL	N=6 (2 1/1 1 2 2)	5.00	116.35		Soft and locally very soft, orangish	brown, sandy	5 -
								CLAY.		-
					5.60	115.75		Lasso pale brown mottled grov al	avov, fina ta	
								medium SAND.	ayey, lille to	-
		6.00 6.00	SPTL	N=9 (1 2/2 2 3 2)						6 -
		0.00		11-3 (1,2/2,2,3,2)						-
27778777					6.45	114.90	2/3 3 33	End of borehole at 6.45 m		1 -
										-
										7 -
										-
										-
										8 -
										-
										-
										-
										9 -
										-
1										-
1										-
1										10 -
Rema	rks									
1) No	groundw	vater encount	tered. 2	2) Backfilled with a	irisings upoi	n completio	on.		AGS	5

Project Name: 4 Th Location: Can Client: Tier Well Water Si Strikes Dept 0. 1.00 1.1 1.20 2.1 2.1 2.1 2.1 3.1 3.00 3.00 4.00	The Grove camden ier Consult Samples a epth (m) T 0.70 00 - 1.50 1.20 20 - 1.45 2.00 2.00 2.00	and In Situ	Pr Testing Sesults 1,0/1,2,2,1)	Depth (m) 0.80 1.25 1.65	Bo Level (m) 128.72 128.02 127.57	Co-ords: Level: Dates: Legend	- 128.82 14/02/2023 - Stratum Description Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND MADE GROUND	WS104 Sheet 1 of Hole Type WS Scale 1:50 Logged By HC own, very jular to nt and mortar.	1 , /
Project Name: 4 Th Location: Can Client: Tier Well Water Si Strikes Dept 0. 1.00 1. 1.20 2. 2. 2. 3.00 3.00 4.00	The Grove camden ier Consult Samples a ppth (m) T 0.70 00 - 1.50 1.20 20 - 1.45 2.00 2.00 2.00	and In Situ ⁻ ype R ES B PTL S N=6 (PTL S N=5 (Testing Results	Depth (m) 0.10 1.25 1.65	Level (m) 128.72 128.02 127.57	Co-ords: Level: Dates: Legend	- 128.82 14/02/2023 - Stratum Description Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND MADE GROUND	Sheet 1 of Hole Type WS Scale 1:50 Logged By HC wwn, very jular to nt and mortar.	1
Project Name: 4 Th Location: Can Client: Tier Well Water Si Strikes Dept 0. 1.00 0. 1.00 1.00 1.1 1.20 2.1 2.1 2.1 2.1 3.00 3.00 4.00	The Grove Camden ier Consult Samples a pth (m) T 0.70 00 - 1.50 1.20 20 - 1.45 2.00 2.00 2.00	and In Situ T ype R ES B PTL S D N=6 (S N=5 (Pr TE	Depth (m) 0.10 1.25 1.65	Level (m) 128.72 128.02 127.57	Co-ords: Level: Dates: Legend	- 128.82 14/02/2023 - Stratum Description Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND	Hole Type WS Scale 1:50 Logged By HC n own, very jular to nt and mortar.	₹
Location: Can Client: Tier Well Water Si Strikes Dept 0. 1.00 1.00 1.00 1.00 1.1 1.20 2.1 2.1 3.00 3.00 4.00	Samden ier Consult Samples a opth (m) T 0.70 T 00 - 1.50 S 1.20 S 2.00 S 2.00 S 2.00 S	and In Situ T ype R ES B PTL S N=6 (PTL S N=5 (Testing tesults	Depth (m) 0.10 0.80 1.25 1.65	Level (m) 128.72 128.02 127.57	Level: Dates: Legend	128.82 14/02/2023 - Stratum Description Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND	Scale 1:50 Logged By HC wm, very jular to nt and mortar.	/
Client: Tier Well Water Strikes Si Dept 0. 1.00 1.1 1.20 2.1 2.1 3.1 3.00 3.00 3.00 4.00 4.1	ier Consult Samples a pth (m) T 0.70 0.70 1.20 1.20 2.00 S 2.00 S 2.00 S	and In Situ ype R ES B PTL S N=6 (PTL S N=5 (Testing Lesults	Depth (m) 0.10 0.80 1.25 1.65	Level (m) 128.72 128.02 127.57	Dates:	14/02/2023 - Stratum Description Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND	1:50 Logged By HC wwn, very jular to nt and mortar.	y
Client: Tier Well Water Strikes Same Deption 0. 0. 1.00 - 1. 1.20 - 2.0 2.1 2.1 3.00 - 3.00 - 4.00 - 4.00 -	ier Consult Samples a pth (m) T 0.70 00 - 1.50 1.20 20 - 1.45 2.00 2.0	ES B PTL D PTL S N=6 (N=5 (Testing tesults 1,0/1,2,2,1)	Depth (m) 0.10 0.80 1.25 1.65	Level (m) 128.72 128.02 127.57	Dates: Legend	14/02/2023 - Stratum Description Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND	by HC h by HC	
Well Water Strikes Sa 0. 0. 0. 1.00 - 1. 1. 1.20 - 2.1 2.1 2.1 3.00 - 3.00 - 3.00 - 4.00 - 4.1	Samples a opth (m) T 0.70 T 1.20 S 2.00 S 2.00 S	ES B PTL S N=6 (PTL S N=5 (Testing Results	Depth (m) 0.10 0.80 1.25 1.65	Level (m) 128.72 128.02 127.57	Legend	Stratum Description Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND	own, very lular to nt and mortar. relly, sandy	
0. 1.00 - 1. 1. 1.20 - 2. 2. 2. 3. 3. 3.00 - 3.00 - 4.00 - 4.00 -	0.70 00 - 1.50 1.20 S 1.20 S 20 - 1.45 2.00 S 2.00 S	ES B PTL S N=6 (PTL S N=5 (1,0/1,2,2,1)	0.10 0.80 1.25 1.65	128.72 128.02 127.57		Brick paving. MADE GROUND: Soft, orangish bro gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, flir Some rootlets. MADE GROUND MADE GROUND	own, very jular to nt and mortar. relly, sandy	-
6. 6.00	3.00 10 - 3.45 10 - 4.00 10 - 4.45 4.50 5.00 5.00 6.00 6.00 10 - 6.45 5.00	PTL S D U Ut D D N=9 (PTL S N=8 (PTL S N=9 (0,0/0,2,1,2) 1,1/1,3,2,3) blow=70 1,2/2,2,2,2) 1,1/2,2,2,3)	2.70 5.50 6.10 6.45	127.17 126.12 123.32 122.72 122.37		CLAY. Gravel is subangular and sub fine to coarse brick and flint. MADE GROUND MADE GROUND: Loose, greyish br gravelly, fine to medium SAND. Gra and subangular, fine to coarse brick ash. MADE GROUND MADE GROUND: Loose, orangish I clayey, gravelly, fine to medium SAN subangular and subrounded, fine to flint and brick. MADE GROUND Becoming sandy CLAY from 2.20m bgl to 2. Firm, orange, brown, mottled pale g sandy CLAY.	brown, slightly wel is angular . Occasional brown, very ND. Gravel is o coarse of .40m bgl. grey, silty, layey, fine to rey, silty,	1 - 2 - 3 - 5 - 5 - - 6 - - - - - - - - - - - - - - - - -

									Borehole No.	
	TIER					Bo	reho	ole Log	WS105	
								•	Sheet 1 of 1	
Projec	t Name:	4 The Gro	ve	F -	Project No. FE1723		Co-ords:	-	Hole Type WS	
Locati	on:	Camden					Level:	128.77	Scale	
		_						-	1:50	
Client:		Tier Cons	ult			1	Dates:	14/02/2023 -	HC	
Well	Water Strikes	Sample	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Depth (III)	Туре	Results	0.10	128.67	incorrect incorrect incorrect	Brick paving.		
		1.20 1.20 1.20 - 1.45 1.30	SPTL S D ES	N=6 (1,2/1,2,1,2)	0.70	128.07		gravelly, sandy CLAY. Gravel is ang subrounded, fine to coarse brick, fli Some rootlets. MADE GROUND MADE GROUND: Soft orangish bro gravelly, sandy CLAY. Gravel is sub subrounded, fine to coarse flint and MADE GROUND Soft, pale brown, gravelly, very san Gravel is subangular and subround coarse flint.	ullar to nt and mortar. wm, very angular and brick. dy CLAY. ed, fine to	
		2.00 2.00 2.00 - 3.00	SPIL S B	N=8 (1,1/2,1,3,2)	2.20	126.57		<u></u>	sandy CLAY.	
		3.00 - 3.45 3.50	D	Ublow=30				Becoming very thinly laminated with ferrous	s staining.	
		4.00 4.00	SPTL S	N=12 (2,3/3,3,3,3)	3.90	124.87		Medium dense, orange brown, mot thinly laminated, very silty, fine SAN	iled brown, 4 ID.	- - - -
		5.00 5.00 5.00 - 5.45 5.20 - 6.00	SPTL S D B	N=22 (3,3/5,5,6,6)	4.80 5.20	123.97		Firm, orangish brown, sandy, silty C Medium dense, orange brown, mot clayey, silty, fine and medium SANI	LAY. 1 ded pale grey, 5.	- - - - - - - - - - - - - - - - - - -
		6.00 6.00	SPTL S	N=24 (3,4/5,5,6,8)	6.45	122.32		Ēnd of borehole at 6.45 m	6	- - - -
									8	
Rema	rks								9	- - - - - - - - - - - - - - - - - -
1) No	groundw	vater encount	tered. 2	2) Borehole backfil	led with aris	sings on co	mpletion.		AGS	

									Borehole N	۷o.
	TIER					Bo	reho	ole Loa	WS106	A
ų,		J							Sheet 1 of	f 1
Projec	t Name:	4 The Gro	ve		Project No. TF1723		Co-ords:	-	Hole Type	е
1 4		0 - m d - m			121120			400.07	Scale	
Locati	on:	Camden					Levei:	128.87	1:50	
Client	:	Tier Cons	ult				Dates:	14/02/2023 -	Logged B SM	y
Well	Water	Sample	s and I	In Situ Testing	Depth	Level	Legend	Stratum Descriptio	n	
		Depth (m)	Туре	Results	0.10	128 77	incorrect incorrect incorrect i	Brick Paving		<u> </u>
		1.20 1.20 2.00 2.00	SPTL S SPTL S	N=2 (1,1/0,1,0,1) 20 (9,13/20 for 150mm)	0.10 0.80 0.80 0.10	128.77 128.07 126.92 126.72		Brick Paving. MADE GROUND: Soft, orangish b gravelly, sandy CLAY. Gravel is an subrounded, fine to coarse brick, fl Minor rootlets. MADE GROUND: Soft orangish br gravelly, sandy CLAY. Gravel is sul subrounded, fine to coarse flint and MADE GROUND MADE GROUND: Red brick. MADE GROUND End of borehole at 2.30 n	rown, very gular to int and mortar.	
Rema	rks	uctor oncours	torod)) Borobolo torreit	pated at 2.20)m donth -	n briek et	struction, possibly the evicting		9
basen	groundw nent or a	vater encount i service. 3) E	lered. 2 Borehol	e borenole termine backfilled with a	ated at 2.30 arisings on c	ompletion.	II DIICK ODS	suluction, possibly the existing	AGS	S

								Borehole No	э .		
	R				Bo	reho	ole Log	WS106	В		
						1	•	Sheet 1 of 1	1		
Project Nam	e: 4 The Gro	ve	F	Project No. E1723		Co-ords:	-	Hole Type WS			
Location:	Camden					Level:	128.87	Scale			
Client:	Tier Cons	ult				Dates:	14/02/2023 -	1:50 Logged By	,		
	Sample	s and	In Situ Testina					SM			
Well Strike	es Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Description	1			
	1.50 - 2.00 2.00 2.00 $3.00 - 3.45$ 3.50 4.00 4.00 4.00 $4.00 - 5.00$ 5.00 5.00 $5.50 - 6.00$ 6.00 6.00	B SPTL S U D SPTL S B SPTL S SPTL S	N=7 (2,3/2,1,2,2) N=14 (2,2/3,3,4,4) N=18 (2,2/4,4,5,5) N=24 (3,3/5,6,6,7)	0.25 0.75 1.40 2.20 3.60 4.10 6.45	128.62 128.12 127.47 126.67 125.27 124.77 124.77		Some rootlets. MADE GROUND MADE GROUND: Soft, orangish brown, very gravelly, sandy CLAY. Gravel is angular to subrounded, fine to coarse brick, flint and mortar. Some rootlets. MADE GROUND MADE GROUND: Soft orangish brown, very gravelly, sandy CLAY. Gravel is subangular and subrounded, fine to coarse flint and brick. MADE GROUND POSSIBLE MADE GROUND: Orangish brown, very gravelly, medium and coarse SAND. Gravel is subangular to subrounded, fine to coarse flint. POSSIBLE MADE GROUND Soft to firm, orange, mottled pale grey, silty, locally sandy CLAY. Occasional relict rootlets. Firm, orange brown, mottled pale brown, very sandy, silty CLAY, some thin fine sand laminations. Medium dense, orange brown, mottled brown, very clayey, thinly laminated fine SAND. End of borehole at 6.45 m				
Remarks 1) No groun	dwater encoun	tered. 2	2) Borehole installe	ed to 5.00m	depth on o	completion	Γ.		9		

APPENDIX F – IN-SITU RESULTS – FALLING HEAD PERMEABILITY TESTS

		```	ARIABL	E HEAD	PERME	ABILITY	IEST I	N BOREHOLE			
BOREHOLE No.:	WS101	TEST No.:	1								
	DEPTH (m)	5.45	DATE	14/02/2023	SHEET			1			
					ļ						
1.01											
1 🔶	• •										
0.99	• •	•	•								
0.98			•	•	•						
0.97						•					
0.06								• • •			
0.90										٠	
0.95 +	100	200	30	n	400	500	600	700 800		900	1000
0	100	200			400	500	000	700 800		500	1000
Time Elapsed (secs)	Depth of water below top of casing - d _t (m)	h (m) - (d ₁ -d _t )	h ₁ /h ₀								
0	2.2	3.25	1		Test Section	Depth		m		5.45	
60	2.21	3.24	0.99692308		Borehole De	pth		m		5.45	
120	2.21	3.24	0.99692308		Borehole Dia	ameter		m		0.05	
180	2.22	3.23	0.99384615		Casing Dept	n Inding Woter Le	val (dr)	m Accument		1	
240	2.22	3.23	0.99384615		Depth to Sta	inding water Le	ver (ui)	Assumed m		4.0	
300	2.24	3.21	0.98769231		Height of ca	sing agl (hc)		m		0	
360	2.25	3.2	0.98461538		Height of top table	o of casing abov	e water	m		4.6	
420	2.26	3.19	0.98153846		Depth to Wa casing level	iter at Start of T (d₀)	est below	m		2.2	
480	2.27	3.18	0.97846154		Depth to Wa casing level	iter at End of Te	st below	m		3.25	
540	2.28	3.17	0.97538462		Depth to Filt	er at Start of Te	st	m		NA	
600	2.3	3.15	0.96923077		Depth to Filt	er at End of Tes	t	m		NA	
660	2.31	3.14	0.96615385		Response Z	one Length		m		4.45	
720	0.01	2.14	0.06615295		Borehole Dia	ameter in Test S	ection	m		0.05	
720	2.31	3.14	0.90015385		Cross-sectio	nal Area of Bor	ehole	m2		0.002	
840	2.32	3.13	0.90307092		Intake factor	(BS5930 p51):		Figure 7 (F) =		1.14	
900	2.35	3.1	0.95384615		Basic Time I	_ag = (T)	t1=	0.00	s.h ₁ =	1.00	
							t2=	900.00	s.h ₂ =	0.95	
					Coefficient c	of Permeability (	k) ms-1 =			9.01E-08	
<u>Remarks</u>											
	Borehole cleane	ed out prior to	test.								
Compiled By	SM	Date	14/02/2023								
Checked By	AH	Date	07/03/2023								
Geology of Test Sec	ction:	Laminate	d very sandy s	ilt Clays and	clayey Sand	s (Bagshot Form	nation)				
Tier Environmental I	Ltd										
Chadwick House Birchwood Park		TU	FR		Project Num Project Nam	ber		TE1723			
Warrington, WA3 6AE		C 0 N	SULT		Client						
Tel. 01925 818 388											

		`	VARIABL	E HEAD	PERN	IEABIL	ITY .	TESTI	N BOI	REHO	_E			
BOREHOLE No.:	WS101	TEST No.:	1											
	DEPTH (m)	5.45	DATE	06/03/2023	SHEET				1					
1.2														
1														
	• •	٠	•											
0.8				•	•	•	٠	•	٠					
0.6											•			
0.4														
0.2														
0	1				1						1			
0	100	200	300	) 4	400	500		600		700	800		900	1000
Time Elapsed (secs)	Depth of water below top of casing - d _t (m)	h (m) - (d ₁ -d _t )	h ₁ /h ₀						1					
0	2.55	2.9	1		Test Sect	ion Depth					m			5.45
60	2.65	2.8	0.96551724		Borchole						m			0.05
120	2.73	2.72	0.93793103		Borenole	Diameter					m			0.05
180	2.85	2.6	0.89655172		Casing De	epin Oten din m M	(-t 1 -				m			1
240	2.93	2.52	0.86896552		Depth to a	standing v	vater Le	ivel (d1)			Assumed m			4.2
300	3.08	2.37	0.81724138		Height of	casing agl	(hc)				m			0
360	3.16	2.29	0.78965517		Height of table	top of casi	ng abov	e water			m			4.2
420	3.23	2.22	0.76551724		Depth to V casing lev	Water at S vel (do)	tart of T	est below			m			2.55
480	3.29	2.16	0.74482759		Depth to V casing lev	Water at E /el	nd of Te	est below			m			3.59
540	3.36	2.09	0.72068966		Depth to I	Filter at Sta	art of Te	st			m			NA
600	3.41	2.04	0.70344828		Depth to I	Filter at En	d of Tes	st			m			NA
660	3.45	2	0.68965517		Response	e Zone Len	igth				m			4.45
					Borehole	Diameter i	n Test S	Section			m			0.05
720	3.49	1.96	0.67586207		Cross-sec	tional Area	a of Bor	ehole			m2			0.002
780	3.53	1.92	0.66206897		Intake fac	tor (BS593	30 p51):			Fie	ure 7 (F) =			1.14
840	3.56	1.89	0.651/2414		Basic Tim	ie Lag = (T	) )	t₁=		0.00	Jule 7 (1)	s.h₁ =	1.00	
900	3.59	1.86	0.64137931		+		,	t_=		900.00	)	s.h ₂ =	0.64	
					Coefficier	nt of Perme	ability (	-2 k) ms-1 =				2	8.47E-0	07
							, (	, :					= .	
Remarks		I	I		L				1					
	Darahal	- 4 - 14 - 1												
Compiled By	Borenole clean	ed out prior to Date	test.		1									
Checked By	SM	Date	05/03/2023											
Geology of Test Se	ction:	Laminate	ed very sandy s	silt Clays and	clayey Sa	nds (Bagsł	not Form	nation)						
			~											
Tier Environmental	Ltd				Project N	umber			TE1702				-	
Birchwood Park		TL	ER		Project Na	ame			4 The Gr	ove			+	
Warrington, WA3 6AE		C 0 N	S U L T O U P		Client								1	
101. 01920 018 388													+	

		١	VARIABL	E HEAD	PERMEABI	LITY TEST I	N BOREHOLE		
BOREHOLE No.:	WS101	TEST No.:	2						
	DEPTH (m)	5.45	DATE	06/03/2023	SHEET		1		
1.2									
1									
0.8	•	• •	•						
0.6					•	•	<ul> <li>•</li> </ul>	•	
0.0									
0.4									
0.2									
0		1	1		1	I	1	1	1
0	1	00	200		300	400	500	600	700
	1	1	1						
	Depth of water								
Time Elapsed	below top of	h (m) -	h /h						
(3605)	casing - a _t (m)	(u ₁ -a _t )	n ₁ /n ₀		Test Section Depth		m		5.45
0	2.08	3.3/	1		Borehole Depth		m		5.45
30	2.18	3.27	0.97032641		Borehole Diameter		m		0.05
60	2.27	3.18	0.94362018		Casing Depth		m		1
90	2.30	3.09	0.91691395		Depth to Standing	Water Level (d1)	Assumed m		4.2
120	2.44	3.01	0.89317507						
150	2.49	2.96	0.87833828		Height of casing ag	l (hc)	m		0
180	2.57	2.88	0.85459941		Height of top of cas table	sing above water	m		4.2
240	0.00	0.00	0.00070505		Depth to Water at \$	Start of Test below	m		2.08
210	2.03	2.82	0.83679525		casing level (do) Depth to Water at I	End of Test below	m		3.21
240	2.69	2.76	0.8189911		casing level				
270	2.74	2.71	0.8041543		Depth to Filter at S	tart of Test	m		NA
300	2.79	2.66	0.78931751		Depth to Filter at E	nd of Test	m		NA 1.45
360	2.89	2.56	0.75964392		Response Zone Le	ingth	m		4.45
420	2,99	2.46	0.72997033		Borenole Diameter	In Test Section	m		0.05
480	3.13	2.32	0.6884273		Cross-sectional Are	a of Borehole	m2		0.002
540	3.17	2.28	0.67655786		Intake factor (BS59	30 p51):	Figure 7 (F) =		1.14
600	3.21	2.24	0.66468843		Basic Time Lag = (	T) t ₁ =	0.00	s.h ₁ =	1.00
	-				ł	t ₂ =	600.00	s.h ₂ =	0.66
					Coefficient of Perm	eability (k) ms-1 =			1.17E-06
			1					<u>.                                    </u>	
Remarks							1		
	Borehole clean	ed out prior to	test						
Compiled By	SM	Date	06/03/2023						
Checked By	AH	Date	07/03/2023	L			1		
Geology of Test Se	ction:	Laminate	ed very sandy	silt Clays and	clayey Sands (Bags	shot Formation)	1		
		1							
Tier Environmental	Ltd								
Chadwick House					Project Number		TE1723		
Birchwood Park Warrington, WA3 6AE		C O N			Project Name Client		4 The Grove		
Tel. 01925 818 388		· *							
1					1		1	I	1

			VARIABL	E HEAD	PERMEABI	LITY TEST I	N BOREHOLE		
BOREHOLE No.:	WS101	TEST No.:	3						
	DEPTH (m)	5.45	DATE	06/03/2023	SHEET		1		
					Į				
1.2									
1									
0.8	· · ·	• •	• •	• •	• • •	•			
0.6						•	• •	•	
0.4									
0.4									
0.2									
0 +		1	200		200	100	500	c 00	700
0	10	00	200		300	400	500	600	700
Time Flansed	Depth of water	h (m)							
(secs)	casing - d _t (m)	(d ₁ -d _t )	h ₁ /h ₀						
0	1.93	3.52	1		Test Section Depth		m		5.45
30	2.01	3.44	0.97727273		Borehole Depth		m		5.45
60	2.09	3.36	0.95454545		Borehole Diameter		m		0.05
90	2.17	3.28	0.93181818		Casing Depth		m		1
120	2.24	3.21	0.91193182		Depth to Standing V	Water Level (d1)	Assumed m		4.2
150	2.3	3.15	0.89488636		Height of casing ag	l (hc)	m		0
100	0.00	0.00	0.0770.400.4		Height of top of cas	ing above water	m		4.2
180	2.36	3.09	0.87784091		table Depth to Water at S	Start of Test below	m		1.93
210	2.42	3.03	0.86079545		casing level (do)				
240	2.48	2.97	0.84375		casing level	and of Test below	m		3.02
270	2.46	2.99	0.84943182		Depth to Filter at St	art of Test	m		NA
300	2.62	2.83	0.80397727		Depth to Filter at Er	nd of Test	m		NA
360	2.69	2.76	0.78409091		Response Zone Ler	ngth	m		4.45
420	0.79	2.67	0 75950070		Borehole Diameter	in Test Section	m		0.05
420	2.70	2.07	0.73570545		Cross-sectional Are	a of Borehole	m2		0.002
540	2.00	2.55	0.73379343		Intake factor (BS59	30 p51):	Figure 7 (F) =		1.14
600	3.02	2.01	0.69034091		Basic Time Lag = (1	Г) t ₁ =	0.00	s.h ₁ =	1.00
000	5.02	2.43	0.03034031			t ₂ =	600.00	s.h ₂ =	0.69
					Coefficient of Perm	eability (k) ms-1 =			1.06E-06
Remarks							1		
	Borehole clean	ed out prior to	o test.						
Compiled By	SM	Date	06/03/2023						
Checked By	AH	Date	07/03/2023						
Geology of Test Se	ection:	Laminate	ed very sandy s	silt Clays and	clayey Sands (Bags	hot Formation)			
Tier Environmental	Ltd								
Chadwick House		Т	ED		Project Number		TE1723		
Warrington, WA3 6AE		C 0 N	S U L T		Client		4 The Grove		
Tel. 01925 818 388		$\leq$							
					1		1		i la

		1	VARIABL	E HEAD	PERME	EABILITY	TESTI	N BOREHOLE				
BOREHOLE No.:	WS104	TEST No.:	1									
	DEPTH (m)	5.20	DATE	06/03/2023	SHEET			1				
1.2 1 0.8	• •	•	* *	•	•	*	•					
0.6 0.4 0.2 0 0	100	200	300	) 4	100	500	600	700	800	•	• 900	1000
Time Elapsed (secs)	Depth of water below top of casing - d _t (m)	h (m) - (d ₁ -d _t )	h ₁ /h ₀									
0	3.64	1.56	1		Test Section	n Depth			m		5.2	
60	3.64	1.56	1		Borehole De	epth			m		5.2	
120	3.64	1.56	1		Casing Dep	th			m		1	
180	3.64	1.56	1		Depth to Sta	anding Water L	evel (d1)	Assu	med m			
240	3.67	1.53	0.98076923		Hoight of co	sing ogl (h-)	( )				0	
300	3.74	1.46	0.93589744		Height of to	sing agi (nc)	we water		m		0	
360	3.79	1.41	0.90384615		table	of buoing upo						
420	3.86	1.34	0.85897436		Depth to Wa casing level	(do)	l est below		m		3.64	
480	3.93	1.27	0.81410256		Depth to Wa	ater at End of T	est below		m		4.4	
540	4.05	1.15	0.73717949		Depth to Filt	er at Start of T	est		m		NA	
600	4.11	1.09	0.69871795		Depth to Filt	er at End of Te	est		m		NA	
660	4.17	1.03	0.66025641		Response Z	one Length			m		4.2	
700	4.04	0.06	0.61529462		Borehole Di	ameter in Test	Section		m		0.05	
720	4.24	0.96	0.58012821		Cross-section	onal Area of Bo	rehole		m2		0.002	
840	4.35	0.85	0.54487179		Intake facto	r (BS5930 p51)	):	Figure 7	(F) =		1.14	
900	4.4	0.8	0.51282051		Basic Time	Lag = (T)	t1=	0.00	s.h	1 =	1.00	
							t2=	900.00	s.h	2 =	0.51	
					Coefficient of	of Permeability	(k) ms-1 =				1.27E-06	
Remarks	Borehole clean	ed out prior to	o test.									
Compiled By	SM	Date	06/03/2023									
Checked By	AH	Date	07/03/2023									
Geology of Test Se	ction:	Laminate	ed very sandy s	silt Clays and	clayey Sand	s (Bagshot For	mation)		r			
Tier Environmental	Ltd											
Chadwick House Birchwood Park		TI	ER		Project Num Project Nam	iber ie		TE1723 4 The Grove		_		
Warrington, WA3 6AE		C O N	SULT		Client							
i el. 01925 818 388												

			,	VARIABL	E HEAD	PERM	EABILITY	TESTI	N BOREHOLE			
BOREHOL	E No.:	WS104	TEST No.:	2								
		DEPTH (m)	5.20	DATE	06/03/2023	SHEET			1			
						ļ						
1.2	1											
1												
0.8												
0.6		•										
0.0				• •	•							
0.4	1				•	•	<b>A</b>					
0.2							•	•	• • •	•	•	
0		1		1		1	1			•		
	0	50	100	150	D :	200	250	300	350 400		450	500
		1	1			1						
		Depth of water										
Time El	apsed	below top of	h (m) -									
(sec	s)	casing - d _t (m)	(d ₁ -d _t )	h ₁ /h ₀		Test Section	on Denth		m		5.2	
0		3.24	1.96	1		Borebole C	)enth		m		5.2	
60	1	3.72	1.48	0.75510204		Boroholo D					0.05	
12	0	4.11	1.09	0.55612245		Cooing Do	nth				0.05	
15	0	4.28	0.92	0.46938776		Casiliy De	pui				-	
18	C	4.39	0.81	0.41326531		Depth to S	tanding water L	evel (d1)	Assumed m			
21	C	4.54	0.66	0.33673469		Height of c	asing agl (hc)		m		0	
24	n	4.66	0.54	0 2755102		Height of to	op of casing abo	ve water	m		0	
24	J	4.00	0.34	0.2755102		Depth to W	ater at Start of	Test below	m		3.24	
27	0	4.76	0.44	0.2244898		casing leve	el (do) (etca et Faciliat 7				5.00	
30	C	4.87	0.33	0.16836735		casing leve	vaterat End of i el	est below	m		5.08	
33	C	4.935	0.265	0.13520408		Depth to Fi	ilter at Start of T	est	m		NA	
36	C	5	0.2	0.10204082		Depth to F	ilter at End of Te	est	m		NA	
39	C	5.05	0.15	0.07653061		Response	Zone Length		m		4.2	
	_					Borehole D	Diameter in Test	Section	m		0.05	
42	)	5.07	0.13	0.06632653		Cross-sect	ional Area of Bo	rehole	m2		0.002	
45	0	5.08	0.12	0.06122449		Intake fact	or (BS5930 n51		Figure 7 (F) =		1 14	
						Basic Time	L ag = (T)	,. t.=	0.00	s h. =	1.14	
							, Lug - (1)	t.=	450.00	e h. =	0.06	
						Coefficient	of Permeability	(k) me_1 =	430.00	3.112 -	1.06E-05	
						ocenteient	or r criticability	(1) 113-1 -		1	1.002 00	
Remarks						l						
. tornanto												
O a marri la d f	<u>.</u>	Borehole clean	ed out prior to	o test.		1						
Complied I	5y	SM	Date	06/03/2023								
	y T to	AH	Date	07/03/2023								
Geology of	Test Se	ction:	Laminate	ed very sandy s	silt Clays and	clayey San	ds (Bagshot For	mation)				
				~						1		
Tier Enviro	nmental	Ltd										
Birchwood Park	e		TL	ER		Project Nu Project Na	mper me		TE1723 4 The Grove			
Warrington, W	43 6AE		C O N	S U L T		Client						
i el. 01925 818	388											

		١	VARIABL	E HEAD	PERMEABILITY TEST I	N BOREHOLE		
BOREHOLE No.:	WS104	TEST No.:	3					
	DEPTH (m)	5.20	DATE	06/03/2023	SHEET	1		
	•				•	•		
1.2								
0.8	•	<b>A</b>						
0.6		•						
0.4			•		À .			
0.2					· · · · ·			
					*	* * * *		
		100		200	300	400	500	600
-								
Time Elapsed (secs)	Depth of water below top of casing - d _t (m)	h (m) - (d ₁ -d _t )	h ₁ /h ₀					
0	2.7	2.5	1	[	Test Section Depth	m		5.2
30	2.99	2.21	0.884		Borehole Depth	m		5.2
60	3.21	1.99	0.796		Borehole Diameter	m		0.05
90	3.43	1.77	0.708		Casing Depth	m		1
120	3.64	1.56	0.624		Depth to Standing Water Level (d1)	Assumed m		
150	3.86	1.34	0.536		Height of casing agl (hc)	m		0
190	4.00	4 11	0.444		Height of top of casing above water	m		0
210	4.05	1.05	0.444		table Depth to Water at Start of Test below casing level (do)	m		2.7
040	10				Depth to Water at End of Test below	m		4.99
240	4.3	0.9	0.36		casing level Depth to Filter at Start of Test	m		NA
300	4.42	0.75	0.312		Depth to Filter at End of Test	m		NA
330	4.55	0.56	0.200		Response Zone Length	m		4.2
000	4.04	0.00	0.227		Borehole Diameter in Test Section	m		0.05
360	4.73	0.47	0.188					
390	4.81	0.39	0.156	ļ	Cross-sectional Area of Borehole	m2		0.002
420	4.87	0.33	0.132	ļ	Intake factor (BS5930 p51):	Figure / (⊢) =		1.14
450	4.93	0.27	0.108	ļ	Basic lime Lag = (I) t ₁ =	0.00	s.h ₁ =	1.00
480	4.99	0.21	0.084	<b> </b>	l2=	480.00	s.h ₂ =	0.08
					Coefficient of Permeability (K) ms-1 -	1	1	8.85E-06
			ļ	ļ				
Pemarks				<u>i</u>				
Nemarka								
Compiled By	Borehole clean	ed out prior to	o test.	1	Γ	4		
	SM	Date	06/03/2023			4		
Checked by	AH	Lominoto	07/03/2023	silt Clave and	alayay Sanda (Pagabat Formation)	-		
Geology of Test Se		Laminate	d very sandy	silt Clays and	Clayey Sanos (Bagsnot Formation)			
Tier Environmental	Ltd		$\sim$					
Chadwick House		TU	ED		Project Number	TE1723		
Warrington, WA3 6AE		C 0 N	S U L T		Client	4 The Grove		
Tel. 01925 818 388		$\sim$						

		۱ ۱	VARIABL	E HEAD	PERMEABILITY TEST I	N BOREHOLE		
BOREHOLE No.:	WS106B	TEST No.:	1					
	DEPTH (m)	5.30	DATE	06/03/2023	SHEET	1		
1.2								
1.2								
1	• •	• •	<b>•</b> •					
0.8		•	• •	•	• • • • • •			
0.6						• • • •		
0.4								
0.2								
0								
0		200		400	600	800 1	000	1200
Time Elapsed (secs)	Depth of water below top of casing - d _t (m)	h (m) - (d ₁ -d _t )	h₁/h₀					
0	3.05	2.25	1		Test Section Depth	m		5.3
60	3.15	2.15	0.95555556		Borehole Depth	m		5.3
120	3.18	2.12	0.94222222		Borehole Diameter	m		0.05
180	3.22	2.08	0.92444444		Casing Depth	m		1
240	3.25	2.05	0.91111111		Depth to Standing Water Level (d1)	Assumed m		
300	3.31	1.99	0.88444444		Height of casing agl (hc)	m		0
360	3.39	1.91	0.84888889		Height of top of casing above water table	m		0
420	3.45	1.85	0.82222222		Depth to Water at Start of Test below casing level (d ₀ )	m		3.05
480	3.51	1.79	0.79555556		Depth to Water at End of Test below casing level	m		4.05
540	3.56	1.74	0.77333333		Depth to Filter at Start of Test	m		NA
600	3.63	1.67	0.74222222		Depth to Filter at End of Test	m		NA
660	3.69	1.61	0.71555556		Response Zone Length	m		4.2
720	3 74	1.56	0 69333333		Borehole Diameter in Test Section	m		0.05
780	3.8	1.5	0.66666667		Cross-sectional Area of Borehole	m2		0.002
840	3.86	1.44	0.64		Intake factor (BS5930 p51):	Figure 7 (F) =		1.14
900	3.91	1.39	0.61777778		Basic Time Lag = (T) t ₁ =	0.00	s.h ₁ =	1.00
960	3.95	1.35	0.6		t2=	1020.00	s.h ₂ =	0.56
1020	4.05	1.25	0.55555556		Coefficient of Permeability (k) ms-1 =			9.89E-07
Remarks								
	Borehole clean	ed out prior to	test.					
Compiled By	SM	Date	06/03/2023			]		
Checked By	AH	Date	07/03/2023					
Geology of Test See	ction:_	Laminate	ed very sandy s	silt Clays and	clayey Sands (Bagshot Formation)			
Tier Environmental	Ltd							
Chadwick House Birchwood Park		Т	FR		Project Number	TE1723		
Warrington, WA3 6AE		C O N	SULT		Client	4 me Grove		
Tel. 01925 818 388		$\sim$						

VARIABLE HEAD PERMEABILITY TEST IN BOREHOLE										
BOREHOLE No.:	WS106B	TEST No.:	2							
	DEPTH (m)	TH (m) 5.30 DATE 06/0			SHEET	1				
1.2										
1	•									
0.8	•	•	• •							
0.6			•	•	•					
0.4				•						
0.2										
o —		1		1	1	1				
0		100		200	300	400	500	600		
	Π	Γ								
	Depth of water									
Time Elapsed	below top of	h (m) -	h /h							
(0000)	2 o	(u ₁ -u _t )	111/11 ₀		Test Section Depth	m		5.3		
60	3.11	2.5	0.876		Borehole Depth	m		5.3		
120	3.28	2.02	0.808		Borehole Diameter	m		0.05		
150	3.39	1.91	0.764		Casing Depth	m		1		
180	2.5	1.0	0.70		Depth to Standing Water Level (d1)	Assumed m				
210	3.50	1.0	0.72		Height of casing agl (hc)	m		0		
210	0.00	1.71	0.004		Height of top of casing above water	m		0		
240	3.68	1.62	0.648		table Depth to Water at Start of Test below	m		2.8		
270	3.795	1.505	0.602		casing level (do)			2.0		
300	3.92	1.38	0.552		Casing level	m		4.78		
330	4.13	1.17	0.468		Depth to Filter at Start of Test	m NA		NA		
360	4.26	1.04	0.416		Depth to Filter at End of Test	m NA		NA		
390	4.37	0.93	0.372		Response Zone Length	m 4.2		4.2		
420	4.48	0.82	0.328		Borehole Diameter in Test Section	m		0.05		
450	4.6	0.7	0.28		Cross-sectional Area of Borehole	m2		0.002		
480	4.71	0.59	0.236		Intake factor (BS5930 p51):	Figure 7 (F) =		1.14		
510	4.78	0.52	0.208		Basic Time Lag = (T) t ₁ =	0.00 s.h ₁ = 1.00		1.00		
					t ₂ =	510.00	s.h ₂ =	0.21		
					Coefficient of Permeability (k) ms-1 =		-	5.28E-06		
Remarks										
Borehole cleaned out prior to test.										
Compiled By	SM	Date	06/03/2023							
Geology of Test So	AH Vate 07/03/2023				clavey Sands (Bagshot Formation)					
Ceology of Test Se		Laminate	su very sandy	ant Grays and	Gayey Ganus (Dayshot Formation)					
I ler Environmental Ltd Chadwick House					Project Number	TE1723				
Birchwood Park		TIER			Project Name	4 The Grove				
warrington, WA3 6AE Tel. 01925 818 388		C	S U L T		Client					

VARIABLE HEAD PERMEABILITY TEST IN BOREHOLE										
BOREHOLE No.:	WS106B	TEST No.:	3							
	DEPTH (m)	5.30	06/03/2023	1						
1.2	•					•	·			
0.8	•	•	• •	•						
0.6					* * * *	• • • •				
0.4					•					
0.2										
o —		I		1	1	1	1	1		
0	100 200 300				300	400	500	600		
Time Elapsed (secs)	Depth of water below top of casing - d _t (m)	h (m) - (d ₁ -d _t )	h ₁ /h ₀							
0	2.6	2.6	1		Test Section Depth	m		5.2		
30	2.82	2.38	0.91538462		Borehole Diameter	m		0.05		
60	2.99	2.21	0.85		Casing Depth	m		1		
90	3.1	2.1	0.80769231		Depth to Standing Water Level (d1)	Assumed m		•		
120	3.21	1.99	0.76538462							
150	3.28	1.92	0.73846154		Height of casing agi (nc)	m		0		
180	3.36	1.84	0.70769231		table			0		
210	3.43	1.77	0.68076923		Depth to Water at Start of Test below casing level (do)	m		2.6		
240	3 51	1 69	0.65		Depth to Water at End of Test below	m		3.94		
270	3.58	1.62	0.62307692		Depth to Filter at Start of Test	m		NA		
300	3.65	1.55	0.59615385		Depth to Filter at End of Test	m		NA		
330	3.72	1.48	0.56923077		Response Zone Length	m		4.2		
200	0.70	4.40	0 54045005		Borehole Diameter in Test Section	m		0.05		
360	3.78	1.42	0.52602209		Cross-sectional Area of Borehole			0.002		
420	3.87	1.37	0.52092308		Intake factor (BS5930 p51):	Figure 7 (F) =		1.14		
450	3.91	1.29	0.49615385		Basic Time Lag = (T) t ₁ =	0.00	s.h ₁ =	1.00		
480	3.94	1.26	0.48461538		t ₂ =	480.00	s.h ₂ =	0.48		
					Coefficient of Permeability (k) ms-1 =			2.59E-06		
Remarks										
	Borehole clean	ed out prior to	test.							
Compiled By	SM	Date	06/03/2023							
Checked By	AH	Date	07/03/2023	11.0						
Geology of Test Se		Laminate	ed very sandy :							
Tier Environmental Ltd										
Chadwick House Birchwood Park					Project Number Project Name	TE1723 4 The Grove				
Warrington, WA3 6AE		C O N	SULT		Client					

**APPENDIX G – LABORATORY RESULTS – GEOTECHNICAL TESTING** 

Kesoils		Summary of Natural Moisture Content, Liquid Limit and Plastic Limit Results										
Job No.		Project	Name			Prog	amme					
33019			4 The Grove							received	16/02/2023	
Project No.			Client							Project started		2/2023
TE1723			Tier Environmental							Testing Started		2/2023
121725												,2020
Hole No.				Soil Description	NMC	Passing 425µm	LL	PL	PI	Rem	narks	
	Ref	Гор	Base	Туре		0/	0/_	0/	9/	9/		
WS101	-	2.00	2.45	UT	Medium strength orangish brown slightly gravelly slightly sandy silty CLAY (gravel is fm and angular to sub-rounded)	17	70	76	/0	/0		
WS101	-	3.80	-	D	Brown slightly sandy gravelly silty CLAY (gravel is fmc and sub-angular to sub- rounded)	15	46	28	15	13		
WS102	-	3.50	4.00	D	Brown silty clayey SAND	24						
WS103	-	2.50	-	D	Brown slightly sandy slightly gravelly silty CLAY (gravel is fmc and sub- angular to sub-rounded)	18	71	31	16	15		
WS104	-	3.00	4.00	в	Brown slightly sandy slightly gravelly silty CLAY (gravel is fmc and sub- angular to sub-rounded)	23	90	45	23	22		
WS104	-	4.00	4.45	U	Low strength light brown mottled orangish brown fine sandy silty CLAY with rare fine mudstone fragments	23						
WS106B	-	3.00	3.45	U	Brown slightly sandy silty CLAY	24	100	42	21	21		
WS106B	-	5.00	6.00	в	Brown sandy silty CLAY with rare fine gravel	24						
â	Test N	lethods	: BS137	7: Par	2: 1990:						Check	ed and
	Natural Atterbe	Moisture	Content	Content : clause 3.2 Test Report by K4 SO					ATORY ach	Appr	oved	
- (⊁≮) -	These i	results on	ly apply to	o the ite	ms tested	Watford Herts WD18 9RU					Initials	J.P
UKAS	NOTE:	The repo	rt shall no	t be rep	roduced except in full	Tel: (	Tel: 01923 711 288 Date: 10/03/2023					
2519	without Appro	authority ved Sigr	of the lab	f the laboratory Email: James@k4soils.com atories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)							MSF-5	5-R1(b)








											Job Ref				33019			
	K	- )	ONE		IONAL C	CONS	OLIDA		N T	EST	Bo	rehole	/Pit No	).		WS1	01	
		SOILS									Sa	mple N	۱o.			-		
Site	e Name	9			4 The	Grove	1				De	pth To	р			2.00		m
Proj	ject ID		TE	1723	Client		Tier E	nviro	nmei	ntal	Dep	th Bas	se			2.45		m
											Sa	mple 1	уре			UT		
s	oil Des	cription	Medium st	trength oran	gish brown	slightly	/ gravel	ly slig	htly	sandy silty	Sa	mple F	Receiv	ed		16/02/2	2023	
			(	CLAY (grave	el is fm and	angula	ar to sub	-rour	nded	)	Sch	edule	receiv	red		16/02/2	2023	
То	et Moth	od	DC1077.D	ort E: 1000			Proje Date T						Starte	d		17/02/2	2023	
16.	0.570		B313/7.Pa	ant 5. 1990,	clause 3						Da					01/03/2	1023	
	0.560	,			- e _o													
	0.550	)																
tio	0.540	)														++		
ls Ra	0.530	)					$ \rightarrow$	_					_			_		
Voic	0.520	, <b> </b>					N											
	0.020							$\setminus$										
	0.510	)																
	0.500	)							$\mathbb{N}$									
	0.490	) <b> </b>					_	_		$\setminus$		_						
	0.480	,					$\rightarrow$	~	$ \rightarrow $									
	0.470	,							1									
me)	2.50							/	$\sim$									
log ti	1.50						_/			^								
/yr (	1.00				,													
N m ²	0.50																	
0	0.00	1			10		Ap	oplied	ı Pre	0 ssure kPa	ı			1000				10000
<b>A</b>	- P - 4					7	Dres											
App Pres	ssure	Voids ratio	Mv	Cv ( t50, log )	Cv ( t90, root )		Prep	Darati	ion									
k	Pa	0.562	m2/MN	m2/yr	m2/yr	1	Orie	ntatio	on wtl	hin sample					Ver	tical		
2	20	0.537	0.89	1.2	9.1		Part	icle d	lensi	ty				assur	ned	2	2.68	Mg/m3
4	40 30	0.525	0.41	1.1 2.4	2.2 4.8	-	Spe	cime	n det	tails			Г	Initi	al	F	inal	
1	60	0.477	0.22	1.9	7.1	1	Diar	neter						74.8	39		-	mm
2	20	0.490	0.06			-	Heig Mois	ght sture	Con	tent			F	18.7 21	(7	1	7.90 20	m %
						1	Bulk	den	sity					2.0	7	2	2.15	Mg/m3
<b> </b>						4	Dry	dens	ity				ŀ	1.7	2		1.80	Mg/m3
<b> </b>						1	VOIC Sati	is Ka Iratio	n				ŀ	0.50	ےر 0		. <del>4</del> 90 107	%
				1	1	1	Ave	rage	tem	perature for	r test		ŀ	.0	- 20	0.0		oC
			1	Swe	elling	Pres	sure			ľ					kPa			
$\vdash$			<u> </u>	4	Sett	leme	nt or	n saturation	n		[					%		
<b> </b>				<u> </u>		1	Ren	narks	;									
						1					L							
					_				_									
G	3			-	Fest Report Unit א נ	t by K4 Olds CL	I SOILS	LAB	ORA	TORY					Cł	necked	and Ap	proved
- (*	∢)				Wa	tford H	erts WD	18 9	RU						Initia	ls	K	.P.
					Fma	Tel: 019 ail: Jam	923 711 es@k44	288 v alios	com									
TEST	TING	These results on	y apply to the ite	ms tested. The re	e reproduc	ed except ii	n full wi	thout a	authority of the	laboratory	,			Date	:	10/03	8/2023	
25	19	Approved S	se results only apply to the items tested. The report shall not be reproduced except in full without authority of the laboratory oproved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)														MSF-5-R6	

												Job	Ref				33019				
	K		ONE	DIMENS	IONAL C	ONSO	LIDA	ATIC		EST		Bore	ehole	/Pit I	No.			WS	104		
		SUILS										Sam	ple l	No.					-		
Sit	e Name	•			4 The	Grove						Dept	th Tc	р				4.00			m
Pro	ject ID		TE	1723	Client	-	Tier E	nviro	onme	ntal		Deptł	h Ba	se				4.45			m
					-	-						Sam	nple ⁻	Гуре				ι	J		
s	oil Des	cription	Low stre	ngth light br CLAY wit	own mottlee th rare fine	d orangis mudston	h bro e frac	wn fii Imen	ne sa Its	andy silty		Sam	ple F	Rece	eived			16/02	/2023		
											-	Pro	oject	Star	ted	1		17/02	/2023		
Те	st Meth	od	BS1377:Pa	art 5: 1990, (	clause 3							Date	Tes	st sta	rted			01/03	/2023		
	0.640	) <mark></mark>	•••••		- e _o																
	0.620	)					~	+				+-									
	0.600	)						$\rightarrow$	n (			_		_			_	_			
.0	0.580	)								$\searrow$		_					_	_			
s Rat	0.560	,										_					_	_			
Void	0.540	,					-														
	0.010											->>									
	0.520	,																			
	0.500	)																			
	0.480	)							++-					_							
	0.460	)					+		++-			_					_	_			
	0.440	,																			
-	50.00	-1																			_
time)	40.00													_				_			
(log	30.00						$\overline{\mathbf{x}}$														
m²/yr	10.00							$\setminus$									_	_			
S	0.00	1			10				1 - 10	0		<b>^</b>			1(	000				1	0000
							A	oplied	dPr€	essure kPa	a										
Ap	plied	\/aida ratia	Mv	Cv	Cv	]	Pre	parat	ion												
Pres k	Pa	voids ratio	m2/MN	( 150, 10g ) m2/yr	( 190, 1001 ) m2/yr		Orie	ntatio	on wt	hin sample							Ver	tical			
2	2.0 40	0.635 0.617	- 0.29	- 27	- 120		Par	icle o	dens	itv						assum	ed		2.69		Ma/m3
{	80	0.602	0.24	5.1	28	1	C			,					_	Initio	1		Final		1
3	60 20	0.571	0.24	4.9	9.2		Spe Diar	nete	r de	tails						49.8	5		-		mm
4	40	0.545	0.026				Heig Mois	ght sture	Con	tent					_	18.89 24	9		17.84 23		mm %
						1	Bulk	den	sity							2.03			2.15		Mg/m3
							Dry	dens ls Ra	sity							1.64	5		1.74		Mg/m3
-						1	Sati	uratio	n						-	100	-		115		%
						]	Ave	rage	tem	perature fo	r te	st					20	0.0			oC
							Swe Sett	elling Ieme	Pres ent or	sure saturatior	n				_						kPa %
							_				_										J 7
						1	Ken	narks	6												
·				-	-	•					-										•
E	B			٦	Fest Report	by K4 S		LAB		ATORY ch							Ch	ecked	ked and Approved		
(≯	∢)				Wat	tford Her	ts WE	з <del>д</del> р )18 9	RU	011							Initia	ls		K.P	
UK	ン i AS				Ema	il: 0192 il: James	3 711 @k4	288 soils.	; com												
TEST		These results only apply to the items tested. The report shall not be reproduced exception full without authority of the laboratory										Date	te: 10/03/2023								
25	19	Approved S	Approved Signatories: K.Phaure (Tech.Mgr) J.Phaure (Lab.Mgr)											1				wis⊦-5-R6			









K	SOILS	)	Unc	ons	olidated Undrained Tr	iaxia	l Corr Su	npres mma	sion ry of	tests Resu	with Its	out n	neas	urem	ent o	of p	oore pressure			
			Tes	ts ca	arried out in accordan	ce w	ith BS	51377	':Par	t 7 : 1	990 c	laus	e 8 c	or 9 a	s ap	pro	priate to test			
Job No.					Proj	ect Na	me						Sar	nnles r	Pro	ograr	nme 16/02/2023			
33019			4 The	Grove	9								Sch	edule	receiv	ed	16/02/2023			
Project N	0.		Client										Pi	roject s	started		17/02/2023			
TE1723			Tier Er	nviron	mental								Τe	esting S	Started	ł	28/02/2023			
	I	Sar	mple			<b>-</b> .	Dei	nsity				I		At fail	ure					
Hole No	Pof	Top	Page	Turne	Soil Description	Type	bulk	dry	W	Length	Diamete	σ3	Axial	τ1 σ ⁴	011	м	Remarks			
11010 110.	IVE!	тор	Dase	туре			built						strain		cu	o d	Romano			
		m	TTI Mig/m3 % mm mm kPa %											кРа	кра	е				
WS101	-	2.00	2.45	UT	slightly gravelly slightly sandy silty CLAY (gravel is fm and angular to sub-rounded)	UU	2.18	1.87	17	198	103	40	20	115	57	с				
WS104	-	4.00	4.45	4.45       U       Low strength light brown mottled orangish brown fine sandy silty CLAY with rare fine mudstone fragments       UU       1.90       1.54       23       140       70       80       4.3       76										76	38	в	,			
Legend	Legend       UU - single stage test (single and multiple specimens)       σ3       Cell pressure       Mode of failure ;       B - Britt         UUM - Multistage test on a single specimen       σ1 - σ3       Maximum corrected deviator stress       P - Plas         suffix R - remoulded or recompacted       cu       Undrained shear strength, ½ (σ1 - σ3)       C - Cor												I Brittle Plasti Comp	i e pound						
					Test Report by K4 Unit 8 Olds Close Olds App Tel: 01923 711 288 E	SOIL proach mail: j	S LAB Watfo ames@	ORATO rd Her @k4soi	DRY ts WD ls.com	18 9RU 1	I				Che	ecke	ed and Approved			
UKA	s				Email: jame	es@k4	soils.c	om							Initial	S:	J.P			
TESTIN	G	TI	hese resul	ts only	apply to the items tested. The report s	hall not l	be reprod	uced exc	ept in fui	ll without	authority	of the la	aboratory	/	Date:		10/03/2023			
2519	)	Appro	ved Sig	natori	ies: K.Phaure (Tech.Mgr) J.P.	haure (	(Lab.M	gr)							MSF-5-R7b					

**APPENDIX H – LABORATORY RESULTS – CHEMICAL ANALYSIS** 



Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Tier Environmental Suite 414, Chadwick House Warrington Rd Birchwood Warrington WA3 6AE dul TESTING 4225 Attention : Adrian Read Date : 1st March, 2023 Your reference : TE1723 Our reference : Test Report 23/2458 Batch 1 4 The Grove Location : Date samples received : 17th February, 2023 Status : Final Report 1 Issue :

Ten samples were received for analysis on 17th February, 2023 of which nine were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

h lun

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

#### **Element Materials Technology**

Client Name: Reference: Location: Contact: EMT Job No: Tier Environmental TE1723 4 The Grove Adrian Read 23/2458

#### Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1	2	3	4-7	8	10-13	14	15	16-19			
Sample ID	WS101	WS101	WS102	WS104	WS104	WS105	WS105	WS105	HDP1			
Depth	5.50-6.00	2.45	3.00-3.50	0.70	1.20-1.45	1.30	1.20-1.45	5.00-5.45	0.60	Please se	e attached n	otes for all
COC No / misc										abbreviations and acron		cronyms
Containers	в	В	В	VJT	в	VJT	в	в	VJT			
Sample Date	12/02/2022	12/02/2022	12/02/2022	12/02/2022	12/02/2022	12/02/2022	12/02/2022	12/02/2022	12/02/2022			
Sample Date	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023			
Sample Type	Soil											
Batch Number	1	1	1	1	1	1	1	1	1		Units	Method
Date of Receipt	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023			No.
Arsenic [#]	-	-	-	15.0	-	10.7	-	-	14.8	<0.5	mg/kg	TM30/PM15
Cadmium [#]	-	-	-	<0.1	-	<0.1	-	-	<0.1	 <0.1	mg/kg	TM30/PM15
Chromium #	-	-	-	65.1	-	86.9	-	-	71.2	<0.5	mg/kg	TM30/PM15
Copper [#]	-	-	-	16	-	6	-	-	32	 <1	mg/kg	TM30/PM15
Lead [#]	-	-	-	269	-	13	-	-	486	<5	mg/kg	TM30/PM15
Mercury [#]	-	-	-	0.3	-	<0.1	-	-	0.8	<0.1	mg/kg	TM30/PM15
Nickel‴	-	-	-	12.3	-	5.2	-	-	13.1	<0.7	mg/kg	TM30/PM15
Selenium" Sulphur as S	-	-	-	~1	-	<1	-	-	~1	 <0.01	тт <u>д</u> /кд	TM30/PM15
Total Sulphate as SO/ #	0.02	0.01	-0.01	- 224	0.05	- 66		0.04	323	<50	70 ma/ka	TM50/PM29
Total Sulphate as SO4 BRE	0.03	0.02	0.01	-	0.05	-	<0.01	0.06	-	 <0.01	%	TM50/PM29
Zinc [#]	-	-	-	36	-	13	-	-	93	<5	mg/kg	TM30/PM15
Magnesium	0.0050	0.0018	0.0012	-	0.0015	-	0.0005	0.0043	-	<0.0001	g/I	TM30/PM20
PAH MS												
Naphthalene [#]	-	-	-	<0.04	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	-	-	-	<0.03	-	<0.03	-	-	0.05	<0.03	mg/kg	TM4/PM8
Acenaphthene [#]	-	-	-	<0.05	-	<0.05	-	-	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene [#]	-	-	-	<0.04	-	<0.04	-	-	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	-	-	-	0.05	-	<0.03	-	-	0.24	<0.03	mg/kg	TM4/PM8
Anthracene [#]	-	-	-	<0.04	-	<0.04	-	-	0.08	<0.04	mg/kg	TM4/PM8
Fluoranthene #	-	-	-	0.09	-	<0.03	-	-	0.66	<0.03	mg/kg	TM4/PM8
Pyrene [#]	-	-	-	0.08	-	< 0.03	-	-	0.58	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene"	-	-	-	< 0.06	-	<0.06	-	-	0.58	<0.06	mg/kg	
Chrysene"	-	-	-	0.06	-	<0.02	-	-	0.51	 <0.02	mg/kg	
Benzo(a)pyrene #	-	-	-	<0.09	-	<0.07	-	-	0.89	<0.07	mg/kg	TM4/PM8
Indeno(123cd)pyrene [#]	_	-	-	<0.04	-	<0.04	-	-	0.30	 <0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	-	-	-	< 0.04	-	< 0.04	-	-	0.06	<0.04	ma/ka	TM4/PM8
Benzo(ghi)perylene [#]	-	-	-	<0.04	-	<0.04	-	-	0.25	<0.04	mg/kg	TM4/PM8
PAH 16 Total	-	-	-	<0.6	-	<0.6	-	-	4.7	<0.6	mg/kg	TM4/PM8
Benzo(b)fluoranthene	-	-	-	0.06	-	<0.05	-	-	0.64	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	-	-	-	0.03	-	<0.02	-	-	0.25	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	-	-	-	90	-	91	-	-	93	<0	%	TM4/PM8
Total Phenols HPLC	-	-	-	<0.15	-	<0.15	-	-	1.39	<0.15	mg/kg	TM26/PM21B
Natural Moisture Content	27.6	13.1	20.2	27.9	23.1	7.0	10.6	18.5	14.3	<0.1	%	PM4/PM0
Ammoniacal Nitrogen as NH4	<0.6	<0.6	<0.6	-	<0.6	-	<0.6	3.9	-	<0.6	mg/kg	TM38/PM20
Chloride (2:1 Ext BRE) [#]	0.006	0.004	0.003	-	0.002	-	<0.002	0.005	-	<0.002	g/I	TM38/PM20
Hexavalent Chromium [#]	-	-	-	<0.3	-	<0.3	-	-	<0.3	<0.3	mg/kg	TM38/PM20
Nitrate as NO3 (2:1 Ext BRE)	0.0081	0.0050	<0.0025	-	0.0028	-	<0.0025	<0.0025	-	<0.0025	g/l	TM38/PM20
Sulphate as SO4 (2:1 Ext)#	0.0218	0.0137	0.0118	0.0064	0.0140	0.0065	0.0174	0.0715	0.0152	<0.0015	g/l	TM38/PM20

#### **Element Materials Technology**

Client Name: Reference: Location: Contact: EMT Job No:

#### Tier Environmental TE1723 4 The Grove Adrian Read 23/2458

#### Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

										-			
EMT Sample No.	1	2	3	4-7	8	10-13	14	15	16-19				
Sample ID	WS101	WS101	W\$102	WS104	WS104	WS105	WS105	WS105	HDP1				
Depth	5.50-6.00	2.45	3.00-3.50	0.70	1.20-1.45	1.30	1.20-1.45	5.00-5.45	0.60	Please se	e attached n	otes for all	
COC No / misc										abbrevia	ations and ac	ronyms	
Containers	в	в	в	VJT	в	VJT	в	в	VJT				
Sample Date	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023	13/02/2023				
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1		Linita	Method	
Date of Receipt	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	17/02/2023	LODILOI	Offics	No.	
Total Organic Carbon [#]	-	-	-	1.03	-	0.27	-	-	3.13	<0.02	%	TM21/PM24	
рН [#]	7 71	7.63	8 13	8.60	8.58	8 10	8 4 4	5 56	7 43	<0.01	pH units	TM73/PM11	
pri		1.00	0.10	0.00	0.00	0.10	0.11	0.00		0.01	prirainto		

#### Asbestos Analysis

#### **Element Materials Technology**

Tier Environmental
TE1723
4 The Grove
Adrian Read

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/2458	1	WS104	0.70	6	Simon Postlewhite	01/03/2023	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	01/03/2023	Asbestos Fibres	NAD
					Simon Postlewhite	01/03/2023	Asbestos ACM	NAD
					Simon Postlewhite	01/03/2023	Asbestos Type	NAD
23/2458	1	WS105	1.30	12	Simon Postlewhite	01/03/2023	General Description (Bulk Analysis)	Brown soil/swtones
					Simon Postlewhite	01/03/2023	Asbestos Fibres	NAD
					Simon Postlewhite	01/03/2023	Asbestos ACM	NAD
					Simon Postlewhite	01/03/2023	Asbestos Type	NAD
23/2458	1	HDP1	0.60	18	Matthew Turner	01/03/2023	General Description (Bulk Analysis)	Brown soil/Stone
					Matthew Turner	01/03/2023	Asbestos Fibres	NAD
					Matthew Turner	01/03/2023	Asbestos ACM	NAD
					Matthew Turner	01/03/2023	Asbestos Type	NAD

## **Element Materials Technology**

Client Name:	Tier Environmental
Reference:	TE1723
Location:	4 The Grove
Contact:	Adrian Read

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
			•	•	No deviating sample report results for job 23/2458	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

### NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

**EMT Job No.:** 23/2458

#### SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at  $35^{\circ}C \pm 5^{\circ}C$  unless otherwise stated. Moisture content for CEN Leachate tests are dried at  $105^{\circ}C \pm 5^{\circ}C$ . Ash samples are dried at  $37^{\circ}C \pm 5^{\circ}C$ .

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

#### WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

#### STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

#### **DEVIATING SAMPLES**

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

#### SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

#### DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

#### BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

#### NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

#### **REPORTS FROM THE SOUTH AFRICA LABORATORY**

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

#### **Measurement Uncertainty**

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

#### **Customer Provided Information**

Sample ID and depth is information provided by the customer.

#### ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ос	Outside Calibration Range

#### HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

### **Element Materials Technology**

EMT Job No: 23/2458

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes

### **Element Materials Technology**

EMT Job No: 23/2458

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.			AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	A hot hydrochloric acid digest is performed on a dried and ground sample, and the resulting liquor is analysed.			AD	Yes
TM50	Acid soluble sulphate (Total Sulphate) analysed by ICP-OES	PM29	A hot hydrochloric acid digest is performed on a dried and ground sample, and the resulting liquor is analysed.	Yes		AD	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No



# HazWasteOnline[™]

# Waste Classification Report

HazWasteOnline™ classifies waste as either <b>hazardous</b> or <b>non-hazardous</b> based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to: a) understand the origin of the waste b) select the correct List of Waste code(s) c) confirm that the list of determinands, results and sampling plan are fit for purpose d) select and justify the chosen metal species (Appendix B) e) correctly apply moisture correction and other available corrections f) add the meta data for their user-defined substances (Appendix A) g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)						
To aid the reviewer, the labora	tory results, assumptions and justifications managed	ged by the classifier are highlighted in <mark>pale yellow</mark> .				
Job name						
EMT-23-2458-Batch-1-202	2303011123					
Description/Comment	'S					
	-					
Project		Site				
TE1723		4 The Grove, Camden				
Classified by						
Name: Adrian Read Date: 14 Mar 2023 15:17 GMT Telephone: 01925 818388	Company: Tier Environmental Suite 414 Chadwick House Warrington WA3 6AE	HazWasteOnline [™] provides a two day, hazardous waste class use of the software and both basic and advanced waste class has to be renewed every 3 years. HazWasteOnline [™] Certification: Course Hazardous Waste Classification Next 3 year Refresher due by I	ification course that covers the ification techniques. Certification <b>CERTIFIED</b> <b>Date</b> 03 Dec 2020 Dec 2023			
Purpose of classificat	ion					
2 - Material Characterisati	on					
Address of the waste						
4 The Grove, Highgate, Lo	ondon N6 6JU	Post	Code N6 6JU			
SIC for the process gi	ving rise to the waste					
Description of industr	y/producer giving rise to the waste					
Proposed redevelopment of	of land					
Description of the spe	ecific process, sub-process and/or a	activity that created the waste				
Waste created during exca	avation of soils during development					
Description of the was	ste					

Made ground and/or natural soils



#### Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS101-13/02/2023-5.50-6.00m		Non Hazardous		3
2	WS101-13/02/2023-2.45m		Non Hazardous		4
3	WS102-13/02/2023-3.00-3.50m		Non Hazardous		5
4	WS104-13/02/2023-0.70m		Non Hazardous		6
5	WS104-13/02/2023-1.20-1.45m		Non Hazardous		8
6	WS105-13/02/2023-1.30m		Non Hazardous		9
7	WS105-13/02/2023-1.20-1.45m		Non Hazardous		11
8	WS105-13/02/2023-5.00-5.45m		Non Hazardous		12
9	HDP1-13/02/2023-0.60m		Non Hazardous		13

#### **Related documents**

#	Name	Description
1	EMT-23-2458-Batch-1-202303011123.HWOL	Element .hwol file used to populate the Job
2	Example waste stream template for contaminated soils	waste stream template used to create this Job

#### Report

Created by: Adrian Read

Created date: 14 Mar 2023 15:17 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	15
Appendix B: Rationale for selection of metal species	16
Appendix C: Version	16



#### Classification of sample: WS101-13/02/2023-5.50-6.00m



#### Sample details

Sample name:	LoW Code:	
WS101-13/02/2023-5.50-6.00m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
27.6%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

### Hazard properties

None identified

#### **Determinands**

Moisture content: 27.6% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	P Note	User entered data	d data Conv. Factor		id conc.	Classification value	C Applied	Conc. Not Used
		number			Ū						Σ	
1		pН				7.71 pH		7.71	ρΗ	7.71 pH		
				PH	1				F			
2	4	sulfur { <mark>sulfur</mark> }				200 mg/kg		156.74	ma/ka	0.0157 %	J	
		016-094-00-1	231-722-6	7704-34-9		5.5			5.5		*	
									Total:	0.0157 %		

ĸ	ω٧/
1.7	Ξy

User supplied data Determinand defined or amended by HazWasteOnline (see Appendix A) Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration 



#### Classification of sample: WS101-13/02/2023-2.45m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste . . . . . . . . . . . . . . . . . . .

#### Sample details

•		
Sample name:	LoW Code:	
WS101-13/02/2023-2.45m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
13.1%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 13.1% Dry Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered data		User entered data Conv. Factor Compound conc.		Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		T actor		Value		USEU	
1	8	pН				7.63 pH		7.63 pH	7.63 pH			
				PH	]							
2	4	sulfur { <mark>sulfur</mark> }				100 mg/kg		88.417 mg/kg	0.00884 %	1		
		016-094-00-1	231-722-6	7704-34-9		0.0		0.0				
								Total	0.00884 %			

Key	
	User supplied data
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration



#### Classification of sample: WS102-13/02/2023-3.00-3.50m



#### Sample details

Sample name:	LoW Code:	
WS102-13/02/2023-3.00-3.50m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
20.2%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

### Hazard properties

None identified

#### **Determinands**

Moisture content: 20.2% Dry Weight Moisture Correction applied (MC)

#			Determinand		o Note	User entered data	Conv. Factor	Compound	l conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							
1	8	рН				8.13 pH		8.13	Hα	8.13 pH		
				PH								
2	4	sulfur { <mark>sulfur</mark> }				<100 mg/kg		<100	mg/kg	<0.01 %		<lod< th=""></lod<>
		016-094-00-1	231-722-6	7704-34-9					00			
									Total:	0.01 %		

Kev	
1 CO y	

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected



#### Classification of sample: WS104-13/02/2023-0.70m

## Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

•		
Sample name:	LoW Code:	
WS104-13/02/2023-0.70m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
27.9%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

. . . . . . . . . . . . . . . . . . .

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 27.9% Dry Weight Moisture Correction applied (MC)

#		Determinand           EU CLP index         EC Number         CAS Number	LP Note	User entered data		Conv. Factor	v. or Compound conc.		Classification value		Conc. Not Used
		number	о С								
1	4	arsenic { arsenic trioxide }		15 r	ng/kg	1.32	15.485	mg/kg	0.00155 %	$\checkmark$	
		033-003-00-0 215-481-4 1327-53-3	-								
2	4	cadmium { cadmium oxide }		<0.1 r	ng/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0 215-146-2 1306-19-0									
3	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		65.1 r	ng/kg	2.27	115.541	mg/kg	0.0116 %	~	
		024-017-00-8									
4	4	copper { <mark>dicopper oxide;            copper (I)            oxide</mark> }		16 n	na/ka	1.126	14.085 mg	ma/ka	0.00141 %	$\checkmark$	
		029-002-00-X 215-270-7 1317-39-1									
5	4	lead { lead chromate }	1	269 r	ng/kg	1.56	328.061	mg/kg	0.021 %	$\checkmark$	
		mercury { mercury dichloride }									
6	•	080-010-00-X 231-299-8 7487-94-7	-	0.3 n	ng/kg	1.353	0.317	mg/kg	0.0000317 %	$\checkmark$	
		nickel { nickel chromate }									
7	•••	028-035-00-7 238-766-5 14721-18-7		12.3 n	ng/kg	2.976	28.622	mg/kg	0.00286 %	$\checkmark$	
	æ	selenium { nickel selenate }							-0.0002EE %		
8	~	028-031-00-5 239-125-2 15060-62-5		<1 r	ng/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
	æ	zinc { zinc chromate }				0 774	70.004	0	0.00781 %	$\checkmark$	
9	~	024-007-00-3 236-878-9 13530-65-9		36 r	mg/ĸg	2.774	78.084	mg/kg			
10	8	pH		96	<u>, ц</u>		8.6	<u>л</u> Ц	9.6		
10		PH		0.0 L	Л		0.0	рп	0.0 PH		
11		naphthalene		<0.04 m	na/ka		<0.04	ma/ka	<0.00004.%		
		601-052-00-2 202-049-5 91-20-3		<0.04 1	пу/ку		<0.04	mg/kg	<0.000004 /8		LOD
12		acenaphthylene		<0.03	na/ka		<0.03	ma/ka	<0.00003 %		
12		205-917-1 208-96-8		<0.05 T	пу/ку		<0.05	iiig/kg	<0.000003 /8		
13	8	acenaphthene		<0.05 m	na/ka		<0.05	ma/ka	<0.000005 %		
10		201-469-6 83-32-9			iig/itg		<0.00	ing/kg	<0.000000 /0		
14	۲	fluorene		<0.04 n	na/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		201-695-5 86-73-7			5.5			5.5			_
15	۲	phenanthrene		0.05 n	ng/kg		0.0391	mg/ka	0.00000391 %	$\checkmark$	
		201-581-5 85-01-8			0.0			5 0		Ľ	
16	۲	anthracene		<0.04 n	ng/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		204-371-1 120-12-7			5 5			ing/ing	<0.00004 /8		
17	۲	fluoranthene		0.09 n	ng/kg		0.0704	mg/kg	0.00000704 %	$\checkmark$	
		205-912-4 206-44-0									

Page 6 of 16



#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
18	8	pyrene	204-927-3	129-00-0	_	0.08	mg/kg		0.0625	mg/kg	0.00000625 %	$\checkmark$	
19		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< th=""></lod<>
20		chrysene 601-048-00-0	205-923-4	218-01-9		0.06	mg/kg		0.0469	mg/kg	0.00000469 %	$\checkmark$	
21		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	_	0.06	mg/kg		0.0469	mg/kg	0.00000469 %	$\checkmark$	
22		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9	_	0.03	mg/kg		0.0235	mg/kg	0.00000235 %	$\checkmark$	
23		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
24	8	indeno[123-cd]pyre	ene 205-893-2	193-39-5	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
25		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3	_	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
26	8	benzo[ghi]perylene	205-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< th=""></lod<>
										Total:	0.0466 %	Γ	

#### Key

Rey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification



#### Classification of sample: WS104-13/02/2023-1.20-1.45m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste

#### Sample details

•		
Sample name:	LoW Code:	
WS104-13/02/2023-1.20-1.45m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
23.1%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 23.1% Dry Weight Moisture Correction applied (MC)

#		Determinand		Note	User entered data	Conv.	Compound conc.	Classification value		Conc. Not	
		EU CLP index number	EC Number	CAS Number	CLP		T actor		Value	MC /	Useu
1		pH				8.58 pH		8.58 pH	8.58 pH		
				PH							
2	4	sulfur { <mark>sulfur</mark> }				500 mg/kg		406.174 ma/ka	0.0406 %	1	
		016-094-00-1	231-722-6	7704-34-9		3.3		5.3		*	
								Tota	: 0.0406 %		

Key	
	User supplied data
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration



#### Classification of sample: WS105-13/02/2023-1.30m



Sample details

Sample name: WS105-13/02/2023-1.30m	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:	·	from contaminated sites)
7% (dry weight correction)	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05 03)

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 7% Dry Weight Moisture Correction applied (MC)

#		Determinand           EU CLP index         EC Number         CAS Number	LP Note	User entered data		Conv. Factor	Conv. Factor Compound conc.		Classification value	1C Applied	Conc. Not Used
		number	0								
1	4	arsenic { arsenic trioxide }		10.7 mg	/kg	1.32	13.203	mg/kg	0.00132 %	$\checkmark$	
		033-003-00-0 215-481-4 1327-53-3	<u> </u>	· · · ·							
2	4	cadmium { cadmium oxide }		<0.1 mg	/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
3	4	048-002-00-0     [215-146-2     [1306-19-0]       chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		86.9 mg	/kg	2.27	184.358	mg/kg	0.0184 %	√	
		024-017-00-8									
	æ	copper { dicopper oxide; copper (I) oxide }		6	//	4 4 0 0	0.040		0.000004.0/		
4		029-002-00-X 215-270-7 1317-39-1		ь mg	/ĸg	1.126	6.313	mg/ĸg	0.000631 %	$\checkmark$	
5	4	lead { lead chromate }	1	13 mg.	/kg	1.56	18.951	mg/kg	0.00121 %	$\checkmark$	
6	4	mercury { mercury dichloride }		<0.1 mg	/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X 231-299-8 7487-94-7	_								
7	4	nickel { nickel chromate }		5.2 mg	/kg	2.976	14.464	mg/kg	0.00145 %	$\checkmark$	
		028-035-00-7 238-766-5 [14721-18-7	-								
8	~	Selenium { mickel selenate }		<1 mg.	/kg	2.554	<2.554	mg/kg	<0.000255 %		<lod< td=""></lod<>
		zinc { zinc chromate }							0.00337 %	⊢	
9	~	024-007-00-3 236-878-9 13530-65-9		13 mg	mg/kg	2.774	33.705	mg/kg		$\checkmark$	
		pH									
10		PH		8.1 pH			8.1	рН	8.1 pH		
11		naphthalene		<0.04 mg	/ka		<0.04	ma/ka	<0.00004.%		
'		601-052-00-2 202-049-5 91-20-3		<0.04 Mg	/ĸy		<0.04	mg/kg	<0.000004 /8		<lod< td=""></lod<>
12		acenaphthylene		<0.03 mg	/ka		<0.03	ma/ka	<0.000003 %		
<u>'</u>		205-917-1 208-96-8		<0.00 mg	, ng			inging			
13	۲	acenaphthene		<0.05 ma	/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		201-469-6 83-32-9									
14	۰	fluorene		<0.04 mg	/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		201-695-5 86-73-7									
15	۲	phenanthrene		<0.03 mg	/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		201-581-5 85-01-8	-								
16	•	204-371-1 120-12-7		<0.04 mg	/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
17	0	fluoranthene		<0.03 mg	/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		200-312- <del>1</del> 200-44-0									

www.hazwasteonline.com



#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
		number			O					Σ	
18	8	pyrene				<0.03 ma/ka		<0.03 ma/ka	<0.000003 %		<lod< th=""></lod<>
			204-927-3	129-00-0							
19		benzo[a]anthracen	e			<0.06 ma/ka		<0.06 ma/ka	<0.00006 %		
		601-033-00-9	200-280-6	56-55-3		to.oo mg/kg		Ko.oo mg/ng			.200
20		chrysene			<0.02 ma/ka		<0.02 ma/ka	~0 000002 %		<i od<="" th=""></i>	
20		601-048-00-0	205-923-4	218-01-9		<0.02 mg/kg		<0.02 mg/kg	<0.000002 /0		LOD
21		benzo[b]fluoranthe	ne			<0.05 ma/ka		<0.05 ma/ka	<0.000005 %		<1.0D
		601-034-00-4	205-911-9	205-99-2		to:oo mg/kg		Ko.oo mg/ng			.200
22		benzo[k]fluoranthene				<0.02 ma/ka		<0.02 ma/ka	<0.000002 %		<1.0D
		601-036-00-5	205-916-6	207-08-9		CO.OZ mig/kg		<0.02 mg/ng	<0.00002 /0		
23		benzo[a]pyrene; benzo[def]chrysene				<0.04 ma/ka		<0.04 ma/ka	<0.000004 %		
20		601-032-00-3	200-028-5	50-32-8	1			<0.04 mg/ng	<0.000004 /0		LOD
24	8	indeno[123-cd]pyrene				<0.04 ma/ka		<0.04 ma/ka	<0.00004 %		<i od<="" td=""></i>
2.			205-893-2	193-39-5		volo i mg/kg		solo i mg/ng			.200
25		dibenz[a,h]anthracene				<0.04 ma/ka		<0.04 ma/ka	<0.000004 %		<1 OD
20		601-041-00-2	200-181-8	53-70-3		solo i mg/kg		solo i mg/ng			.200
26	8	benzo[ghi]perylene	9			<0.04 ma/ka		<0.04 ma/ka	~0 000004 %		
20			205-883-8	191-24-2		<0.0∓ IIIg/kg		<0.04 IIIg/kg	<0.000004 /0		~200
								Total:	0.0268 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
LOD	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification



#### Classification of sample: WS105-13/02/2023-1.20-1.45m



#### Sample details

Sample name:	LoW Code:	
WS105-13/02/2023-1.20-1.45m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
10.6%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

#### Hazard properties

None identified

#### **Determinands**

Moisture content: 10.6% Dry Weight Moisture Correction applied (MC)

#		ELL CL D index	Determinand	CAS Number	P Note	User entered data		Conv. Factor	Conv. Compound conc.		Classification value		Conc. Not Used
		number	EC Number	CAS Number	Ы							ž	
1		рН				8.44	pН		8.44	pН	8.44 pH		
				PH							•		
2	4	sulfur { <mark>sulfur</mark> }	bo4 700 0	7704 04 0	_	<100	mg/kg		<100	mg/kg	<0.01 %		<lod< th=""></lod<>
		016-094-00-1	231-722-6	7704-34-9									
										Total:	0.01 %		

1/au
nev

Lear supplied data
Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Determinand defined or amended by HazWasteOnline (see Appendix A)
Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
Below limit of detection
Not detected



#### Classification of sample: WS105-13/02/2023-5.00-5.45m

### Non Hazardous Waste Classified as 17 05 04 in the List of Waste . . . . . . . . . . . . . . . . . .

#### Sample details

•		
Sample name:	LoW Code:	
WS105-13/02/2023-5.00-5.45m	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:		from contaminated sites)
18.5%	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

#### Hazard properties

None identified

#### **Determinands**

#### Moisture content: 18.5% Dry Weight Moisture Correction applied (MC)

#		Determinand		Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not	
		EU CLP index number	EC Number	CAS Number	CLP		Factor		value	MC /	Useu
1		pН				5.56 pH		5.56 pH	5.56 pH		
				PH							
2	4	sulfur { <mark>sulfur</mark> }				400 ma/ka		337.553 ma/ka	0.0338 %	1	
		016-094-00-1	231-722-6	7704-34-9		5.0		J		ľ	
								Tota	: 0.0338 %		

Key	
	User supplied data
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration



#### Classification of sample: HDP1-13/02/2023-0.60m



Sample details

Sample name:	_oW Code:	
HDP1-13/02/2023-0.60m C	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Moisture content:	t	from contaminated sites)
14.3% E	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
(dry weight correction)		03)

#### Hazard properties

None identified

#### **Determinands**

Moisture content: 14.3% Dry Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number	CLP Note	User entered data	Con Facto	/. Or Compound of	conc.	Classification value	MC Applied	Conc. Not Used
		number	Ĕ						2	
1	4	arsenic { arsenic trioxide }		14.8 mg/kg	1.32	17.096	mg/kg	0.00171 %	$\checkmark$	
	-	033-003-00-0 215-481-4 1327-53-3	<u> </u>				-			
2	4	cadmium { cadmium oxide }		<0.1 mg/kg	1.14	2 <0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0 215-146-2 1306-19-0				-				
3	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		71.2 mg/kg	2.27	141.403	mg/kg	0.0141 %	√	
		024-017-00-8	1							
4	4	copper { <mark>dicopper oxide;            copper (I) oxide</mark> }		32 ma/ka	1 12	6 31 521	ma/ka	0 00315 %	./	
		029-002-00-X 215-270-7 1317-39-1	1						~	
5	a de la comercia de l	lead { lead chromate }	1	186 ma/ka	1.50	663 228	mg/kg	0.0425 %	,	
		082-004-00-2 231-846-0 7758-97-6	1		1.50	000.220			Ŷ	
6	a de la comercia de l	mercury {		0.8 ma/ka	1 35	3 0.947	ma/ka	0 0000947 %	1	
	1	080-010-00-X 231-299-8 7487-94-7	1	0.0 119/82	1.55	0.347	iiig/kg	0.0000347 78	~	
7	Å.	nickel {		13.1 ma/ka	2 07	6 3/ 111	ma/ka	0.003/11 %	1	
'	-	028-035-00-7 238-766-5 14721-18-7	1	13.1 Hig/Kg	2.51	54.111	iiig/kg	0.00041 /8	~	
8	4	selenium { <mark>nickel selenate</mark> }		<1 ma/ka	2 55	4 ~2 554	ma/ka	<0.000255 %		
	-	028-031-00-5 239-125-2 15060-62-5	1	<1 IIIg/Kg	2.00	4 <2.004	iiig/kg	<0.000200 /8		LOD
۵	Å.	zinc { zinc chromate }		93 ma/ka	2 77	1 225 718	ma/ka	0.0226.%	,	
3		024-007-00-3 236-878-9 13530-65-9	1	35 mg/kg	2.11	225.710	iiig/kg	0.0220 /8	~	
10	0	рН		7.43 nH		7 43	nH	7 43 nH		
10		PH	1	7. <del>1</del> 0 pm		7.40	pri	7.40 pm		
11		naphthalene		<0.04 ma/ka		-0.04	ma/ka	~0 000004 %		
		601-052-00-2 202-049-5 91-20-3	1	<0.04 mg/ng		<0.04	iiig/itg	<0.000004 /0		LOD
12	8	acenaphthylene		0.05 ma/ka		0.0437	ma/ka	0 00000437 %	/	
12		205-917-1 208-96-8		0.00 119/82		0.0437	mg/kg	0.00000437 %	V	
13	0	acenaphthene		<0.05 mg/kg		<0.05	ma/ka	<0.000005 %		
13		201-469-6 83-32-9	1	<0.00 mg/kg		<0.05	iiig/kg	<0.000003 /8		LOD
14	0	fluorene		<0.04 mg/kg		<0.04	ma/ka	<0.000004.%		
14		201-695-5 86-73-7	1	<0.04 mg/kg		<0.04	iiig/kg	<0.000004 /0		LOD
15	0	phenanthrene		0.24 ma/ka		0.21	ma/ka	0 000021 %	1	
13		201-581-5 85-01-8	1	0.2 <del>4</del> mg/kg		0.21	iiig/kg	0.000021 /8	~	
16		anthracene		0.08 malks		0.07	malka	0 00007 %	,	
		204-371-1 120-12-7		0.00 mg/kg		0.07	ing/kg	0.000007 /8	~	
17		fluoranthene		0.66 malka		0.577	ma/ka	0 0000577 %	,	
		205-912-4 206-44-0		0.00 mg/kg		0.577	my/kg	0.0000377 %	V	

www.hazwasteonline.com


# HazWasteOnline[™] Report created by Adrian Read on 14 Mar 2023

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
		pyrene			+							
18	Ŭ		204-927-3	129-00-0		0.58 mg/kg		0.507	mg/kg	0.0000507 %	$\checkmark$	
10		benzo[a]anthracen	e			0.50		0.507		0.0000507.0/	,	
19		601-033-00-9	200-280-6	56-55-3	-	0.58 mg/kg		0.507	mg/kg	0.0000507 %	$\checkmark$	
20		chrysene				0.51 mg/kg		0.446	ma/ka	0 0000446 %	,	
20		601-048-00-0	205-923-4	218-01-9		0.51 Ilig/kg		0.440	шу/ку	0.0000440 %	~	
21		benzo[b]fluoranthe	ne			0.64 ma/ka		0.56	ma/ka	0 000056 %	./	
21		601-034-00-4	205-911-9	205-99-2		0.04 mg/kg		0.00	iiig/kg	0.000000 /0	~	
22		benzo[k]fluoranthe	ne			0.25 ma/ka		0.219	ma/ka	0 0000219 %	./	
		601-036-00-5	205-916-6	207-08-9		0.20 mg/kg		0.210	iiig/itg	0.0000210 /0	Ň	
23		benzo[a]pyrene; be	enzo[def]chrysene			0.49 ma/ka		0.429	ma/ka	0 0000429 %	/	
20		601-032-00-3	200-028-5	50-32-8		0.43 mg/kg		0.423	iiig/kg	0.0000423 /0	~	
24	8	indeno[123-cd]pyre	ene			0.3 ma/ka		0.262	ma/ka	0 0000262 %	./	
24			205-893-2	193-39-5		0.0 mg/kg		0.202	iiig/kg	0.0000202 /0	~	
25		dibenz[a,h]anthrac	ene			0.06 ma/ka		0.0525	ma/ka	0 00000525 %		
20		601-041-00-2	200-181-8	53-70-3		0.00 mg/kg		0.0020	iiig/kg	0.00000020 /0	~	
26	8	benzo[ghi]perylene	9			0.25 ma/ka		0.219	ma/ka	0 0000219 %		
			205-883-8	191-24-2		0.20 1119/Kg		0.213	iiig/kg	0.0000219 /0	~	
									Total:	0.0883 %		

Key

	Liser supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification



## Appendix A: Classifier defined and non GB MCL determinands

#### **pH** (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

## acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

#### acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

## ^a fluorene (EC Number: 201-695-5, CAS Number: 86-73-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

#### • phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

#### • anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aguatic Acute 1; H400 , Aguatic Chronic 1; H410

## • fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

#### • pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

#### • indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

#### • benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

www.hazwasteonline.com



Report created by Adrian Read on 14 Mar 2023

## Appendix B: Rationale for selection of metal species

## sulfur {sulfur}

Worse case compound.

## arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

## cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

## chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

## copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

#### lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

## selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

## **Appendix C: Version**

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2023.72.5542.10253 (13 Mar 2023) HazWasteOnline Database: 2023.72.5542.10253 (13 Mar 2023)

This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021

**APPENDIX I – CHEMICAL AND GEOTECHNICAL SAMPLING** 

Samples were selected by a representative of Tier Environmental during the site investigation works in accordance with the sampling approach described elsewhere in this report.

## Samples for geotechnical and related testing

Bulk samples were placed within robust heavy duty plastic bags and sealed, together with small disturbed samples, within airtight 1 litre plastic containers.

100 mm diameter 'undisturbed' samples ("U100 samples") were obtained where possible from cable percussive and large diameter window sample boreholes within cohesive materials.

## Samples for chemical analysis

All samples for chemical analysis were placed into clean new containers as summarised in Table 1. Unless explicitly stated elsewhere in this report, no preservatives were used to eliminate the risk that preservatives cause contaminant dissolution or analytical interference. Containers for VOC analysis were fully filled to exclude headspace.

Soil samples were dispensed as soon as possible after collection using reusable stainless steel spatulas, trowels or similar implements.

Ground water samples were collected from boreholes using single-use Teflon bailers or dedicated Waterra tubing with foot valves, except as otherwise noted within this report. Caution was taken to avoid excessive agitation during collection

New disposable gloves were used by the engineer for the collection of each sample.

Reusable equipment was washed down with distilled or deionised water between samples, except where tarry or similarly sticky materials were present. In such cases specific cleaning procedures were adopted as specifically described elsewhere in this report.

All sub-samples taken for chemical analysis were placed into refrigerators or cool boxes containing frozen ice packs immediately after aliquoting. All samples were transferred in cool boxes containing frozen ice packs to the relevant UKAS/MCERTS accredited laboratory as soon as possible. Recommended maximum holding times before analysis are summarised in Table 1.

Analysis	Container/special requirements	Max. holding time at 4°C before analysis
Soil and sediment sam	ples	
VOCs	30-60 g brown or green glass jar with VOC-resistant cap and inert cap liner.	14 days
	Must be fully filled.	
TPHCWG	30-60 g brown or green glass jar with VOC-resistant cap and inert cap liner PLUS 250-500 g brown or green glass jar with unwaxed cap liner. ¹	14 days
	The former must be fully filled.	
All other organics	250-500 g brown or green glass jar with unwaxed cap liner.	7 days
Inorganics	Air-tight 0.5-2.0 kg plastic container (250-500 g brown or green glass jar may also be used).	14 days ²
Water samples	·	
VOCs	40-50 ml glass vial with VOC resistant screw cap and inert liner.	14 days
	Must be fully filled.	
TPHCWG	40-50 ml glass vial with VOC resistant screw cap and inert liner <b>PLUS</b> 500- 1000 ml brown or green glass bottle with screw cap and unwaxed liner. ¹	14 days
	The former must be fully filled, the latter should be filled if possible.	
All other organics	500-1000 ml brown or green glass bottle with screw cap.	7 days
	Fill if possible.	
Inorganics	500-1000 ml translucent or opaque screw cap plastic or brown or green glass	14 days ³
	Fill if possible.	

#### Table 1. Sample containers and holding times.

1 The smaller vessel is used for analysis of the volatile components within the TPH mixture and the larger one is for the non-volatile components.

2 14 days is set as a reasonable limit for all routine analyses of soil for those inorganic components vulnerable to chemical and/or biological breakdown. Samples for sulphate analysis are vulnerable to biological sulphate-reduction but can be held for up to 28 days. For total metals, a holding period of up to 6 months is acceptable.

3 14 days applies for all routine analyses of most inorganic components that may be vulnerable to chemical and/or biological reactions. In the specific cases of sulphide, nitrite, nitrate and phosphate analyses, storage time must not exceed 48 hours. For total metals, a holding time of up to 6 months is acceptable.

## Tier Environmental standard analytical suites

The analyses included with Tier Environmental's standard analytical suites for soil, soil leachate and water samples are presented in Table 2. Other individual analyses were specified as described within this report.

## Table 2. Tier Environmental Standard Analytical Suites.

Parameter	Sampl	e type				
	Soil		Leacha	ite ¹	Water	
		LoD ²		LoD		LoD
		(mg/kg or as stated)		(µg/l or as stated)		(μg/l or as stated)
Metals and metalloids	•	·		·	•	
Arsenic	✓	1	✓	10	✓	10
Cadmium	✓	1	✓	5	✓	5
Chromium	✓	1	✓	5	~	5
Mercury	✓	1	✓	1	✓	1
Lead	✓	1	✓	4	✓	4
Selenium	✓	2	✓	10	✓	10
Copper	✓	1	✓	1	✓	1
Nickel	✓	1	~	50	✓	50
Zinc	✓	1	✓	8	✓	8
Other inorganics				·		
Ammonia (as NH ₄ -N)					✓	15
Total sulphate	✓	100			~	50 mg/l
Water-soluble sulphate	✓	0.1 g/l				
Hardness (as CaCO₃)					✓	1 mg/l
Organics	•	·		•	•	
Monohydric phenol	✓	1	✓	0.5	✓	0.5
Speciated PAHs (USEPA 16)	✓	0.1	✓	0.01	✓	0.01
Total Organic Carbon	~	0.1 wt%				
Others	·		•			
Electrical conductivity					✓	NA
рН	✓	NA	~	NA	✓	NA

NA - Not applicable

1 Leachate preparation according to NRA (1994), 10:1 liquid to solid ratio.

2 The table presents the desired limit of detection for the analysis. Higher LoDs may be reported on analytical data sheets due to interference between analytes within

specific samples or if the laboratory needed to dilute samples to achieve results within the calibrated range for that instrument.

## **Analytical QA procedures**

## Introduction

Quality Assurance (QA) is a system of review and audit that assesses the effectiveness of that product and assures the producer and user that defined standards of quality have been met. If we consider site investigation and chemical analysis, QA is the management system that ensures these measures are in place and working as intended.

QA within the laboratory form part of relevant certification programmes (such as UKAS and MCERTS) and, indeed, will be undertaken in some form by any reputable analyst, whether for a certified technique or not. Laboratory QA/QC is beyond the control of Tier Environmental and will not be considered further in this document, although the relevant laboratory documentation can be obtained upon request. QA must also form part of the design and execution of a site investigation.

Two parameters often used to assess measurement quality objectives are bias and precision. Bias is a systematic deviation in the data. For example, a positive bias (concentrations higher than in reality) would be introduced if sampling bottles were a source of the analyte and this fact was unknown. Precision is the variation in the measurements around a central 'expected' value. This could be due both to real variability in the environmental medium being measured and random errors in the analytical process. Both precision and bias can be assessed by the use of appropriate blanks and replicates within the site investigation programme.

The objectives of the QA activities undertaken in this present site investigation were to recognise and quantify systematic bias within the analytical dataset and to obtain an indication of precision. In environmental samples, much of the observed variability is likely to result from heterogeneity in the sampled medium, particularly for soil and sediment samples.

Such QA practice within the sampling programme is required by current guidance (e.g., Environment Agency report P5-065/TR (2000); Environment Agency LFTGN02 (2002); BS 10175:2001).

Alternative QA procedures to the generic approach presented in this appendix may be specified for a project, provided case-specific justification is given.

## QA checking procedure (data validation)

The responsible Engineer and Project Reviewer are required to undertake data validation and provide comment on data quality within the main body of the report(s) issued, when noteworthy matters arise. This QA checking should involve:

Confirming that data reported by the laboratory have achieved the standards specified by the certification scheme (MCERTS or UKAS). This will be indicated on the analytical certificates issued by the laboratory.

Checking that the limit of detection (LoD) and limit of quantification (LoQ) achieved by the laboratory for an individual analyte is appropriate for the purposes of the report. LoD and LoQ will vary dependent upon analyte concentrations, sample matrix properties and interference from cocontaminants.

A check that the reported range of concentrations are reasonable for the analyte. For example, the dissolved concentration of an analyte in a water sample should not exceed saturation. If it does, then this merits further consideration (e.g., was colloidal organic matter or other solid-phase material present or could there have been unobserved free-phase organic liquid?) and explicit comment. At its simplest, there may be a unit error.

Where analysis involves reporting of Tentatively Identified Compounds (TICs; normally by mass spectrometry), the reviewers should check that these might reasonably be expected at the site under consideration. The uncertainties in identification by MS mean that it is not uncommon that TICs are incorrectly assigned. In cases of doubt, the analytical laboratory can re-check the raw data and confirm.

A review of the analytical precision by comparing data obtained for duplicate samples. There is no absolute threshold - variability is entirely dependent upon the sample matrix and manner in which the contaminant has entered the sample. Variability that cannot reasonably be assigned to such factors (for example a very high apparent variability in data for sediment-free water samples) should be reviewed with the laboratory. Variability that is attributable to the sample matrix can nevertheless provide important pointers to improve understanding of contaminant transport pathways and the risks posed by pollutant linkages (e.g., soil heterogeneity, the association of contamination with particular soil fractions, the presence of residual NAPL within soil pores or the role of suspended sediments in contaminant transport).

Confirmation that no errors have been introduced by data transcription, unit conversion or corrections between preliminary and certificates issued by the laboratory. The reviewer should audit a proportion (typically 5-10%) of all data from the original (final) certificates of analysis through to the equivalent values in the report for those specific samples.

In is important to consult the analytical laboratory if apparent QA issues arise. Many apparent concerns can be adequately resolved on the basis of revisiting the raw analytical data or by obtaining a better understanding of the inherent limitations of the analysis for a particular matrix or sample type.

**APPENDIX J – HUMAN HEALTH GENERIC ASSESSMENT CRITERIA** 

## HUMAN HEALTH ASSESSMENT CRITERIA

## Context

Contaminated Land is defined under law through Part IIA of the Environmental Protection Act 1990, implemented through Section 57 of the Environment Act 1995 and associated guidance ("Part IIA"). These specify that a "suitable for use" approach is to be applied in the assessment of potentially contaminated land, implemented through a phased programme of site investigation and risk assessment appropriate to the site under consideration.

The assessment of potential risks posed by contaminated land is based upon the assessment of plausible contaminant source - pathway - receptor linkages ("pollutant linkages") for the current and/or proposed future use of the site. The process for the assessment of contaminated land adopted in this report is in line with guidance issued by the Environment Agency Land contamination risk management (LCRM) - GOV.UK (www.gov.uk)

Land contamination can harm:

- human health
- drinking water supplies, groundwater and surface water
- soils
- ecosystems including wildlife, animals and wetlands
- property

It can also affect the current and future land use. Dealing with land contamination helps make the environment clean and safe. Through regeneration it can:

• enhance the health and wellbeing of all

add to the economic, ecological and amenity value of the area

Use land contamination risk management (LCRM) to:

- identify and assess if there is an unacceptable risk
- assess what remediation options are suitable to manage the risk
- plan and carry out remediation
- verify that remediation has worked

You can use LCRM in a range of regulatory and management contexts. For example, voluntary remediation, planning, assessing liabilities or under the Part 2A contaminated land regime. The Environment Agency expects you to follow LCRM if you are managing the risks from land contamination.

We support the use of the National Quality Mark Scheme (NQMS). You can use it for any type of land contamination report.

Using the NQMS:

- will make sure all legislative requirements and necessary standards related to managing land contamination are met
- can provide increased confidence by submitting reports of the quality we expect
- can result in cost and time savings by 'getting it right first time'

LCRM is made up of 4 guides.

- 1. LCRM: Before you start.
- 2. LCRM: Risk assessment.
- 3. LCRM: Options appraisal.
- 4. LCRM: Remediation and verification.

We use a staged risk based approach. There are 3 stages, and each stage is broken down into tiers or steps.

#### Stage 1: Risk assessment

You will use a tiered approach to risk assessment. The 3 tiers are:

- 1. Preliminary risk assessment.
- 2. Generic quantitative risk assessment.
- 3. Detailed quantitative risk assessment.

Stage 1 includes information for intrusive site investigations.

## Stage 2: Options appraisal

There are 3 steps to follow.

- 1. Identify feasible remediation options.
- 2. Do a detailed evaluation of options.
- 3. Select the final remediation option.

#### Stage 3: Remediation and verification

There are 4 steps to follow.

- 1. Develop a remediation strategy.
- 2. Remediate.
- 3. Produce a verification report.
- 4. Do long term monitoring and maintenance, if required

You must always start with a preliminary risk assessment.

The risk assessment stage is an iterative process. You can do the 3 tiers in order or progress from a preliminary risk assessment to a detailed quantitative risk assessment. As part of a generic or detailed quantitative risk assessment you will need to collect detailed information about the site. This is usually through an intrusive site investigation.

Depending on the level of risk or regulatory requirements, you can proceed from a preliminary risk assessment to the options appraisal stage. If you proceed direct to the options appraisal stage, you still need to collect the detailed site investigation information required by the generic and detailed quantitative risk assessments. This is to confirm that your approach is viable and acceptable.

Following the risk assessment stage, if you conclude that the risks are acceptable, with agreement from the relevant regulator, you can end the process.

If there are unacceptable risks, then remediation or mitigation is required. Follow stages 2 and 3 in order.

In stage 2 options appraisal, you will:

- look at the most feasible options
- produce a shortlist of options
- use evaluation criteria to assess them
- select which ones are the most suitable to take forward to stage 3

In stage 3 remediation and verification, you will produce a remediation strategy, do the remediation and then produce a verification report.

You will decide at the options appraisal stage if long term monitoring and maintenance is the remediation option. You may need to do postremediation monitoring for further verification.

The risk assessment and subsequent investigation, remediation and verification must address all potential sources of pollutants that may be present on the site (the "hazards"), all receptors that may be harmed by these (e.g., human health, controlled waters, ecological receptors) and the pathways by which the contamination may be transported from the contaminant source(s) to the receptor(s). This is defined within the conceptual model for the site, which represents the characteristics of the site in a form that shows the possible pollutant linkages. As further information becomes available (for example, through site investigation), so the conceptual model will be refined.

Remedial action can be specified at any phase within this assessment process to break the identified pollutant linkage in determining whether or not to undertake further assessment or to undertake remediation, the potential cost-savings arising from a more thorough assessment of the pollutant linkages and more tightly defined remedial strategy must be considered against the direct costs involved in the work and the time that this will take to execute and gain regulatory approval.

A different approach to the statistical appraisal of data is required depending on whether the assessment is being undertaken to assess land as Contaminated Land in accordance with the regulations or whether the assessment is to assess whether the site is suitable for new development in accordance with the Planning regime. The statistical approach to assessment is discussed further in CL:AIRE:2020 "Professional Guidance: Comparing Soil Contamination Data with a Critical Concentration".

Some form of Detailed Quantitative Risk Assessment (DQRA) will be essential for those cases where appropriate GAC values cannot be established for the contaminant linkages under consideration.

## Generic Assessment Criteria for Human Health Risk Assessment

In March 2002, the Department for Environment, Food and Rural Affairs (DEFRA) and the Environment Agency (EA) published the Contaminated Land Exposure Assessment (CLEA) Model and a series of related reports and guidance. These were designed to provide a scientifically based framework for the assessment of chronic risks to human health from contaminated land. The initial documents (CLR7 – 10) were withdrawn and replaced with revised guidance issued by the Environment Agency including:

- "Using Soil Guideline Values"; EA,2009; Land contamination: using soil guideline values (SGVs) GOV.UK (www.gov.uk)
- "Human Health toxicology assessment of contaminants in soil" EA;, 2009; <u>https://www.gov.uk/government/publications/human-health-toxicological-assessment-of-contaminants-in-soil</u>
- "Update technical background to the CLEA model" 2009; <u>https://www.gov.uk/government/publications/updated-technical-background-to-the-clea-model</u>
- CLEA Software (Version1.05) Handbook 2015; <u>https://www.gov.uk/government/publications/contaminated-land-exposure-assessment-clea-tool</u>
- Compilation of Data for priority Organic Contaminants for Derivation of Soil Guideline Values; Science Report SC050021/SR7, 2008; and,
- "Professional Guidance: Comparing Soil Contamination Data with a Critical Concentration". CL:AIRE:2020 <u>https://www.claire.co.uk/component/phocadownload/category/9-other-cl-aire-documents?download=745:2020-stats-</u> guidance

The CLEA model and associated guidance was developed to calculate an estimated tolerable daily intake (TDI) of contaminants for site users given a set of 'typical' human health exposure pathways which are detailed in "SR3: Updated technical background to the CLEA model"



#### (Science Report SC050021/SR3, EA, 2009) and reproduced below.

## Ingestion

- Outdoor soil;
- Indoor dust;
- Home grown produce;
- Soil attached to home grown produce.

#### **Dermal Contact**

- Outdoor soil;
- Indoor dust.

## Inhalation

- Outdoor dust;
- Indoor dust;
- Outdoor vapour;
- Indoor vapour.

It should be noted that the CLEA model does not include an exhaustive list of potential exposure pathways, e.g. certain compounds can pass through plastic water pipes into drinking water supply.

The potential significance of each of the exposure pathways is dependent upon the type of land use and the nature of the contaminant being considered. The CLEA model considers principal 'default' land use scenarios and makes a series of assumptions with regards to building type (where applicable), identification of the critical human receptor group, exposure frequency and duration. The definitions of the principal land use types given in SR3 (EA, 2009) are:

## Residential land use;

- A typical residential property consisting of a two-storey terraced house built on a ground-bearing slab of 0.15m thickness with a
  private garden consisting of lawn, flowerbeds, and a small fruit and vegetable patch. The occupants are assumed to be parents
  with young children, who make regular use of the garden. The critical receptor is a 0 6-year-old female.
- Active exposure pathways are ingestion of outdoor soil, ingestion of indoor dust, ingestion of home grown produce and soil adhering to home grown produce; direct dermal contact with outdoor soil and indoor dust; inhalation of outdoor dust and vapour and indoor dust and vapour

## Allotments

- A plot of open space commonly made available by the Local Authority to tenants to grow fruit and vegetables for their own consumption. There are usually several plots to a site and the overall site area may cover more than one hectare. The tenants are assumed to be the parents or grandparents and that young children make occasional accompanied visits to the plots. The critical receptor is a 0 6-year-old female and there is no building present on Site.
- Active exposure pathways are ingestion of outdoor soil, ingestion of home grown produce and soil adhering to home grown
  produce; direct dermal contact with outdoor soil; inhalation of outdoor vapour.

## Commercial and industrial land use.

- A typical commercial or light industrial property consisting of a three-story office building (pre-1970) with a ground bearing floor slab at which employees spend most time indoors and are involved in office based or related light physical work. The critical receptor is a working female adult aged 16 – 65 years.
- Active exposure pathway is ingestion of outdoor soil, ingestion of indoor dust; direct dermal contact with outdoor soil and indoor dust; inhalation of outdoor dust and vapour and inhalation of indoor dust and vapour.

## **Soil Guideline Values**

Based on the assumption of each land use type, the EA and DEFRA developed and published Soil Guideline Value (SGV) using the CLEA model for a number of principal contaminants and 'default' end-use scenarios of residential, allotments and commercial/industrial use. The primary purpose of the SGVs is as trigger value for the tolerable daily intake (TDI), below which it can be assumed that the soil does not pose an unacceptable risk to the identified receptor. Where soils contamination is present above this level further assessment may be required. SGVs were developed for the following contaminants:

- Heavy metals and other inorganic compounds: arsenic, cadmium, chromium, cyanide, lead (now withdrawn), mercury, nickel and selenium.
- Benzene, ethylbenzene, toluene and xylenes.
- Phenol.
- Dioxins and dioxin-like polychlorinated biphenyls (PCBs)
- Polycyclic aromatic hydrocarbons (PAHs) 11 substances

## LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment

In addition, in 2009 CIEH through LQM and EIC published generic assessment criteria (GACs) for 82 substances including metals, petroleum hydrocarbons, PAHs and explosive substances for a variety of soil types and the three 'default' land uses – (residential, allotments and commercial end-uses) as described in SR3 (EA, 2009). These have been superseded as described below.

## **Category 4 Screening Values**

In 2013 "SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination" (CL:AIRE 2013) was issued which detailed findings of a research project undertaken by CL:AIRE to set out the framework by which potential Category 4 Screening Levels (pC4SL) may be derived for 6 contaminants of concern, Arsenic, Benzene, Benzo(a)pyrene, Cadmium, Chromium VI and Lead.

This was supplemented in 2014 by "SP1010: Development of Category 4 Screening Levels for the Assessment of Land Affected by Contamination – Policy Companion Document" (DEFRA, 2014). SP1010 proposed several updated toxicology information relating to contaminant behaviour updated assumptions relating to the modelling of human exposure to soil contaminants, derivation of separate C4SLs for residential with the consumption of home grown produce, residential without the consumption of home grown produce, and two new land uses: public open spaces near residential housing (POS resi) and public parks (POS park).

## Public Open Space: Residential

• For public open space in close proximity to residential housing and the central green area around which houses are located, as on many housing estates from the 1930s to 1970s. It is also applicable for smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soil with planting. It is considered to be a generally grassed area up to 0.5ha with up to 50% bare soil. The land use is an important resource

for children and the area is near the homes. The critical receptor is a female child age >3 - <9 years old (CLEA age class 4 - 9) as younger children are unlikely to play outdoors unsupervised.

• Active exposure pathways are ingestion of outdoor soil, ingestion of indoor dust; direct dermal contact with outdoor soil and indoor soil derived dust; inhalation of outdoor and indoor dust and inhalation of outdoor vapour.

## Public Open Space: Park

- A public park is defined as an area of open space provided for recreational use and usually owned and maintained by the Local Authority. It is anticipated the park could be used for a wide range of activities, including the following:
  - Family visits and picnics;
  - Children's play area;
  - o Sporting activities such as football on an informal basis (i.e. not a dedicated sports pitch); and
  - Dog walking.
- The park is modelled as an area >0.5 ha of predominantly grasses open space with no more than 25% of exposed soil.
- The critical receptor is a female child with CLEA age classes 1 6.
- Active exposure pathway are: ingestion of outdoor soil; direct dermal contact with outdoor soil; inhalation of outdoor dust and inhalation of outdoor vapour.

Furthermore, the C4SLs are based on a different toxicological benchmark, the 'low level of toxicological concern' (LLTC). This difference in approach was adopted because the C4SLs were primarily intended for use under Part2A of the EPA 1990 to quickly screen out Category 4 sites where there is "*no risk or that the level of risk posed is low*". SGVs and LQM GACs are based on the more conservative 'minimal or tolerable level of risk' as defined in SR2 (EA, 2009) and were derived for assessment of contamination for the Planning process.

## LQM/CIEH Suitable 4 Use Levels (S4ULs)

The publication of the C4SLs resulted in considerable and inconclusive debate about the applicability of the lower level of protection of the C4SL, which are underlain by the LLTC, outside of the Part 2A context for which they were derived. In 2014 LQM/CIEH presented a Suitable 4 Use Levels (S4ULs), which incorporate the updated assumption exposure derived for the production of the C4SLs but within the context of deriving screening criteria above which further assessment of the risks or remedial action may be needed. The S4ULs replace the 82 substances, species and fractions and congeners contained in the previous LQM/CIEH GACs issued in 2009. Additionally, following changes and new land uses proposed in the C4SL research project, S4ULs have also been derived for the majority of substances for which the EA derived SGVs in 2009 with the exception of lead (see below).

## Lead

The C4SL for lead provides a technically robust and conservative assessment tool using significantly updated toxicological modelling than the withdrawn SGV and derived in line with current science of lead toxicology.

## EIC/AGS/CL:AIRE Soil Generic Assessment Criteria (2010)

In some instances, EIC/AGC/CL:AIRE GACs for certain VOC / SVOC potential contaminants of concern have been used *in lieu* of available LQM / CIEH S4UL values.

Parameter	Residen homegr	tial with own produc	ce	Resident homegro	tial without own produce		Allotme	ent		Commei	cial / Indust	rial	Public C Resider	)pen Space Itial	near	Public C	Open Space	- Park	Source
	(mg/kg, stated)	unless othe	erwise	(mg/kg, stated)	unless otherv	wise	(mg/kg stated)	, unless oth	erwise	(mg/kg, stated)	unless othe	rwise	(mg/kg, stated)	unless oth	erwise	(mg/kg, stated)	unless oth	erwise	_
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
Metals/metalloids				1				1	1	1			1			ł	•		1
Arsenic		37			40			43			640			79			170		LQM (2014)
Beryllium		1.7			1.7			35			12			2.2			63		LQM (2014)
Boron	290 11 910				11000			45			240000			21000			46000		LQM (2014)
Cadmium	910				85			1.9			190			120			532		LQM (2014)
Chromium III	910 6				910			18000			8600			1500			33000		LQM (2014)
Chromium VI	910				6			1.8			33			7.7			220		LQM (2014)
Copper		2400			7100			520			68000			12000			44000		LQM (2014)
Lead		200			310			80			2330			630			1300		C4SL
Mercury (elemental)		1.2			1.2			21			58 (25.8)			16			30 (25.8)		LQM (2014)
Mercury (Inorganic)		40			56			19			1100			120			240		LQM (2014)
Methylmercury		11			15			6			320			40			68		LQM (2014)
Nickel		180			180			230			980			230			3400		LQM (2014)
Selenium	250				430			88			12000			1100			1800		LQM (2014)
Vanadium		410			1200			91			9000			2000			5000		LQM (2014)
Zinc		3700			40000			620			730000			81000			170000		LQM (2014)

Parameter	Resident homegro	ial with own produc	e	Resident homegro	ial without own produce		Allotme	nt		Commer	cial / Indust	rial	Public Op Residenti	en Space no al	ear	Public Op	en Space -	Park	Source
	(mg/kg, stated)	unless othe	erwise	(mg/kg, stated)	unless otherw	ise	(mg/kg, stated)	unless oth	erwise	(mg/kg, stated)	unless other	wise	(mg/kg, u stated)	nless other	wise	(mg/kg, u stated)	inless othe	rwise	
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
Other																			
Total Sulphate		2,400			2,400			2,400			2,400			2,400			2,400		BRE (2005)
Water Soluble Sulphate (g/l)		0.5			0.5			0.5			0.5			0.5			0.5		BRE (2005)
									PAHs										
Acenaphthene	210	510	1100	1100         3000 (57)         4700(141)         6000 (336)           920         2900 (86.1)         4600 (212)         6000 (506)				85	200	84000 (57)	97000 (141)	100000	15000	15000	15000	29000	30000	30000	LQM (2014)
Acenaphthylene	170	420	920	2900 (86.1)	4600 (212)	6000 (506)	28	69	160	8300 (86.1)	97000 (212)	100000	15000	15000	15000	29000	30000	30000	LQM (2014)
Anthracene	2400	5400	11000	31000 (1.17)	35000	37000	380	950	2200	520000	540000	540000	74000	74000	74000	150000	150000	150000	LQM (2014)
Benzo(a)anthrace ne	7.2	11	13	11	14	15	2.9	6.5	13	170	170	180	29	29	29	49	56	62	LQM (2014)
Benzo(a)pyrene	2.2	2.7	3	3.2	3.2	3.2	0.97	2	3.5	35	35	36	5.7	5.7	5.7	11	12	13	LQM (2014)
Benzo(b)fluoranth ene	2.6	3.3	3.7	3.9	4	4	0.99	2.1	3.9	44	44	45	7.1	7.1	7.1	13	15	16	LQM (2014)
Benzo(g,h,i)peryle ne	320	340	350	360	360	360	290	470	640	3900	4000	4000	640	640	640	1400	1500	1600	LQM (2014)
Benzo(k)fluoranth ene	77	93	100	110	110	110	37	75	130	1200	1200	1200	190	190	190	370	410	440	LQM (2014)
Chrysene	15	22	27	30	31	32	4.1	9.4	19	350	350	350	57	57	57	93	110	120	LQM (2014)
Dibenz(a,h)anthra cene	0.24	0.28	0.3	0.31	0.32	0.32	0.14	0.27	0.61	3.5	3.6	3.6	0.57	0.57	0.58	1.1	1.3	1.4	LQM (2014)
Fluoranthene	280	560	890	1500	1600	1600	52	130	290	23000	23000	23000	3100	3100	3100	63	6300	6400	LQM (2014)

Parameter	Resident homegro	tial with own produc	ce	Resident homegro	ial without own produce		Allotme	nt		Commer	cial / Indust	rial	Public Op Residenti	en Space n al	ear	Public Op	en Space -	Park	Source
	(mg/kg, stated)	unless othe	erwise	(mg/kg, stated)	unless otherv	vise	(mg/kg, stated)	unless oth	erwise	(mg/kg, stated)	unless othei	rwise	(mg/kg, u stated)	inless other	wise	(mg/kg, u stated)	unless othe	rwise	
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
Fluorene	170	400	860	2800 (30.9)	3800 (76.5)	4500 (183)	27	67	160	63000 (30.9)	68000	71000	9900	9900	9900	20000	20000	20000	LQM (2014)
Indeno(1,2,3- cd)pyrene	27	36	41	45	46	46	9.5	21	39	500	510	510	82	82	82	150	170	180	LQM (2014)
Naphthalene	2.3	5.6	13	2.3	5.6	13	4.1	10	24	190 (76.4)	460 (183)	1100 (432)	4900	4900	4900	1200 (76.4)	1900 (183)	3000	LQM (2014)
Phenanthrene	95	220	440	1300 (36)	1500	1500	15	38	90	22000	22000	23000	3100	3100	3100	6200	6200	6300	LQM (2014)
Pyrene	620	1200	2000	3700	3800	3800	110	270	620	54000	54000	54000	7400	7400	7400	15000	15000	15000	LQM (2014)
Coal Tar (BaP as 0.79 0.98 : surrogate marker)			1.1	1.2	1.2	1.2	0.32	0.67	1.2	15	15	15	2.2	2.2	2.2	4.4	4.7	4.8	LQM (2014)
				•	-				BTEX and	ТРН		•			-				
Benzene	0.087	0.17	0.37	0.38	0.7	1.4	0.017	0.034	0.075	27	47	90	72	72	73	90	100	110	LQM (2014)
Toluene	130	290	660	880 vap (869)	1900	3900	22	51	120	56000 vap (869)	110000 vap (1920)	180000 vap (4360)	56000	56000	56000	87000 vap (869)	95000 vap (1920)	100000 vap (4360)	LQM (2014)
Ethylbenzene	47	110	260	83	190	440	16	39	91	5700 vap (518)	13000 vap (1220)	27000 vap (2840)	24000	24000	25000	17000 vap (518)	22000 vap (1220)	27000 vap (2840)	LQM (2014)
Xylene - o	60	140	330	88	210	480	28	67	160	6600 (478)	15000 (1120)	33000 (2620)	41000	42000	43000	17000 (478)	24000 (1120)	33000 (2620)	LQM (2014)
Xylene - m	59	140	320	82	190	450	31	74	170	6200 (625)	14000 (1470)	31000 (3460)	41000	42000	43000	17000 (625)	24000 (1470)	32000 (3460)	LQM (2014)
Xylene - p	56	130	310	79	180	430	29	69	160	5900 (576)	14000 (1350)	30000 (3170)	41000	42000	43000	17000 (576)	23000 (1350)	31000 (3170)	LQM (2014)

Parameter	Resident homegro	ial with wn produc	e	Resident homegro	ial without own produce		Allotme	nt		Commer	cial / Industi	rial	Public Op Residenti	en Space ne al	ear	Public Op	en Space -	Park	Source
	(mg/kg, u stated)	unless othe	erwise	(mg/kg, stated)	unless otherw	ise	(mg/kg, stated)	unless othe	erwise	(mg/kg, stated)	unless other	wise	(mg/kg, u stated)	nless other	wise	(mg/kg, u stated)	unless othe	rwise	
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
Aliphatic EC 5-6	42	78	160	42	78	160	730	1700	3900	3200 (304)	5900 (558)	12000 (1150)	570000 (304)	590000	60000 0	95000 (304)	130000 (558)	180000 (1150)	LQM (2014)
Aliphatic EC >6-8	100	230	530	100	230	530	2300	5600	13000	7800 (144)	17000 (322)	40000 (736)	600000	610000	62000 0	150000 (144)	220000 (322)	320000 (736)	LQM (2014)
Aliphatic EC >8-10	27	65	150	27	65	150	320	770	1700	2000 (78)	4800 (190)	11000 (451)	13000	13000	13000	14000 (78)	18000 (190)	21000 (451)	LQM (2014)
Aliphatic EC >10- 12	130 (48)	330 (118)	760 (283)	130 (48)	330 (118)	760 (283)	2200	4400	7300	9700 (48)	23000 (118)	47000 (283)	13000	13000	13000	21000 (48)	23000 (118)	24000( 283)	LQM (2014)
Aliphatic EC >12- 16	1100 (24)	2400 (59)	4300 (142)	1100 (24)	2400 (59)	4300 (142)	11000	13000	13000	59000 (24)	82000 (59)	90000 (142)	13000	13000	13000	25000 (24)	25000 (59)	26000 (142)	LQM (2014)
Aliphatic EC >16- 35	65000 (8.48)	92000 (21)	11000 0	65000 (8.48)	92000 (21)	110000	26000 0	270000	27000 0	160000 0	1700000	180000 0	250000	250000	25000 0	450000	480000	490000	LQM (2014)
Aliphatic EC >35- 44	65000 (8.48)	92000 (21)	11000 0	65000 (8.48)	92000 (21)	110000	26000 0	270000	27000 0	160000 0	1700000	180000 0	250000	250000	25000 0	450000	480000	490000	LQM (2014)
Aromatic EC 5-7	70	140	300	370	690	1400	13	27	57	26000 (1220)	46000 (2260)	86000 (4710)	56000	56000	56000	76000 (1220)	84000 (2260)	92000 (4710)	LQM (2014)
Aromatic EC >7-8	130	290	660	860	1800	3900	22	51	120	56000 (869)	110000 (1920)	180000 (4360)	56000	56000	56000	87000 (869)	95000 (1920)	100000 (4360)	LQM (2014)
Aromatic EC >8-10	34	83	190	47	110	270	8.6	21	51	3500 (613)	8100 (1500)	17000 (3580)	5000	5000	5000	7200 (613)	8500 (1500)	9300 (3580)	LQM (2014)
Aromatic EC >10- 12	74	180	380	250	590	1200	13	31	74	16000 (364)	28000 (899)	34000 (2150)	5000	5000	5000	9200 (364)	9700 (899)	10000	LQM (2014)
Aromatic EC >12- 16	140	330	660	1800	2300 (419)	2500	23	27	130	36000 (169)	37000	38000	5100	5100	5000	10000	10000	10000	LQM (2014)
Aromatic EC >16- 21	260	540	930	1900	1900	1900	46	110	260	28000	28000	28000	3800	3800	3800	7600	7700	7800	LQM (2014)

Parameter	Resident homegro	ial with own produc	ce	Resident homegro	ial without own produce		Allotme	nt		Commer	cial / Indust	rial	Public Op Residenti	en Space ne al	ear	Public Op	en Space -	Park	Source
	(mg/kg, stated)	unless othe	erwise	(mg/kg, stated)	unless otherw	ise	(mg/kg, stated)	unless oth	erwise	(mg/kg, stated)	unless other	wise	(mg/kg, u stated)	inless other	wise	(mg/kg, u stated)	unless othe	rwise	
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
Aromatic EC >21- 35	1100	1500	1700	1900	1900	1900	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900	LQM (2014)
Aromatic EC >35- 44	1100	1500	1700	1900	1900	1900	370	820	1600	28000	28000	28000	3800	3800	3800	7800	7800	7900	LQM (2014)
Aromatic EC >44- 75	1600	1800	1900	1900	1900	1900	1200	2100	3000	28000	28000	28000	3800	3800	3800	7800	7800	7900	LQM (2014)
			•				•		VOCs	•									
1,2- dichloroethane (1,2-DCA)	0.0071	0.011	0.019	0.0092	0.013	0.023	0.0046	0.0083	0.016	0.67	0.97	1.7	29	29	29	21	24	28	LQM (2014)
1,1,1- trichloroethane	8.8	18	39	9	18	40	48	110	240	660	1300	3000	140000	140000	14000 0	57000 (1425)	76000 (2915)	100000 (6392)	LQM (2014)
1,1,2,2,tetrachlor oethane	1.6	3.4	7.5	3.9	8	17	0.41	0.89	2	270	550	1100	1400	1400	1400	1800	2100	2300	LQM (2014)
tetrachloroethene	0.18	0.39	0.9	0.18	0.4	0.92	0.65	1.5	3.6	19	45	95	1400	1400	1400	810 (424)	1100 (951)	1500	LQM (2014)
tetrachlorometha ne (Carbon tetrachloride)	0.026	0.056	0.13	0.026	0.056	0.13	0.45	1	2.4	2.9	6.3	14	890	920	950	190	270	400	LQM (2014)
Trichloroethene	0.016	0.034	0.075	0.017	0.036	0.08	0.041	0.091	0.21	1.2	2.6	5.7	120	120	120	70	91	120	LQM (2014)
Trichloromethane (chloroform)	0.91	1.7	3.4	1.2	2.1	4.2	0.42	0.83	1.7	99	170	350	2500	2500	2500	2600	2800	3100	LQM (2014)
Chloroethene (Vinyl chloride)	0.0006	0.0008 7	0.0014	0.0007 7	0.001	0.0015	0.0005 5	0.001	0.0018	0.059	0.077	0.12	3.5	3.5	3.5	4.8	5	5.4	LQM (2014)
2,4,6 Trinitrotoluene (TNT)	1.6	3.7	8.1	65	66	66	0.24	0.58	1.4	1000	1000	1000	130	130	130	260	270	270	LQM (2014)

Parameter	Resident homegro	tial with own produc	ce	Resident homegro	ial without own produce		Allotme	nt		Commer	cial / Indust	rial	Public Op Residenti	en Space ne al	ear	Public Op	en Space -	Park	Source
	(mg/kg, stated)	unless othe	erwise	(mg/kg, stated)	unless otherw	vise	(mg/kg, stated)	unless oth	erwise	(mg/kg, u stated)	unless other	wise	(mg/kg, u stated)	inless other	wise	(mg/kg, u stated)	inless othe	rwise	
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
RDX	120	250	540	13000	13000	13000	17	38	85	210000	210000	210000	26000	26000	27000	49000 (18.7)	51000	53000	LQM (2014)
НМХ	5.7	13	26	6700	6700	6700	0.86	1.9	3.9	110000	110000	110000	13000	13000	13000	23000 (0.35)	23000 (0.39)	24000 (0.48)	LQM (2014)
Aldrin	5.7	6.6	7.1	7.3	7.4	7.5	3.2	6.1	9.6	170	170	170	18	18	18	30	31	31	LQM (2014)
Dieldrin	0.97	2	3.5	7	7.3	7.4	0.17	0.41	0.96	170	170	170	18	18	18	30	30	31	LQM (2014)
Atrazine	3.3	7.6	17.4	610	620	620	0.5	1.2	2.7	9300	9400	9400	1200	1200	1200	2300	2400	2400	LQM (2014)
Dichlovos	0.032	0.066	0.014	6.4	6.5	6.6	0.0049	0.01	0.022	140	140	140	16	16	16	26	26	27	LQM (2014)
Alpha-Endosulfan	7.4	18	41	160 (0.003)	280 (0.007)	410 (0.016)	1.2	2.9	6.8	5600 (0.003)	7400 (0.007)	8400 (0.016)	1200	1200	1200	2400	2400	2500	LQM (2014)
alpha- Hexachlorocycloh exane	0.23	0.55	1.2	6.9	9.2	11	0.035	0.087	0.21	170	180	180	24	24	24	47	48	48	LQM (2014)
beta- hexachlorocycloh exanes	0.085	0.2	0.46	3.7	3.8	3.8	0.013	0.032	0.077	65	65	65	8.1	8.1	8.1	15	15	16	LQM (2014)
gamma- hexachlorocycloh exanes	0.06	0.14	0.33	2.9	3.3	3.5	0.0092	0.023	0.054	67	69	70	8.2	8.2	8.2	14	15	15	LQM (2014)
Chlorobenzene	0.46	1	2.4	0.46	1	2.4	5.9	14	32	56	130	290	11000	13000	14000	1300 (675)	2000 (1520)	2900	LQM (2014)
1,2- Dichlorobenzene	23	55	130	24	57	130	94	230	540	2000 (571)	4800 (1370)	11000 (3240)	90000	95000	98000	24000 (571)	36000 (1370)	51000 (3240)	LQM (2014)
1,3- Dichlorobenzene	0.4	1	2.3	0.44	1.1	2.5	0.25	0.6	1.5	30	73	170	300	300	300	390	440	470	LQM (2014)

Parameter	Resident homegro	tial with own produc	ce	Resident homegro	tial without own produce		Allotme	nt		Commer	cial / Indust	rial	Public Op Residenti	en Space n al	ear	Public Op	en Space -	Park	Source
	(mg/kg, stated)	unless oth	erwise	(mg/kg, stated)	unless otherw	vise	(mg/kg, stated)	unless oth	erwise	(mg/kg, stated)	unless other	wise	(mg/kg, u stated)	inless other	wise	(mg/kg, u stated)	inless othe	rwise	
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
1,4- Dichlorobenzene	61	150	350	61	150	350	15	37	88	4400 (224)	10000 (540)	25000 (1280)	17000	17000	17000	36000 (224)	36000 (540)	36000 (1280)	LQM (2014)
								١	/OCs Cont	inued									
1,2,3- Trichlorobenzene	1.5	3.6	8.6	1.5	3.7	8.8	4.7	12	28	102	250	590	1800	1800	1800	770 (134)	1100 (330)	1600 (789)	LQM (2014)
1,2,4- Trichlorobenzene	2.6	6.4	15	2.6	6.4	15	55	140	320	220	530	1300	15000	17000	19000	1700 (318)	2600 (786)	4000 (1880)	LQM (2014)
1,3,5- Trichlorobenzene	0.33	0.81	1.9	0.33	0.81	1.9	4.7	12	28	23	55	130	1700	1700	1800	380 (36.7)	580 (90.8)	860 (217)	LQM (2014)
1,2,3,4- Tetrachlorobenze ne	15	36	78	24	56	120	4.4	11	26	1700 (122)	3080 (304)	4400 (728)	830	830	830	1500 (122)	1600	1600	LQM (2014)
1,2,3,5- Tetrachlorobenze ne	0.66	1.6	3.7	0.75	1.9	4.3	0.38	0.9	2.2	49 (39.4)	120 (98.1)	240 (235)	78	79	79	110 (39)	120	130	LQM (2014)
1,2,4,5- Tetrachlorobenze ne	0.33	0.77	1.6	0.73	1.7	3.5	0.06	0.16	0.37	42 (19.7)	72 (49.1)	96	13	13	13	25	26	26	LQM (2014)
Pentachlorobenze ne	5.8	12	22	19	30	38	1.2	3.1	7	640 (43)	770 (107)	830	100	100	100	190	190	190	LQM (2014)
Hexachlorobenze ne	1.8 (0.2)	3.3 (0.5)	4.9	4.1 (0.2)	5.7 (0.5)	6.7 (1.2)	0.47	1.1	2.5	110 (0.2)	120	120	16	16	16	30	30	30	LQM (2014)
Phenol	280	550	1100	750	1300	2300	66	140	280	760 _{dir} (31000 )	1500 _{dir} (35000)	3200 _{dir} (37000)	760 _{dir} (31000)	1500 _{dir} (35000)	3200 _{dir} (37000 )	760 _{dir} (31000)	1500 _{dir} (35000 )	3200 _{dir} (37000 )	LQM (2014)
Chlorophenols (excluding pentachlorophen ol)	0.87 (g)	2	4.5	94	150	210	0.13 (g)	0.3	0.7	3500	4000	4300	620	620	620	1100	1100	1100	LQM (2014)

Parameter	Resident homegro (mg/kg, stated)	tial with own produc unless othe	ce erwise	Resident homegro (mg/kg, stated)	ial without own produce unless otherw	ise	Allotmer (mg/kg, stated)	nt unless othe	erwise	Commer (mg/kg, stated)	cial / Indust unless other	rial wise	Public Op Residenti (mg/kg, u stated)	en Space ne al nless other	ear wise	Public Op (mg/kg, u stated)	oen Space - unless othe	Park rwise	Source
SOM	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	1%	2.50%	6%	
Pentachlorophen ol	0.22	0.52	1.2	27 (16.4)	29	31	0.03	0.08	0.19	400	400	400	60	60	60	110	120	120	LQM (2014)
Carbon Disulphide	0.14	0.29	0.62	0.14	0.29	0.62	4.8	10	23	11	22	47	11000	11000	12000	1300	1900	2700	LQM (2014)
Hexachlorobutadi ene	0.29	0.7	1.6	0.32	0.78	1.8	0.25	0.61	1.4	31	66	120	25	25	25	48	50	51	LQM (2014)

(g) derived based on 2,3,4,6-tetrachlorophenol; dir - based on a threshold protective of direct skin contact with phenol (guideline in brackets based on health effects following long term exposure provided for illustration only); (vap)

calculated for vapour phase only. SOM – Soil Organic Matter; (4.5) solubility.

**APPENDIX K - COMPLYING WITH CONTROL OF ASBESTOS REGULATIONS 2012** 

## Complying with Control of Asbestos Regulations (CAR): Risk Assessments, Licensing and Training

This appendix outlines CAR risk assessments and where they should be applied in relation to assessing and remediating brownfield sites. The information below details the different classifications of work with asbestos under CAR, summarises the legal requirements for asbestos awareness training for all involved in the investigation and management of asbestos containing soil (ACS), and details the potential requirements for suitable proficiency training relating specifically to ACS.

## CAR RISK ASSESSMENTS

A CAR Risk Assessment is required for any work which may expose employees to asbestos. It is recommended that a precautionary approach is adopted if there is any doubt about risks associated with asbestos.

There are three main activities for potential asbestos exposure during work on brownfield sites:

- Site reconnaissance visits;
- Site investigation works; and
- Site remediation.

CAR risk assessments are needed at each stage but may be incorporated during the site investigation stage into the overarching health and safety risk assessments.

The CAR risk assessment must:

- Identify the type of asbestos to which employees are liable to be exposed, where possible, or assume it is present in different forms;
- Determine the type and extent of exposures to asbestos that may occur during the work
- Identify the steps to be taken to prevent exposure or reduce it to the lowest level reasonably practicable; and,
- Consider the effects of control measures that have been or will be taken.

The CAR risk assessment should include any information used to inform the risk assessment such as asbestos reports or desk study information. In the event that this information is not available, the assessor should be assumed that all forms of asbestos may be present on Site.

For all investigation and remediation of ACSs, a detailed written work plan should he produced and followed as detailed on the HSE website and in the CAR.

The CAR risk assessments for specific investigations or remediation projects, will determine whether or not work is 'licensable work' (LW), notifiable non-licensable work' (NNLW) or 'non-licensed work' (NLW). In addition, training requirements are also defined by the CAR risk assessment.

Some examples of control measures that apply during site reconnaissance, site investigation works, and site remediation are given below and should be applied depending on the asbestos risks identified for the Site at each stage of investigation:

- Avoiding stirring up dust;
- Cleaning footwear after site works;
- Removing and bagging any overalls for disposal/laundering;
- Respirators and hygiene facilities for high risk sites;
- Segregated welfare units;
- Wetting ground
- Minimising soil disturbances;
- Implementation or retention of capping/break layers;
- Implementation of awareness training;
- Air monitoring;
- Managing stockpiles;
- Area segregation;
- Wheel washing
- Road washing/cleaning

It is important to note that during Site reconnaissance visits, Site investigation works and Site remediation that asbestos should not be considered in isolation and control measures are likely to form part of a wider health and safety precautions.

## **Respiratory protective equipment (RPE)**

RPE is the last line of defence and its requirement would be defined by the CAR risk assessment. HSE (2013b) advises that RPE should have an assigned protection factor of 20 or more for all work with asbestos. In certain instances, full face-piece, positive pressure respirators with a protection factor of 40 are necessary (to EN 12942:1998, TM3).

Suitable types of RPE for most *short* duration non-licensed asbestos work:

- Disposable respirator to standards EN149 (type FFP3) or EN1827 (type FMP3)
- Half mask respirator (to standard EN140) with P3 filter
- Semi-disposable respirator (to EN405) with P3 filter

These filters are not suitable for people with beards/stubble or for long or continuous use.

## LICENSING

CAR defined certain types of activities involving asbestos as 'licensable work' (LW) or as 'notifiable non-licensable work' (NNLW). All other work would be 'non-licensable work' (NLW).

LW is defined as:

- work where exposure is not 'sporadic and low intensity'
- work where the risk assessment cannot demonstrate that the control limits (four hour and 10 minute limits) will not be exceeded
- work on asbestos coating
- work on AIB or insulation where risk assessment is either of first two points above or not of short duration (where short duration is defined for any work liable to disturb asbestos as taking less than two hours per week (including ancillary work) and no one person carries out that work for more than one hour').

NNLW includes work with:

- AIB or asbestos insulation of short duration that is not licensable
- fire-damaged asbestos cement or asbestos cement damaged so as to create significant dust and debris
- asbestos ropes, yarns, woven cloths in poor condition or handling cutting or breaking up the materials
- asbestos papers, felts and cardboard in poor condition, unencapsulated or not bound into another material.

Work with weathered asbestos cement, air monitoring and collecting samples of ACM in buildings would not normally be notifiable.

It is impossible to specify definitively what activities will and will not be licensable. This decision should be made as part of the CAR risk assessment. CAR is not primarily aimed at work with ACSs and there is little published information on airborne asbestos concentrations during work with ACSs. Nevertheless, CAR will require some remediation projects, and occasionally site investigations, to be LW. Investigations on other sites may involve NNLW. The decision as to whether work is LW or NNLW should be made during the CAR risk assessment by those in charge of the brownfield site investigations and remediation projects.

## TRAINING REQUIREMENTS

Asbestos health and safety courses are offered by a number of providers in the UK. Training courses that include the problem of identifying ACMs in soil should be undertaken at regular intervals by those involved in the investigation, assessment and management of sites where ACs are known or suspected. It is the role of the employer to identify the level of training required for an employee based on their role, experience and duties. Reference to Regulation 10 of CAR should be referred to for more information on training requirements.

Recognising asbestos within soils is challenging due to the heterogeneity of such soils and the discolouration of asbestos by smeared soil. Specific training for ground workers should include understanding fibre release potential, potential control measures in the field, how to take representative ACSs safely, sample labelling and what analytical tests are available and when the y should be implemented.

Health and safety training required under CAR includes asbestos awareness, non-licensable work (including notifiable non-licensable work) and licensable work with asbestos.

In addition to health and safety training, some staff involved in the technical identification on site of ACMs, sampling and analysis may require technical proficiency training (competency training).

## **Training vs. Competence**

HSE (2005) identifies that 'training alone does not make people competent. Training must be consolidated by practical experience so that the person becomes confident, skilful and knowledgeable in practice on the job'. It is critical that ACS surveyors demonstrate competency with details of relevant field experience alongside training and examples of previous works/references.