	Page 1
	Construction of the
	Mirco
Designed by clennon	Drainago
Checked by	brainage
Source Control 2020.1	1
	Checked by

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 1367 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
15	min S	ummer	9.898	0.048	0.0	0.1		0.1	4.9	Flood Risk
30	min S	ummer	9.912	0.062	0.0	0.1		0.1	6.3	Flood Risk
60	min S	ummer	9.925	0.075	0.0	0.1		0.1	7.7	Flood Risk
120	min S	ummer	9.938	0.088	0.0	0.1		0.1	9.0	Flood Risk
180	min S	ummer	9.944	0.094	0.0	0.1		0.1	9.7	Flood Risk
240	min S	ummer	9.948	0.098	0.0	0.1		0.1	10.1	Flood Risk
360	min S	ummer	9.953	0.103	0.0	0.1		0.1	10.6	Flood Risk
480	min S	ummer	9.956	0.106	0.0	0.1		0.1	10.8	Flood Risk
600	min S	ummer	9.957	0.107	0.0	0.1		0.1	11.0	Flood Risk
720	min S	ummer	9.958	0.108	0.0	0.1		0.1	11.1	Flood Risk
960	min S	ummer	9.958	0.108	0.0	0.1		0.1	11.0	Flood Risk
1440	min S	ummer	9.956	0.106	0.0	0.1		0.1	10.9	Flood Risk
2160	min S	ummer	9.953	0.103	0.0	0.1		0.1	10.6	Flood Risk
2880	min S	ummer	9.950	0.100	0.0	0.1		0.1	10.2	Flood Risk
4320	min S	ummer	9.943	0.093	0.0	0.1		0.1	9.5	Flood Risk
5760	min S	ummer	9.936	0.086	0.0	0.1		0.1	8.8	Flood Risk
7200	min S	ummer	9.929	0.079	0.0	0.1		0.1	8.1	Flood Risk
8640	min S	ummer	9.924	0.074	0.0	0.1		0.1	7.6	Flood Risk
10080	min S	ummer	9.919	0.069	0.0	0.1		0.1	7.0	Flood Risk
15	min W	inter	9.898	0.048	0.0	0.1		0.1	4.9	Flood Risk

	Stor Even		Rain (mm/hr)	Volume	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	149.324	0.0	3.3	19
30	min	Summer	96.288	0.0	4.0	34
60	min	Summer	59.033	0.0	6.9	64
120	min	Summer	34.961	0.0	8.0	124
180	min	Summer	25.405	0.0	8.6	184
240	min	Summer	20.147	0.0	8.9	242
360	min	Summer	14.505	0.0	9.4	362
480	min	Summer	11.486	0.0	9.7	482
600	min	Summer	9.578	0.0	9.8	602
720	min	Summer	8.254	0.0	10.0	720
960	min	Summer	6.522	0.0	10.1	934
1440	min	Summer	4.674	0.0	10.0	1140
2160	min	Summer	3.345	0.0	15.2	1532
2880	min	Summer	2.636	0.0	15.8	1932
4320	min	Summer	1.882	0.0	15.7	2764
5760	min	Summer	1.481	0.0	18.7	3576
7200	min	Summer	1.229	0.0	19.3	4392
8640	min	Summer	1.055	0.0	19.9	5184
10080	min	Summer	0.927	0.0	20.2	5944
15	min	Winter	149.324	0.0	3.3	19
		C	1982-20	20 Inno	vyze	

Heyne Tillett Steel		Page 2
4 Pear Tree Court		0
London		Constant of the
EC1R ODS		Mirco
Date 25/04/2023 15:28	Designed by clennon	Drainago
File B4.SRCX	Checked by	Diamage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm	Max	Max	Max		Max	Ма	x	Max	Stat	us
Event	Level	Depth	Infiltra	tion (Control	Σ Out	flow	Volume		
	(m)	(m)	(1/s))	(l/s)	(1/	s)	(m³)		
30 min Winter	9.912	0.062		0.0	0.1		0.1	6.3	Flood	Risk
60 min Winter	9.925	0.075		0.0	0.1		0.1	7.7	Flood	Risk
120 min Winter	9.938	0.088		0.0	0.1		0.1	9.0	Flood	Risk
180 min Winter	9.944	0.094		0.0	0.1		0.1	9.7	Flood	Risk
240 min Winter	9.948	0.098		0.0	0.1		0.1	10.1	Flood	Risk
360 min Winter	9.953	0.103		0.0	0.1		0.1	10.6	Flood	Risk
480 min Winter	9.956	0.106		0.0	0.1		0.1	10.9	Flood	Risk
600 min Winter				0.0	0.1		0.1		Flood	
720 min Winter				0.0	0.1		0.1		Flood	
960 min Winter				0.0	0.1		0.1		Flood	
1440 min Winter				0.0	0.1		0.1		Flood	
2160 min Winter				0.0	0.1		0.1		Flood	
2880 min Winter				0.0	0.1		0.1		Flood	
4320 min Winter				0.0	0.1		0.1		Flood	
5760 min Winter				0.0	0.1		0.1		Flood	
7200 min Winter 8640 min Winter				0.0	0.1		0.1		Flood Flood	
10080 min Winter				0.0	0.1		0.1	6.0		
						_				
	Stor		Rain			-				
	Even	-	(mm/hr)			lume m³)	(111)	ins)		
				(m³)	, (1	u-)				
3	80 min	Winter	96.288	0	.0	4.0		34		
6	50 min	Winter	59.033	0	.0	6.9		64		
			34.961	0	.0	8.0		122		
			25.405	0	.0	8.6		180		
		Winter			.0	8.9		240		
		Winter			.0	9.4		356		
		Winter			.0	9.7		472		
		Winter			.0	9.9		584		
		Winter	8.254 6.522		.0	10.0		698 014		
		Winter			.0	10.1 10.0		914 1170		
		Winter			.0	15.2		1620		
		Winter			.0	15.8		2076		
		Winter			.0	15.7		2944		
		Winter			.0	18.7		3808		
			1.229			19.3		4616		
864	0 min	Winter	1.055	0	.0	19.9		5440		
1008	0 min	Winter	0.927		.0	20.2		6160		
©1982-2020 Innovyze										

Heyne Tillett Steel	
4 Pear Tree Court	
London	
EC1R 0DS	
Date 25/04/2023 15:28	Designed
File B4.SRCX	Checked
XP Solutions	Source C

Model Det

Storage is Online Cover

Cellular Storage

Invert Level (m Infiltration Coefficient Base (m/hr Infiltration Coefficient Side (m/hr

Depth (m) Area (m²)

0.000 108.0

Orifice Outflow Control

Diameter (m) 0.011 Discharge Coefficient 0.600 Invert Level (m) 9.850

©1982-2020 Innovyze

	Page 4
d by clennon . by	Micro Drainage
Control 2020.1	
tails r Level (m) 10.000 ge Structure m) 9.850 Safety Factor 2.0	
r) 0.00000 Porosity 0.95 r) 0.00000	
Inf. Area (m²)	
0.0	

Heyne Tillett Steel		Page 1
4 Pear Tree Court		
London		Carlos and
EC1R 0DS		Mirco
Date 25/04/2023 15:28	Designed by clennon	Drainago
File B5.SRCX	Checked by	Drainage
XP Solutions	Source Control 2020.1	ł

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 1725 minutes.

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min Summ	ner 9.906	0.056	0.0	0.1	0.1	6.7	Flood Risk
30	min Summ	ner 9.923	0.073	0.0	0.1	0.1	8.6	Flood Risk
60	min Summ	ner 9.938	0.088	0.0	0.1	0.1	10.5	Flood Risk
120	min Summ	ner 9.953	0.103	0.0	0.1	0.1	12.3	Flood Risk
180	min Summ	ner 9.961	0.111	0.0	0.1	0.1	13.2	Flood Risk
240	min Summ	ner 9.966	0.116	0.0	0.1	0.1	13.8	Flood Risk
360	min Summ	ner 9.973	0.123	0.0	0.1	0.1	14.6	Flood Risk
480	min Summ	ner 9.977	0.127	0.0	0.1	0.1	15.1	Flood Risk
600	min Summ	ner 9.979	0.129	0.0	0.1	0.1	15.4	Flood Risk
720	min Summ	ner 9.981	0.131	0.0	0.1	0.1	15.5	Flood Risk
960	min Summ	ner 9.982	0.132	0.0	0.1	0.1	15.7	Flood Risk
1440	min Summ	ner 9.981	0.131	0.0	0.1	0.1	15.5	Flood Risk
2160	min Summ	ner 9.978	0.128	0.0	0.1	0.1	15.2	Flood Risk
2880	min Summ	ner 9.975	0.125	0.0	0.1	0.1	14.8	Flood Risk
4320	min Summ	ner 9.968	0.118	0.0	0.1	0.1	14.0	Flood Risk
5760	min Summ	ner 9.961	0.111	0.0	0.1	0.1	13.2	Flood Risk
7200	min Summ	ner 9.954	0.104	0.0	0.1	0.1	12.4	Flood Risk
8640	min Summ	ner 9.948	0.098	0.0	0.1	0.1	11.6	Flood Risk
10080	min Summ	ner 9.942	0.092	0.0	0.1	0.1	10.9	Flood Risk
15	min Wint	er 9.906	0.056	0.0	0.1	0.1	6.7	Flood Risk

	Stor Even				Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	149.324	0.0	3.9	19
30	min	Summer	96.288	0.0	4.6	34
60	min	Summer	59.033	0.0	8.6	64
120	min	Summer	34.961	0.0	9.7	124
180	min	Summer	25.405	0.0	10.3	184
240	min	Summer	20.147	0.0	10.7	242
360	min	Summer	14.505	0.0	11.1	362
480	min	Summer	11.486	0.0	11.4	482
600	min	Summer	9.578	0.0	11.6	602
720	min	Summer	8.254	0.0	11.7	722
960	min	Summer	6.522	0.0	11.7	960
1440	min	Summer	4.674	0.0	11.5	1256
2160	min	Summer	3.345	0.0	19.6	1624
2880	min	Summer	2.636	0.0	19.7	2020
4320	min	Summer	1.882	0.0	19.0	2852
5760	min	Summer	1.481	0.0	25.3	3640
7200	min	Summer	1.229	0.0	26.1	4472
8640	min	Summer	1.055	0.0	26.7	5272
10080	min	Summer	0.927	0.0	27.0	6056
15	min	Winter	149.324	0.0	3.9	19
		C	1982-20	20 Inno	vyze	

Heyne Tillett Steel		Page 2
4 Pear Tree Court		
London		Constant of the
EC1R 0DS		Mirco
Date 25/04/2023 15:28	Designed by clennon	Drainago
File B5.SRCX	Checked by	Drainage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm	Max	Max	Max		Max	Ma	x	Max	Status	
Event	Level	Depth	Infiltra	tion	Control	Σ Out	flow	Volume		
	(m)	(m)	(1/s))	(1/s)	(1/	's)	(m³)		
30 min Winter	9.923	0.073		0.0	0.1		0.1	8.6	Flood Risk	
60 min Winter				0.0	0.1		0.1		Flood Risk	
120 min Winter				0.0	0.1		0.1		Flood Risk	
180 min Winter				0.0	0.1		0.1		Flood Risk	
240 min Winter	9.966	0.116		0.0	0.1		0.1	13.8	Flood Risk	
360 min Winter	9.973	0.123		0.0	0.1		0.1	14.6	Flood Risk	
480 min Winter	9.977	0.127		0.0	0.1		0.1	15.1	Flood Risk	
600 min Winter	9.980	0.130		0.0	0.1		0.1	15.4	Flood Risk	
720 min Winter	9.981	0.131		0.0	0.1		0.1	15.6	Flood Risk	
960 min Winter	9.983	0.133		0.0	0.1		0.1	15.7	Flood Risk	
1440 min Winter				0.0	0.1		0.1	15.6	Flood Risk	
2160 min Winter				0.0	0.1		0.1		Flood Risk	
2880 min Winter				0.0	0.1		0.1		Flood Risk	
4320 min Winter				0.0	0.1		0.1		Flood Risk	
5760 min Winter				0.0	0.1		0.1		Flood Risk	
7200 min Winter				0.0	0.1		0.1		Flood Risk	
8640 min Winter				0.0	0.1		0.1		Flood Risk	
10080 min Winter	9.931	0.081		0.0	0.1		0.1	9.6	Flood Risk	
	Stor	-	Pain	Floor	ded Disc	ah a rac	Time	-Book		
	Even		(mm/hr)			lume		ins)		
	Even	L	(1111)	(m ³		m ³)	(10.2	11157		
				(,	,				
3	0 min	Winter	96.288	(0.0	4.6		34		
			59.033		0.0	8.6		64		
		Winter			0.0	9.7		122		
		Winter			0.0	10.3		180		
		Winter			0.0	10.7		240		
		Winter Winter			0.0	11.1		356		
		Winter).0).0	11.4 11.6		474 590		
		Winter			0.0	11.0		702		
			6.522		0.0	11.7		926		
		Winter			0.0	11.5		1354		
		Winter			0.0	19.6		1684		
		Winter			0.0	19.8		2136		
432	0 min	Winter	1.882	(0.0	19.0		3028		
576	0 min	Winter	1.481	(0.0	25.3		3920		
			1.229			26.1		4760		
864	0 min	Winter	1.055	(0.0	26.7		5616		
1008	0 min	Winter	0.927	(0.0	27.0		6360		

Heyne Tillett Steel		Page 3
4 Pear Tree Court		
London		Carrier and
EC1R ODS		Mirco
Date 25/04/2023 15:28	Designed by clennon	MILLIU
File B5.SRCX	Checked by	Diamage
XP Solutions	Source Control 2020.1	
Ra	infall Details	
Rainfall Model	FSR Winter Storms Y	es
Return Period (years) Region Engla	and and Wales Cv (Winter) 0.9	50
M5-60 (mm)	20.800 Shortest Storm (mins)	15
Ratio R	0.442 Longest Storm (mins) 100	80
Summer Storms	Yes Climate Change % +	40
Tin	ne Area Diagram	
Tota	al Area (ha) 0.019	
	me (mins) Area om: To: (ha)	
	0 4 0.019	
	0 4 0.019	

Heyne Tillett Steel	
4 Pear Tree Court	
London	
EC1R 0DS	
Date 25/04/2023 15:28	Designed
File B5.SRCX	Checked
XP Solutions	Source C

Model Det

Storage is Online Cover

Cellular Storage

Invert Level (m Infiltration Coefficient Base (m/hr Infiltration Coefficient Side (m/hr

Depth (m) Area (m²)

0.000 125.0

Orifice Outflow Control

Diameter (m) 0.011 Discharge Coefficient 0.600 Invert Level (m) 9.850

©1982-2020 Innovyze

	Page 4
d by clennon . by	Micro Drainage
Control 2020.1	
tails r Level (m) 10.000 ge Structure m) 9.850 Safety Factor 2.0	
r) 0.00000 Porosity 0.95 r) 0.00000	
Inf. Area (m²)	
0.0	

	0.000
	Constant of the
	Mirco
Designed by clennon	Drainago
Checked by	Drainage
Source Control 2020.1	
	Checked by

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 1162 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
15	min S	ummer	9.897	0.047	0.0	0.1	0.1	9.9	Flood Risk
30	min S	ummer	9.911	0.061	0.0	0.1	0.1	12.7	Flood Risk
60	min S	ummer	9.924	0.074	0.0	0.2	0.2	15.4	Flood Risk
120	min S	ummer	9.936	0.086	0.0	0.2	0.2	17.9	Flood Risk
180	min S	ummer	9.942	0.092	0.0	0.2	0.2	19.2	Flood Risk
240	min S	ummer	9.946	0.096	0.0	0.2	0.2	20.0	Flood Risk
360	min S	ummer	9.950	0.100	0.0	0.2	0.2	20.9	Flood Risk
480	min S	ummer	9.953	0.103	0.0	0.2	0.2	21.4	Flood Risk
600	min S	ummer	9.954	0.104	0.0	0.2	0.2	21.6	Flood Risk
720	min S	ummer	9.954	0.104	0.0	0.2	0.2	21.6	Flood Risk
960	min S	ummer	9.953	0.103	0.0	0.2	0.2	21.5	Flood Risk
1440	min S	ummer	9.952	0.102	0.0	0.2	0.2	21.2	Flood Risk
2160	min S	ummer	9.949	0.099	0.0	0.2	0.2	20.6	Flood Risk
2880	min S	ummer	9.945	0.095	0.0	0.2	0.2	19.8	Flood Risk
4320	min S	ummer	9.938	0.088	0.0	0.2	0.2	18.3	Flood Risk
5760	min S	ummer	9.931	0.081	0.0	0.2	0.2	16.8	Flood Risk
7200	min S	ummer	9.924	0.074	0.0	0.2	0.2	15.4	Flood Risk
8640	min S	ummer	9.918	0.068	0.0	0.1	0.1	14.2	Flood Risk
10080	min S	ummer	9.913	0.063	0.0	0.1	0.1	13.2	Flood Risk
15	min W	inter	9.897	0.047	0.0	0.1	0.1	9.9	Flood Risk

	Stor Even				Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	149.324	0.0	6.8	19
30	min	Summer	96.288	0.0	8.6	34
60	min	Summer	59.033	0.0	13.7	64
120	min	Summer	34.961	0.0	16.2	124
180	min	Summer	25.405	0.0	17.6	182
240	min	Summer	20.147	0.0	18.5	242
360	min	Summer	14.505	0.0	19.7	362
480	min	Summer	11.486	0.0	20.6	482
600	min	Summer	9.578	0.0	21.1	600
720	min	Summer	8.254	0.0	21.5	720
960	min	Summer	6.522	0.0	21.9	838
1440	min	Summer	4.674	0.0	21.9	1082
2160	min	Summer	3.345	0.0	30.5	1472
2880	min	Summer	2.636	0.0	31.7	1876
4320	min	Summer	1.882	0.0	32.7	2720
5760	min	Summer	1.481	0.0	37.2	3512
7200	min	Summer	1.229	0.0	38.5	4256
8640	min	Summer	1.055	0.0	39.5	5024
10080	min	Summer	0.927	0.0	40.1	5840
15	min	Winter	149.324	0.0	6.8	19
		©	1982-202	20 Inno	vyze	

Heyne Tillett Steel		Page 2
4 Pear Tree Court		
London		Constant of the
EC1R 0DS		Mirco
Date 25/04/2023 15:34	Designed by clennon	Drainago
File B6.SRCX	Checked by	brainage
XP Solutions	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

Storm	Max	Max	Max		Max	Ма	x	Max	Status
Event	Level	Depth	Infiltra	tion	Control	Σ Out	flow	Volume	
	(m)	(m)	(1/s)		(l/s)	(1/	s)	(m³)	
30 min Winter	9.911	0.061		0.0	0.1		0.1	12.7	Flood Risk
60 min Winter	9.924	0.074		0.0	0.2		0.2	15.4	Flood Risk
120 min Winter	9.936	0.086		0.0	0.2		0.2	17.9	Flood Risk
180 min Winter	9.942	0.092		0.0	0.2		0.2	19.2	Flood Risk
240 min Winter	9.946	0.096		0.0	0.2		0.2	20.0	Flood Risk
360 min Winter	9.951	0.101		0.0	0.2		0.2	20.9	Flood Risk
480 min Winter	9.953	0.103		0.0	0.2		0.2	21.4	Flood Risk
600 min Winter	9.954	0.104		0.0	0.2		0.2	21.7	Flood Risk
720 min Winter				0.0	0.2		0.2		Flood Risk
960 min Winter				0.0	0.2		0.2		Flood Risk
1440 min Winter				0.0	0.2		0.2		Flood Risk
2160 min Winter				0.0	0.2		0.2		Flood Risk
2880 min Winter				0.0	0.2		0.2		Flood Risk
4320 min Winter				0.0	0.2		0.2		Flood Risk
5760 min Winter				0.0	0.2		0.2		Flood Risk
7200 min Winter				0.0	0.1		0.1		Flood Risk
8640 min Winter				0.0	0.1		0.1		Flood Risk
10080 min Winter	9.902	0.052		0.0	0.1		0.1	10.9	Flood Risk
	Stor	m	Rain	Flood	led Disc	harge	Time	-Peak	
	Even	t	(mm/hr)	Volu	me Vol	Lume	(mi	ins)	
				(m³) (n	n³)			
	30 min	Winter	96.288	(0.0	8.6		33	
			59.033		0.0	13.7		62	
12	20 min	Winter	34.961	(0.0	16.2		122	
18	30 min	Winter	25.405	(0.0	17.6		180	
24	40 min	Winter	20.147	(0.0	18.5		238	
30	50 min	Winter	14.505	(0.0	19.7		354	
48	30 min	Winter	11.486	(0.0	20.6		470	
60	00 min	Winter	9.578	(0.0	21.2		582	
72	20 min	Winter	8.254	(0.0	21.5		692	
		Winter		(0.0	21.9		904	
		Winter		(0.0	21.9		1124	
		Winter			0.0	30.5		1580	
		Winter			0.0	31.7		2020	
		Winter			0.0	32.7		2896	
		Winter				37.2		3696	
			1.229			38.5		4536	
			1.055			39.5		5280	
1008	su min	Winter	0.927	(0.0	40.1		6048	

Heyne Tillett Steel		Page 4
4 Pear Tree Court		
London		Constant and
EC1R ODS		Mirco
Date 25/04/2023 15:34	Designed by clennon	Drainago
File B6.SRCX	Checked by	brainage
XP Solutions	Source Control 2020.1	
<u>Cellula</u> Inver	nline Cover Level (m) 10.000 <u>ar Storage Structure</u> rt Level (m) 9.850 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95	
Infiltration Coefficient	· · · · · ·	
Depth (m)	Area (m²) Inf. Area (m²)	
0.000	219.0 0.0	

Orifice Outflow Control

Diameter (m) 0.017 Discharge Coefficient 0.600 Invert Level (m) 9.850

©1982-2020 Innovyze

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Carmel Lennon	Site Details					
Site name:	Museum Street Site	Latitude:	51.51646° N				
Site location:	Camden	Longitude:	0.12522° W				
This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff" Reference: 4097402026							
management for de and the non-statute	velopments", SC030219 (2013) , the Su ory standards for SuDS (Defra, 2015).	uDS Manual C753 (Ciria, 2015) This information on greenfield Date:	Apr 21 2023 10:54				

runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation ap	proach	IH124									
Site characteristics					Notes						
Total site area (ha): .3	27										
Methodology					(1) Is Q _{BAR} < 2.0 I/s/ha?						
Q _{BAR} estimation method	l: Calo	culate fro	om SPR a	and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates						
SPR estimation method	Calo	culate fro	om SOIL	type	are set at 2.0 l/s/ha.						
Soil characteristics	Defa	ult	Edited								
SOIL type:	2		2		(2) Are flow rates < 5.0 l/s?						
HOST class:	N/A		N/A		Where flow rates are less than 5.0 l/s consent for						
SPR/SPRHOST:	0.3		0.3		discharge is usually set at 5.0 l/s if blockage from						
Hydrological characteristics		Default Edited			vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage						
SAAR (mm):		611		611	elements.						
Hydrological region:		6		6	(3) Is SPR/SPRHOST ≤ 0.3?						
Growth curve factor 1 ye	ear:	0.85		0.85							
Growth curve factor 30	years:	2.3		2.3	Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally						
Growth curve factor 100 years:		3.19		3.19	be preferred for disposal of surface water runoff.						
Growth curve factor 200 years:		3.74		3.74							

	Greenfield runoff rates	Default	Edited
C	Q _{BAR} (I/s):	0.51	0.51
	l in 1 year (l/s):	0.43	0.43
1	l in 30 years (l/s):	1.17	1.17
	l in 100 year (l/s):	1.62	1.62
1	l in 200 years (l/s):	1.9	1.9

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Print Close Report

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Carmel Lennon	Site Details	
Site name:	West Central Street Site	Latitude:	51.51646° N
Site location:	Camden	Longitude:	0.12522° W
This is an estimatic practice criteria in	n of the greenfield runoff rates that a line with Environment Agency guidance	are used to meet normal best Reference:	661813575
management for de and the non-statut	evelopments", SC030219 (2013) , the Su ory standards for SuDS (Defra, 2015).	uDS Manual C753 (Ciria, 2015) This information on greenfield Date:	Apr 21 2023 09:54

and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield **Date:** runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation approach IH124

Site characteristics

Total site area (ha): .085

Notes

(1) Is Q_{BAR} < 2.0 l/s/ha?

Methodology					(1) IS Q _{BAR} < 2.01/S/na?				
Q _{BAR} estimation method	l: Calc	ulate	from SPR	and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates				
SPR estimation method	Calc	ulate	from SOIL	type	are set at 2.0 l/s/ha.				
Soil characteristics	Defau	ult	Edited	d					
SOIL type:	2		2		(2) Are flow rates < 5.0 l/s?				
HOST class:	N/A N/A		N/A		Where flow rates are less than 5.0 l/s consent for				
SPR/SPRHOST:	0.3	0.3			discharge is usually set at 5.0 l/s if blockage from				
Hydrological characteristics			fault	Edited	vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage				
SAAR (mm):		611		611	elements.				
Hydrological region:	[6		6	(3) Is SPR/SPRHOST ≤ 0.3?				
Growth curve factor 1 ye	əar:	0.85		0.85					
Growth curve factor 30	years:	2.3		2.3	Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally				
Growth curve factor 100 years:		3.19 3.		3.19	be preferred for disposal of surface water runoff.				
Growth curve factor 200 years:)	3.74		3.74					

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.13	0.13
1 in 1 year (l/s):	0.11	0.11
1 in 30 years (l/s):	0.3	0.3
1 in 100 year (l/s):	0.42	0.42
1 in 200 years (l/s):	0.49	0.49

Heyne Tillett Steel		Page 1
4 Pear Tree Court		
London		Constant of the
EC1R ODS		Mirco
Date 25/04/2023 15:35	Designed by clennon	Drainago
File Tank.SRCX	Checked by	Diamage
XP Solutions	Source Control 2020.1	1

Summary of Results for 100 year Return Period (+40%)

Half Drain Time : 310 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (l/s)	Σ	Max Outflow (l/s)	Max Volume (m³)	Status
15	min Sı	ummer	9.347	0.947	0.0	3.9		3.9	81.4	ОК
30	min Sı	ummer	9.598	1.198	0.0	3.9		3.9	103.0	ОК
60	min Sı	ummer	9.812	1.412	0.0	4.1		4.1	121.4	Flood Risk
120	min S	ummer	9.953	1.553	0.0	4.2		4.2	133.6	Flood Risk
180	min Sı	ummer	9.974	1.574	0.0	4.3		4.3	135.4	Flood Risk
240	min S	ummer	9.949	1.549	0.0	4.2		4.2	133.2	Flood Risk
360	min S	ummer	9.884	1.484	0.0	4.1		4.1	127.6	Flood Risk
480	min Sı	ummer	9.822	1.422	0.0	4.1		4.1	122.3	Flood Risk
600	min Sı	ummer	9.764	1.364	0.0	4.0		4.0	117.3	Flood Risk
720	min Sı	ummer	9.709	1.309	0.0	3.9		3.9	112.5	Flood Risk
960	min Sı	ummer	9.606	1.206	0.0	3.9		3.9	103.7	ОК
1440	min Sı	ummer	9.420	1.020	0.0	3.9		3.9	87.7	ОК
2160	min Sı	ummer	9.128	0.728	0.0	3.9		3.9	62.6	ОК
2880	min Sı	ummer	8.889	0.489	0.0	3.9		3.9	42.1	O K
4320	min Sı	ummer	8.646	0.246	0.0	3.8		3.8	21.2	0 K
5760	min S	ummer	8.547	0.147	0.0	3.4		3.4	12.7	ОК
7200	min S	ummer	8.509	0.109	0.0	3.0		3.0	9.4	ОК
8640	min S	ummer	8.493	0.093	0.0	2.6		2.6	8.0	ОК
10080	min Sı	ummer	8.482	0.082	0.0	2.3		2.3	7.1	O K
15	min W:	inter	9.347	0.947	0.0	3.9		3.9	81.4	O K

	Storm Event			Discharge Volume (m³)	Time-Peak (mins)
15	min Summer	149.324	0.0	84.2	19
30	min Summer	96.288	0.0	108.6	33
60	min Summer	59.033	0.0	133.4	62
120	min Summer	34.961	0.0	158.0	122
180	min Summer	25.405	0.0	172.2	180
240	min Summer	20.147	0.0	182.1	236
360	min Summer	14.505	0.0	196.7	290
480	min Summer	11.486	0.0	207.7	354
600	min Summer	9.578	0.0	216.5	422
720	min Summer	8.254	0.0	223.8	492
960	min Summer	6.522	0.0	235.8	628
1440	min Summer	4.674	0.0	253.5	908
2160	min Summer	3.345	0.0	272.2	1296
2880	min Summer	2.636	0.0	286.0	1616
4320	min Summer	1.882	0.0	306.2	2292
5760	min Summer	1.481	0.0	321.4	2952
7200	min Summer	1.229	0.0	333.4	3672
8640	min Summer	1.055	0.0	343.5	4400
10080	min Summer	0.927	0.0	352.0	5136
15	min Winter	149.324	0.0	84.2	18
	©	1982-20	20 Inno	vyze	

Heyne Tillett Steel	
4 Pear Tree Court	
London	
EC1R 0DS	
Date 25/04/2023 15:35	Designed
File Tank.SRCX	Checked
XP Solutions	Source C

Summary of Results for 100 year Return Period (+40%)

Storm Max M		Max	Max		Max	Ma	x	Max	Status		
Event Level Depth		Infiltra	tion C	ontrol	Σ Out	flow	Volume				
	(m)	(m)	(1/s)		(l/s)	(1/	s)	(m³)			
30 min Winter	9.599	1.199		0.0	3.9		3.9	103.1	0 K		
60 min Winter	9.816	1.416		0.0	4.1		4.1	121.7	Flood Risk		
120 min Winter	9.961	1.561		0.0	4.2		4.2	134.3	Flood Risk		
180 min Winter	9.988	1.588		0.0	4.3		4.3	136.6	Flood Risk		
240 min Winter	9.969	1.569		0.0	4.3		4.3		Flood Risk		
360 min Winter				0.0	4.2		4.2		Flood Risk		
480 min Winter				0.0	4.1		4.1		Flood Risk		
600 min Winter				0.0	4.0		4.0		Flood Risk		
720 min Winter				0.0	3.9		3.9	109.3	ОК		
960 min Winter				0.0	3.9		3.9	96.9	ОК		
1440 min Winter				0.0	3.9		3.9	72.3	ОК		
2160 min Winter				0.0	3.9		3.9	36.4	ОК		
2880 min Winter				0.0	3.7		3.7	19.7	ОК		
4320 min Winter 5760 min Winter				0.0	3.0		3.0	9.3	ОК		
7200 min Winter				0.0 0.0	2.4 1.9		2.4	7.3 6.2	ОК		
8640 min Winter				0.0	1.9		1.9 1.7	5.6	0 K		
10080 min Winter				0.0	1.5		1.5	5.1	0 K		
	Stori Even		Rain (mm/hr)		e Vol	harge Lume n³)		-Peak ns)			
-	0 min	Winter	96.288	0	.0	108.6		33			
			59.033			133.4		62			
		Winter				158.0		120			
18	0 min	Winter				172.2		176			
24	0 min	Winter	20.147	0	.0	182.1		230			
36	60 min	Winter	14.505	0	.0	196.7		298			
48	0 min	Winter	11.486	0	.0	207.7		370			
		Winter				216.5		448			
		Winter				223.8		526			
			6.522			235.8		676			
		Winter Winter				253.5 272.2		980 1296			
			2.636			286.0		1588			
		Winter				306.2		2204			
		Winter				321.4		2936			
720	0 min	Winter				333.4		3672			
864	0 min	Winter	1.055	0	.0	343.5		4400			
1008	0 min	Winter	0.927	0	.0	352.0		5136			
			1982-20	20 Tr	000022						
	©1982-2020 Innovyze										

	Page 2
d by clennon by	Micro Drainage
Control 2020.1	

Dago 2	I I	Hourso mille	0++ C+	0.01					-	
Page 3		Heyne Tille								
		4 Pear Tree	e cour	Ú						
		London								
Mirco		EC1R 0DS								
nnon Desigoago		Date 25/04	/2023	15:3	5	D	esigr	ned by	y cl	ennon
Drainage		File Tank.						ed by		
2020.1		XP Solution						e Cont		2020
2020.1		AP SOLUCIO	115			50	ource		101	2020
						Moc	del D	Detail	Ls	
Winter Storms Yes Cv (Summer) 0.950					Storage i	s Onlin	ne Co	ver Le	vel	(m) 10
Cv (Winter) 0.950					Cell	lular	Stor	age S	truc	ture
est Storm (mins) 15										
est Storm (mins) 10080					1	Invert	Level	(m)	8.4	00 Saf
Climate Change % +40					on Coeffici on Coeffici	ient Ba	.se (m	n/hr) O	0.000	00
		De	pth (m)	Area	a (m²) Inf	. Area	(m²)	Depth	(m)	Area (
			0.000		86.0		0.0	1.	.601	
			1.600		86.0		0.0			
				1	Hydro-Bra	ake® O	ptim	um Ou	tflc	w Con
						Under D			QUE	0000
						Unit Re Design B			-SHE-	-0089-4
						sign Flo				
					200	-	ush-Fi			
								ive M	inim	ise ups
							licat			
						Sump Av	vaila	ble		
						Diamet	ter (r	mm)		
						vert Le				
					utlet Pipe ed Manhole					
					Contro	l Point	ts	Hea	ıd (m) Flow
				De	esign Point	t (Calc	ulate	:d)	1.60	0
							sh-Fl		0.38	
							ck-Fl		0.79	6
				Me	ean Flow ov	<i>i</i> er Hea	ld Ran	ge		-
		The hydrol	ogiaal	a . 1	lations ha	tro boo	n had	od on	+ho I	Jood (Di
		Hydro-Brak								
		Hydro-Brak invalidate	e Optim							
		Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth	(m)	Flow (
		0.100		2.8	1.200		3.8	3.	.000	
		0.200		3.6	1.400		4.0		.500	
		0.300		3.9	1.600		4.3		.000	
		0.400		3.9			4.5		.500	
		0.500		3.9	2.000		4.8		.000	
		0.600		3.7	2.200		5.0		.500	
		0.800		3.1	2.400		5.2		.000	
		1.000		3.5	2.600		5.4	6.	.500	
		<u> </u>			(©1982-	-2020) Tnnc)VV7(2
	1					JT 702	2020		· • y 20	<u> </u>

Heyne Tillett Steel		Page 3
4 Pear Tree Court		
London		Constant and
EC1R ODS		Mirro
Date 25/04/2023 15:35	Designed by clennon	Drainago
File Tank.SRCX	Checked by	Diamage
XP Solutions	Source Control 2020.1	·

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.950
Region	England and Wales	Cv (Winter) 0.950
M5-60 (mm)	20.800	Shortest Storm (mins) 15
Ratio R	0.442	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

Time Area Diagram

Total Area (ha) 0.238

Time	(mins)	Area
From:	To:	(ha)

0 4 0.238

		Page 4
d by clennon by Control 2020	1	Micro Drainage
2020	• 1	
ails		
r Level (m) 10.	000	
e Structure		
m) 8.400 Safe r) 0.00000 r) 0.00000	ety Factor 2.0 Porosity 1.00	
pth (m) Area (m²) Inf. Area (m²)
1.601	0.0	0.0
Outflow Con	trol	
	200 1 000 4200	
MD-SHE-0089-4	300-1600-4300 1.600	
	4.3	
M Minimise ups	Calculated tream storage	
1	Surface	
2	Yes 89	
	8.400	
	150	
	1200	
Head (m) Flow	(1/s)	
1.600	4.3	
0.388	3.9	
0.796	3.1 3.6	
	scharge relatio ontrol device o	
	calculations wi	
pth (m) Flow (l/s) Depth (m)	Flow (l/s)
3.000	5.8 7.000	8.6
3.500	6.2 7.500	8.9
4.000 4.500	6.68.0007.08.500	9.2 9.4
5.000	7.3 9.000	9.4
5.500	7.7 9.500	9.9
6.000	8.0	
6.500	8.3	
-		
Innovyze		

	1							Page 1
4 Pear Tree Court								0
London								and the second s
EC1R ODS								Mirco
Date 25/04/2023 15	:15		Desid	ned by	clenn	on		MILLU
File Tank.SRCX			-	ed by	010111	011		Urainac
KP Solutions Source Control 2020.1								
AP SOLUCIONS			Sourc	e cont	101 20	20.1		
Cummors	, of D	0011+0	for 100)	Doturn	Dorio	a (140	101
Sullillar	YOLK	esuits	IOF IUU) year	Return	l Perio	a (+40	13)
		Half	Drain Tim	ie : 46 i	minutes.			
Storm	Max	Max	Max	м	ax	Max	Max	Status
Event			Infiltrat					
	(m)	(m)	(1/s)			(1/s)	(m ³)	
15 min Summer	- G 831	0 831		0.0	4.4	4.4	17 0	Flood Risk
30 min Summer				0.0	4.4	4.4		Flood Risk Flood Risk
60 min Summer				0.0	4.4			Flood Risk
120 min Summer				0.0	4.4			Flood Risk
180 min Summer				0.0	4.4			Flood Risk
240 min Summer				0.0	4.4		14.3	
360 min Summer				0.0	4.4	4.4		
480 min Summer				0.0	4.4	4.4		
600 min Summer				0.0	4.3	4.3		
720 min Summer	9.168	0.168		0.0	4.2	4.2		
960 min Summer	9.115	0.115		0.0	3.7	3.7	2.4	O K
1440 min Summer	9.085	0.085		0.0	2.7	2.7	1.7	O K
2160 min Summer				0.0	2.0	2.0	1.4	O K
2880 min Summer	9.058	0.058		0.0	1.6	1.6	1.2	O K
4320 min Summer	9.048	0.048		0.0	1.1	1.1	1.0	O K
5760 min Summer	9.042	0.042		0.0	0.9	0.9	0.9	O K
7200 min Summer	9.038	0.038		0.0	0.7	0.7	0.8	O K
0 (10								
8640 min Summer	9.035	0.035		0.0	0.6	0.6		O K
8640 min Summer 10080 min Summer				0.0	0.6 0.6	0.6 0.6		
	9.033	0.033					0.7	
10080 min Summer	9.033	0.033		0.0	0.6	0.6	0.7	0 K
10080 min Summer	9.033	0.033 0.831		0.0	0.6 4.4	0.6	0.7 17.0	0 K
10080 min Summer	9.033 9.831	0.033 0.831		0.0 0.0 Flooded Volume	0.6 4.4 Dischar Volume	0.6 4.4	0.7 17.0 - Peak	0 K
10080 min Summer	9.033 9.831 Stor	0.033 0.831	Rain 1	0.0 0.0 Flooded	0.6 4.4 Dischar	0.6 4.4	0.7 17.0 - Peak	0 K
10080 min Summer 15 min Winter	9.033 9.831 Stor Even	0.033 0.831 m t	Rain 1	0.0 0.0 Flooded Volume	0.6 4.4 Dischar Volume (m ³)	0.6 4.4	0.7 17.0 - Peak	0 K
10080 min Summer 15 min Winter	<pre>9.033 9.831 Stor Even 15 min</pre>	0.033 0.831 m t	Rain 1 (mm/hr)	0.0 0.0 Flooded Volume (m ³)	0.6 4.4 Dischar Volume (m ³) 20	0.6 4.4 ge Time e (mi	0.7 17.0 -Peak ins)	0 K
10080 min Summer 15 min Winter	stor Stor Even 15 min 30 min	0.033 0.831 m t Summer Summer	Rain 1 (mm/hr) 149.324	0.0 0.0 Flooded Volume (m ³) 0.0	0.6 4.4 Dischar Volume (m ³) 20 26	0.6 4.4 ge Time e (mi	0.7 17.0 -Peak ins) 17	0 K
10080 min Summer 15 min Winter	<pre>s 9.033 9.831 Stor Even 15 min 30 min 60 min</pre>	0.033 0.831 m t Summer Summer	Rain 1 (mm/hr) 149.324 96.288	0.0 0.0 Flooded Volume (m ³) 0.0 0.0	0.6 4.4 Dischar Volume (m ³) 20 26 32	0.6 4.4 ge Time e (mi	0.7 17.0 -Peak ins) 17 31	0 K
10080 min Summer 15 min Winter 1	<pre>s 9.033 9.831 Stor Even 15 min 30 min 60 min 20 min</pre>	0.033 0.831 m t Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0	0.6 4.4 Dischar Volume (m ³) 20 26 32 37	0.6 4.4 ege Time e (mi 0.2 5.1 5.0	0.7 17.0 -Peak ins) 17 31 48	0 K
10080 min Summer 15 min Winter 1 1 1	s 9.033 9.831 Stor Even 15 min 30 min 60 min 20 min 80 min	0.033 0.831 t Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41	0.6 4.4 ege Time e (mi 0.2 5.1 5.0 .9	0.7 17.0 -Peak ins) 17 31 48 82	0 K
10080 min Summer 15 min Winter 1 1 2 3	s 9.033 9.831 Stor Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min	0.033 0.831 m t Summer Summer Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43	0.6 4.4 ege Time e (mi 0.2 0.1 0.9 .3	0.7 17.0 -Peak ins) 17 31 48 82 118	0 K
10080 min Summer 15 min Winter 1 1 1 2 3 4	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49	0.6 4.4 ge Time e (mi 0.2 0.1 0.3 0.3 0.6 0.1 0.7	0.7 17.0 - Peak ins) 17 31 48 82 118 152 212 268	0 K
10080 min Summer 15 min Winter 1 1 2 3 4 6	s 9.033 9.831 Stor Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min 00 min	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Voluma (m ³) 20 26 32 37 41 43 47 49 51	0.6 4.4 cge Time e (mi .2 .1 .9 .3 .6 .1 .7 .9	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322	0 K
10080 min Summer 15 min Winter 1 1 1 2 3 4 6 7	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 20 min 20 min 20 min</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Voluma (m ³) 20 26 32 37 41 43 47 49 51 53	0.6 4.4 rge Time (mi) .2 .1 .0 .9 .3 .6 .1 .7 .9 .6	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378	0 K
10080 min Summer 15 min Winter 1 1 1 2 3 4 6 7 9	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 mi</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49 51 53 56	0.6 4.4 rge Time (mi .2 .1 .0 .9 .3 .6 .1 .7 .9 .6 .5	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490	0 K
10080 min Summer 15 min Winter 1 1 1 2 3 4 6 7 9 14	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 min 40 mi</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49 51 53 56 60	0.6 4.4 rge Time (mi .2 .1 .0 .9 .3 .6 .1 .7 .9 .6 .5 .7	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734	0 K
10080 min Summer 15 min Winter 1 1 1 1 2 3 4 6 7 9 14 21	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 min 40 min 60 mi</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674 3.345	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49 51 53 56 60 65	0.6 4.4 rge Time (mi 0.2 0.1 0.9 0.3 0.6 0.1 0.7 0.5 0.7 0.2	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734 1100	0 K
10080 min Summer 15 min Winter 1 1 1 1 2 3 4 6 7 9 14 21 28	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 min 80 min 60 min 80 min 90 min 80 min 90 mi</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674 3.345 2.636	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49 51 53 56 60 65 68	0.6 4.4 rge Time e (mi 0.2 5.1 .0 .9 .3 .6 .1 .7 .9 .6 .5 .7 .2 .5	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734 1100 1432	0 K
10080 min Summer 15 min Winter 1 1 1 1 2 3 4 6 7 9 14 21 28 43	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 60 min 80 min 20 min 60 min 20 mi</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674 3.345 2.636 1.882	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49 51 53 56 60 65 68 73	0.6 4.4 rge Time e (mi 0.2 0.1 0.9 0.3 0.6 0.1 0.7 0.9 0.3 0.6 0.1 0.7 0.2 0.1 0.7 0.5 0.7 0.2 0.5 0.5 0.5	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734 1100 1432 2164	0 K
10080 min Summer 15 min Winter 1 1 1 1 2 3 4 4 6 7 9 14 21 28 43 57	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 80 min 20 min 60 min 20 min 60 min 20 min 60 mi</pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674 3.345 2.636 1.882 1.481	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49 51 53 56 60 65 68 73 77	0.6 4.4 rge Time e (mi 0.2 5.1 .0 .9 .3 .6 .1 .7 .9 .6 .5 .7 .2 .5 .4	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734 1100 1432 2164 2912	0 K
10080 min Summer 15 min Winter 1 1 1 1 2 3 4 4 6 7 9 14 21 28 43 57 72	<pre>s 9.033 s 9.831 storn Even 15 min 30 min 60 min 20 min 80 min 40 min 60 min 20 min 80 min 20 min 60 min </pre>	0.033 0.831 m t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674 3.345 2.636 1.882 1.481 1.229	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 20 26 32 37 41 43 47 49 51 53 56 60 65 68 73 77 79	0.6 4.4 rge Time e (mi 0.2 5.1 0.9 .3 .6 .1 .7 .9 .6 .5 .7 .2 .5 .4 .0 .8	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734 1100 1432 2164 2912 3672	0 K
10080 min Summer 15 min Winter 1 1 1 1 1 2 3 4 4 6 7 9 14 21 28 43 57 72 86	5 9.033 9.831 5 9.831 15 min 30 min 60 min 20 min 80 min 40 min 60 min 80 min 20 min 60 min 80 min 20 min 60 min 80 min 40 min 60 min 80 min 40 min 60 min 80 min 60 min 80 min 8	0.033 0.831 mt t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674 3.345 2.636 1.882 1.481 1.229 1.055	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 200 26 32 37 41 43 47 49 51 53 56 60 65 68 73 77 79 82	0.6 4.4 rge Time e (mi 0.2 5.1 0.9 .3 .6 .1 .7 .9 .6 .5 .7 .2 .5 .4 .0 .8 .3	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734 1100 1432 2164 2912 3672 4400	0 K
10080 min Summer 15 min Winter 1 1 1 1 2 3 4 4 6 7 9 14 21 28 43 57 72 86 100	s 9.033 9.831 Storn Even 15 min 30 min 20 min 80 min 20 min 80 min 20 min 60 min 80 min 20 min 60 min 80 min 20 min 60 min 80 mi	0.033 0.831 mt t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Rain 1 (mm/hr) 149.324 96.288 59.033 34.961 25.405 20.147 14.505 11.486 9.578 8.254 6.522 4.674 3.345 2.636 1.882 1.481 1.229	0.0 0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.6 4.4 Dischar Volume (m ³) 200 26 32 37 41 43 47 49 51 53 56 60 65 68 73 77 79 82 84	0.6 4.4 rge Time e (mi 0.2 5.1 0.9 .3 .6 .1 .7 .9 .6 .5 .7 .2 .5 .4 .0 .8	0.7 17.0 -Peak ins) 17 31 48 82 118 152 212 268 322 378 490 734 1100 1432 2164 2912 3672	0 K

Heyne Tillett Steel	
4 Pear Tree Court	
London	
EC1R 0DS	
Date 25/04/2023 15:15	Designed
File Tank.SRCX	Checked 3
XP Solutions	Source Co
Summary of Results f	or 100 ye

	Storm	Max	Max	Max		Max	Max	Max	Status
	Event	Level	Depth	Infiltra	tion Co	ntrol	Σ Outflo	w Volume	
		(m)	(m)	(1/s)) ((l/s)	(1/s)	(m³)	
30	min Winter	9,970	0.970		0.0	4.4	4.	4 19.9	Flood Risk
	min Winter				0.0	4.4			Flood Risk
	min Winter				0.0	4.4			Flood Risk
	min Winter				0.0	4.4			Flood Risk
240	min Winter	9.514	0.514		0.0	4.4	4.	4 10.5	ОК
360	min Winter	9.263	0.263		0.0	4.4	4.	4 5.4	O K
480	min Winter	9.148	0.148		0.0	4.1	4.	1 3.0	O K
600	min Winter	9.110	0.110		0.0	3.6	3.	6 2.3	O K
720	min Winter	9.095	0.095		0.0	3.1	3.	1 2.0	O K
960	min Winter	9.079	0.079		0.0	2.5	2.	5 1.6	O K
1440	min Winter	9.063	0.063		0.0	1.8	1.	8 1.3	O K
2160	min Winter	9.052	0.052		0.0	1.3	1.	3 1.1	O K
	min Winter				0.0	1.0	1.		O K
	min Winter				0.0	0.7	0.		O K
	min Winter				0.0	0.6	0.		O K
	min Winter				0.0	0.5	0.		
	min Winter				0.0	0.4		4 0.6	0 K
10080	min Winter	9.026	0.026		0.0	0.4	0.	4 0.5	0 K
		Stori Even		Rain (mm/hr)			harge Tin ume (me-Peak (mins)	
		2701	-	((m ³)		1 ³)	(
					()	(11	. ,		
	3	0 min	Winter	96.288	0.0	0	26.1	30	
	6	0 min	Winter	59.033	0.0	0	32.0	50	
				34.961	0.0	0	37.9	88	
				25.405	0.0		41.3	126	
				20.147	0.0		43.6	158	
				14.505	0.0		47.1	212	
			Winter		0.0		49.7	262	
			Winter		0.0		51.9	312	
			Winter	8.254 6.522	0.0		53.6	370	
			Winter		0.0		56.5 60.7	490 736	
			Winter		0.0		65.2	1100	
			Winter		0.0		68.5	1456	
			Winter		0.0		73.4	2140	
			Winter				77.0	2848	
			Winter		0.0		79.8	3640	
			Winter				82.3	4448	
			Winter				84.3	4968	

©1982-2020 Innovyze

	Page 2
d by clennon by	Micro Drainage
Control 2020.1	

ear Return Period (+40%)

Page 3		Heyne Tille	ett St	ceel						
0		4 Pear Tree	e Cour	ct						
Constant of		London								
Mirco		EC1R 0DS								
MICIU	-	Date 25/04	/2023	15:1	5	De	sigr	ned by	/ cl	enr
Urainage		File Tank.						ed by		-
	-	XP Solution						e Cont	rol	20
	-	XI SOLUCIO	115			50	Jurce		.101	20
						Mod	el D	Detail	S	
Yes 950					Storage	is Onlin	le Co	ver Le	vel	(m)
950 15					Cel	lular S	Stora	age St	truc	tui
080 +40					on Coeffic on Coeffic		se (m	/hr) 0		00
		Dej	pth (m)	Area	a (m²) Inf	. Area	(m²)	Depth	(m)	Are
			0.000		20.5 20.5		0.0	1.	001	
					Hydro-Br	ake® Op	ptim	um Oui	tflo	<u>w (</u>
						Unit Re	ferei	nce MD	-SHE-	-000
						Design H			0112	005
					De	sign Flo				
							ish-Fl			~~~
							icati	ive M: ion	111111	.se
						Sump Av				
						Diamet				
						nvert Le				
					Outlet Pip ted Manhol					
					Contr	ol Point	s	Hea	d (m) F
				D	esign Poir				1.00	
							sh-Fl ck-Fl		0.29	
				М	ean Flow c				0.05	_
		The hydrol Hydro-Brak	-							
		Hydro-Brak invalidate	e Optir							
		Depth (m)	Flow	(l/s)	Depth (m)	Flow (1	1/s)	Depth	(m)	Flo
		0.100		3.3	1.200	1	4.8	3.	000	
		0.200		4.3	1.400	1	5.1	З.	500	
		0.300		4.4			5.5		000	
		0.400 0.500		4.3 4.2			5.8 6.1		500 000	
		0.600		3.8			6.4		500	
		0.800		4.0	2.400	1	6.6	6.	000	
		1.000		4.4	2.600	1	6.9	6.	500	
						©1982-	2020) Tnno	1717-7	
	l					ST 202-	2020	11110	vyze	

Heyne Tillett Steel		Page 3
4 Pear Tree Court		C
London		
EC1R 0DS		Mirco
Date 25/04/2023 15:15	Designed by clennon	Drainago
File Tank.SRCX	Checked by	brainage
XP Solutions	Source Control 2020.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	100	Cv (Summer)	0.950
Region	England and Wales	Cv (Winter)	0.950
M5-60 (mm)	20.800	Shortest Storm (mins)	15
Ratio R	0.442	Longest Storm (mins)	10080
Summer Storms	Yes	Climate Change %	+40

Time Area Diagram

Total Area (ha) 0.057

Time	(mins)	Area
From:	To:	(ha)

0 4 0.057

	Page 4
d by clennon by Control 2020.1	Micro Drainage
2020.1	
cails	
r Level (m) 10.000	
e Structure	
m) 9.000 Safety Factor 2.0 r) 0.00000 Porosity 1.00 r) 0.00000	
pth (m) Area (m²) Inf. Area ((m²)
1.001 0.0	0.0
Outflow Control	
MD-SHE-0099-4400-1000-4400 1.000	
4.4	
M Calculated e Minimise upstream storage	
Surface	
Yes 99	
9.000	
150	
1200	
Head (m) Flow (l/s)	
1.000 4.4	
0.297 4.4 0.636 3.6	
- 3.8	
on the Head/Discharge relation	unshin for the
other type of control device of	other than a
corage routing calculations wi	lll be
pth (m) Flow (1/s) Depth (m)	Flow (1/s)
3.000 7.3 7.000	11.0
3.5007.97.5004.0008.48.000	11.3 11.7
4.500 8.9 8.500	12.0
5.000 9.4 9.000	12.4
5.500 9.8 9.500 6.000 10.2	12.7
6.500 10.6	
Innovyze	

Appendix F Correspondence with LBC and Thames Water

Craig Marchant

From: Sent:	Craig Marchant 13 August 2020 12:46
То:	Berry-Khan, Gabriel
Cc:	Fowler, David; Frost, Katherine; Chris Gearey; Alex Carvalho; Daniel Staddon; Cillian
	Ryan; ASnow@iceniprojects.com
Subject:	RE: 2413 - Labs Holborn Proposed Surface Water Discharge Rate

Hi Gabriel,

Thank you for confirming this, I will ensure we design as much SuDS into the scheme as possible to ensure a sustainable drainage design for both sites.

Kind Regards

Craig Marchant MEng(Hons) Senior Civil Engineer Civil & Infrastructure

MEIN-ARDT

Meinhardt (UK) Ltd, 10 Aldersgate Street, London, EC1A 4HJ T: +44 (0) 207 831 7969

Co. Reg. No. 4131858

Infrastructure & Environment | Structures | MEP | Project Management | Planning & Urban Development | Façade Engineering | Environmentally Sustainable Design | Specialist and Architectural Lighting | Fire Performance Engineering | Integrated Design Management | Mission Critical Facility Design

E: <u>Craig.Marchant@meinhardt.co.uk</u> | W: <u>www.meinhardt.co.uk</u>

Go Green . Print Less

This email communication may contain information that is privileged or confidential. It is intended for the sole use of the individual or entity to whom it is addressed. If you are not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. Our company does not accept responsibility for the content of any email transmitted by its staff for any reason other than legitimate business purposes. Our company uses virus-scanning software, however we do not guarantee this email is free of viruses, errors or interference.

From: Berry-Khan, Gabriel [mailto:Gabriel.Berry-Khan@camden.gov.uk] Sent: 13 August 2020 12:43

To: Craig Marchant < Craig.Marchant@meinhardt.co.uk>

Cc: Fowler, David <David.Fowler@camden.gov.uk>; Frost, Katherine <Katherine.Frost@camden.gov.uk>; Chris Gearey <C.Gearey@Gardiner.com>; Alex Carvalho <alex.carvalho@meinhardt.co.uk>; Daniel Staddon <Daniel.Staddon@meinhardt.co.uk>; Cillian Ryan <cillian.ryan@meinhardt.co.uk>; ASnow@iceniprojects.com Subject: RE: 2413 - Labs Holborn Proposed Surface Water Discharge Rate

Hi Craig

Thanks for this

You would need to demonstrate that you have exhausted the roof and landscape opportunities, regarding maximising SuDS to deal with extra volumes. If so, I think it would be reasonable to accept the approach below.

As mentioned this is subject to Thames Water approval, and so I would encourage at least initial correspondence with them on the matter at an early stage.

Thanks Gabriel

Gabriel Berry-Khan Senior Sustainability Officer (Planning)

Telephone: 020 7974 4550

fints

The majority of Council staff are now working at home through remote, secure access to our systems.

Where possible please now communicate with us by telephone or email. We have limited staff in our offices to deal with post, but as most staff are homeworking due to the current situation with COVID-19, electronic communications will mean we can respond quickly.

From: Craig Marchant < Craig.Marchant@meinhardt.co.uk >
Sent: 13 August 2020 12:17

To: Berry-Khan, Gabriel <<u>Gabriel.Berry-Khan@camden.gov.uk</u>> Cc: Fowler, David <<u>David.Fowler@camden.gov.uk</u>>; Frost, Katherine <<u>Katherine.Frost@camden.gov.uk</u>>; Chris Gearey <<u>C.Gearey@Gardiner.com</u>>; Alex Carvalho <<u>alex.carvalho@meinhardt.co.uk</u>>; Daniel Staddon <<u>Daniel.Staddon@meinhardt.co.uk</u>>; Cillian Ryan <<u>cillian.ryan@meinhardt.co.uk</u>>; <u>ASnow@iceniprojects.com</u> Subject: FW: 2413 - Labs Holborn Proposed Surface Water Discharge Rate

[EXTERNAL EMAIL] Beware – This email originated outside Camden Council and may be malicious Please take extra care with any links, attachments, requests to take action or for you to verify your password etc. Please note there have been reports of emails purporting to be about Covid 19 being used as cover for scams so extra vigilance is required.

Hi Gabriel,

Good speaking to you on the phone just now. Following that phone call, I just wanted to clarify our discussion

The Council are happy with the proposed drainage strategy to drain surface water from the proposed new developments West Central Street and the Museum Street, both at 51/s into the Thames water public sewer. To achieve this we will provide a combination of blue roofs, green roofs, and attenuation tanks with flow controls as our proposed SuDS.

Also on the Museum Street site, the Council has no objection to the area shown hatched in orange on SK005 (attached) draining as it currently is, with surface water runoff draining into the highway drainage of West Central Street and Museum Street. As discussed with you, this is pending the approval of Thames Water.

Please can you send me an email confirming this and I will proceed with obtaining Thames Waters's approval, which will be included in our drainage strategy report we issue to Camden Council at Planning.

Kind Regards

Craig Marchant MEng(Hons) Senior Civil Engineer Civil & Infrastructure

MEIN-ARDT

Meinhardt (UK) Ltd, 10 Aldersgate Street, London, EC1A 4HJ T: +44 (0) 207 831 7969

Co. Reg. No. 4131858

Infrastructure & Environment | Structures | MEP | Project Management | Planning & Urban Development | Façade Engineering | Environmentally Sustainable Design | Specialist and Architectural Lighting | Fire Performance Engineering | Integrated Design Management | Mission Critical Facility Design

E: <u>Craig.Marchant@meinhardt.co.uk</u> | W: <u>www.meinhardt.co.uk</u>

Go Green . Print Less

This email communication may contain information that is privileged or confidential. It is intended for the sole use of the individual or entity to whom it is addressed. If you are not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. Our company does not accept responsibility for the content of any email transmitted by its staff for any reason other than legitimate business purposes. Our company uses virus-scanning software, however we do not guarantee this email is free of viruses, errors or interference.

From: Craig Marchant

Sent: 22 July 2020 14:08

To: Berry-Khan, Gabriel <<u>Gabriel.Berry-Khan@camden.gov.uk</u>>; Fowler, David <<u>David.Fowler@camden.gov.uk</u>> Cc: Cillian Ryan <<u>cillian.ryan@meinhardt.co.uk</u>>; Daniel Staddon <<u>Daniel.Staddon@meinhardt.co.uk</u>>; Chris Gearey <<u>C.Gearey@Gardiner.com</u>>; Alex Carvalho <<u>alex.carvalho@meinhardt.co.uk</u>>; <u>ASnow@iceniprojects.com</u>; Frost, Katherine <<u>Katherine.Frost@camden.gov.uk</u>>

Subject: 2413 - Labs Holborn Proposed Surface Water Discharge Rate

Hi Gabriel,

It was good speaking to you on the phone, as discussed I have summaries my proposal in an email for you to review with your colleagues.

The proposed Labs Holborn Planning Application consists of two separate sites; 1 West Central Street and 1 Museum Street, which are separated by the Council owned West Central Street. Please see SK004 attached. As such we are proposing two separate drainage strategies.

<u>1 West Central Street:</u>

The existing West Central Street site is currently discharging surface water in the Thames Water combined sewer unrestricted at a rate of 38.6l/s. The proposed scheme is part refurbishment, part new build project and therefore there

are constraints as to where we can include SuDS due to an existing basement and some existing buildings which are not suitable for blue/green roof.

We have tried to develop a design that discharges at greenfield rates, however, this rate is so low we can't achieve this (0.16l/s). Therefore we have looked at the possibility of discharging at 2l/s, however, this is still very challenging due to the limited space for blue roof and the limited space for an attenuation tank in the basement. This being said we have been able to develop a SuDS strategy based on a proposed surface water discharge rate of 5l/s that uses a combination of blue and green roofs on three of the proposed roof area and the proposed courtyard, with a smaller attenuation tank in the existing basement. By discharging at 5l/s, we will be providing an 87% reduction compared to the existing site. Please can you review this strategy and let me know if it is acceptable to the Council?

1 Museum Street:

The existing Museum Street site is currently discharging surface water into the Thames Water combined sewer unrestricted at a rate of 127.2l/s. The proposed scheme is part refurbishment part, new build project and therefore there are constraints as to where we can include SuDS due to an existing basement and Root protection zones.

We have tried to develop a design that discharges at greenfield rates, however, this rate is so low we can't achieve this (0.351/s). As we discussed on the phone there is an area of the private site that is shown hatched on SK005 attached. This area is currently used by the public and is draining surface water runoff into the highway drainage network on Museum Street. This area is also occupied by existing services and root protection zones that make it difficult to install drainage, let alone install any form of SuDS to provide attenuation. The proposed works in this area are only upgrades to the finishes and some S278 works that will be agreed with the Council at a later date. Therefore I would like to propose as there are no major changes, this area of the site continues to drain surface water runoff into the highway drainage, as existing.

By allowing this area to drain into the highway, we have been able to develop a SuDS strategy for the remaining site area that uses a combination of blue roofs and a below ground attenuation tank, that will discharge at 21/s. Thus providing a 98% reduction compared to the existing site.

If it cannot be agreed that the hatched area on SK005 can drain into the highway drainage, we can accommodate this onsite, however, to do this we will require the larger discharge rate of 5l/s due to the limited space to install SuDS because of the existing basement, Root protection zones and existing services. By discharging at 5l/s we will be able to provide a 96% reduction compared to the existing site condition.

Please can you review my proposals and let me know if they would be acceptable to Camden Council?

Kind Regards

Craig Marchant MEng(Hons) Senior Civil Engineer Civil & Infrastructure

Meinhardt (UK) Ltd, 10 Aldersgate Street, London, EC1A 4HJ T: +44 (0) 207 831 7969

Co. Reg. No. 4131858

Infrastructure & Environment | Structures | MEP | Project Management | Planning & Urban Development | Façade Engineering | Environmentally Sustainable Design | Specialist and Architectural Lighting | Fire Performance Engineering | Integrated Design Management | Mission Critical Facility Design

E: Craig.Marchant@meinhardt.co.uk | W: www.meinhardt.co.uk

Go Green . Print Less

This email communication may contain information that is privileged or confidential. It is intended for the sole use of the individual or entity to whom it is addressed. If you are not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. Our company does not accept responsibility for the content of any email transmitted by its staff for any reason other than legitimate business purposes. Our company uses virus-scanning software, however we do not guarantee this email is free of viruses, errors or interference.

This e-mail may contain information which is confidential, legally privileged and/or copyright protected. This e-mail is intended for the addressee only. If you receive this in error, please contact the sender and delete the material from your computer. See our new Privacy Notice here which tells you how we store and process the data we hold about you and residents.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

Mr C Marchant Meinhardt UK 10 Aldersgate Street London EC1A 4HJ

Pre-planning enguiry: Wastewater Capacity check

Dear Mr Marchant

Thank you for providing details of your development with the Pre-Planning application dated 19th Aug 20 for development @ 1 Museum St Holborn London WC1A 1JR

Existing brownfld site ,developed to { Commercial area consisting of Offices } as per your above application.

We have completed the current assessment of the foul water flows based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network, in liaison with TW Asset Planners.

Foul

If your proposals progress in line with the details you've provided as above, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent TW foul sewer networks to serve your foul discharges from your development, provided it is by gravity.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

in the number or density of homes. Such changes could mean there is no longer sufficient capacity and has to be investigated again.

Surface Water

When developing a site, policy 5.13 of the London Plan and Policy 3.4 of the Supplementary Planning Guidance (Sustainable Design And Construction) states that every attempt should be made to use flow attenuation and SuDS/Storage to reduce the surface water discharge from the site as much as possible.

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your

Our ref: DS6076752

0800 009 3921 Monday to Friday, 8am to 5pm

18th August 2020

You'll need to keep us informed of any changes to your design - for example, an increase

surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means

The disposal hierarchy being:

- 1. store rainwater for later use.
- 2. use infiltration techniques where possible.
- 3. attenuate rainwater in ponds or open water features for gradual release.
- 4. attenuate rainwater by storing in tanks or sealed water features for gradual release.
- 5. discharge rainwater direct to a watercourse.;; and if above cannot be achieved
- 6. discharge rainwater to a surface water sewer/drain.
- 7. discharge rainwater to the combined sewer.
- 8. discharge rainwater to the foul sewer

Where connection to the public sewerage network is still required after examining the hierarchy {1-5} to manage surface water flows we will accept these flows at a discharge rate in line with *CIRIA's best practice guide on SuDS or that stated within the sites planning approval.*

If the above surface water hierarchy has been followed and if the flows are restricted to a total of 5.0 I/s as per your application to TW sewer network, then we would not have any objections to the proposal. We note that you have liaised with the LA and agreed the surface water drainage strategy.

Please see the attached 'Planning your wastewater' leaflet for additional information. At the appropriate time, you will have to apply for a S106 connection application to DS Connection team

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

Please note that you must keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient sewerage capacity.

What happens next?

Please make sure you submit your connection application, when you are ready, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me.

Yours sincerely

Siva Sivarajan

Developer Services- Wastewater Adoptions Engineer Office:0203 577 7752 Mobile: 07747842608 siva.sivarajan@thameswater.co.uk

Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>

TW Int ref : DTS 66700

Craig Marchant

From:	Craig Marchant
Sent:	26 August 2020 16:06
То:	'Siva Sivarajan'; Developer Services
Cc:	Alan Dovey
Subject:	RE: RE: 2413 - Museum Street, London - Pre Development Enquiry (1 of 2)

Hi Siva,

Thank you for confirming this,

Kind Regards

Craig Marchant MEng(Hons) Senior Civil Engineer Civil & Infrastructure

METN-1/RDi

Meinhardt (UK) Ltd, 10 Aldersgate Street, London, EC1A 4HJ T: +44 (0) 207 831 7969

Co. Reg. No. 4131858

Infrastructure & Environment | Structures | MEP | Project Management | Planning & Urban Development | Facade Engineering | Environmentally Sustainable Design | Specialist and Architectural Lighting | Fire Performance Engineering | Integrated Design Management | Mission Critical Facility Design

E: Craig.Marchant@meinhardt.co.uk | W: www.meinhardt.co.uk

Go Green Print Less

This email communication may contain information that is privileged or confidential. It is intended for the sole use of the individual or entity to whom it is addressed. If you are not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. Our company does not accept responsibility for the content of any email transmitted by its staff for any reason other than legitimate business purposes. Our company uses virus-scanning software, however we do not guarantee this email is free of viruses, errors or interference

From: Siva Sivarajan [mailto:Siva.Sivarajan@thameswater.co.uk]

Sent: 26 August 2020 16:05

To: Craig Marchant <Craig.Marchant@meinhardt.co.uk>; Developer Services <developer.services@thameswater.co.uk> Cc: Alan Dovey <alan.dovey@thameswater.co.uk>

Subject: RE: RE: 2413 - Museum Street, London - Pre Development Enquiry (1 of 2)

Dear Sir

- Pre planning applications for capacity checks are for the 'new aspect' of the development;
- The application form and the attached letters indicate that the existing highway drainage remains the same. This is again confirmed below in your email as highlighted by me;
- ✤ As such it is only the 5 l/s that is related to this application and is approved
- ✤ As for the highway drainage, it is unaltered and you have agreed with the local LLFA as well;

The below is the extract from your application form under 'proposed' which further consolidates the situation: " The Total site area = 0.326 ha. Of this area 0.266 ha will be drained via an on site drainage network which will discharge at 51/s into the Thames Water public sewer. A drainage network utilising Blue and green roofs with an attenuation tank is proposed

The remaining 0.06ha of the site is currently draining unrestricted in the the public highway sewer. It has been agreed with the LLFA Camden Borough Council that this area of the site can continue to drain into the highway drainage unrestricted. This has been estimated to be 36l/s"

As such the consent letter covers all areas as it is meant to be

Regards

Siva Sivarajan Developer Services- Wastewater Adoptions Engineer

Mobile: 07747642603 siva.sivarajan@thameswater.co.uk

Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire, RG1 8DB Find us online at developers.thameswater.co.uk

Get advice on making your sewer connection correctly at connectright.org.uk

Sew ers for Adoption (SFA) was replaced by the new Code for Adoptions on $1^{\#}$ April 2020, please use this link to find the new national standards and documents. Any applications made prior to 1st April will continue to be assessed against SFA.

From: Craig Marchant <<u>Craig.Marchant@meinhardt.co.uk</u>> Sent: 26 August 2020 13:03

To: Developer Services <<u>developer.services@thameswater.co.uk</u>> Cc: Siva Sivarajan <Siva.Sivarajan@thameswater.co.uk> Subject: RE: RE: 2413 - Museum Street, London - Pre Development Enquiry (1 of 2)

FAO Siva Sivaranjan and Alan Doveys,

Hi Siva and Alan,

Thank you for confirming there is the capacity for the prospered site in the existing Thames Water combined sewer surrounding my site. In the pre development response you state you have no object to the 5l/s surface water discharge connection from the pipe connection, pending it has been agreed with the LLFA Camden Council, which is has.

However along with this piped connection, we are still proposing to drain an area of the private site into the public highway drainage connected to your combined sewer, this will be unrestricted as per the current arrangement. We have agreed with Camden that this area of the private site can discharge unrestricted into the highway drainage, as this is the current condition and we are not changing anything in this area. There are also lots of existing services and root protection zones that we are keen to avoid disrupting.

The private area of our site will discharge at 36l/s for a 1 in 100 +40% CC into the highway drainage, this doesn't include the 5l/s piped discharge rate. Please can you confirm you have no objection to this arrangement?

Kind Regards

Craig Marchant MEng(Hons) Senior Civil Engineer **Civil & Infrastructure**

*N*IETNH/RDī

Meinhardt (UK) Ltd, 10 Aldersgate Street, London, EC1A 4HJ T: +44 (0) 207 831 7969

Co. Reg. No. 4131858

Infrastructure & Environment | Structures | MEP | Project Management | Planning & Urban Development | Facade Engineering | Environmentally Sustainable Design | Specialist and Architectural Lighting | Fire Performance Engineering | Integrated Design Management | Mission Critical Facility Design

E: Craig.Marchant@meinhardt.co.uk | W: www.meinhardt.co.uk

Go Green . Print Less

This email communication may contain information that is privileged or confidential. It is intended for the sole use of the individual or entity to whom it is addressed. If you are not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. Our company does not accept responsibility for the content of any email transmitted by its staff for any reason other than legitimate business purposes. Our company uses virus-scanning software, however we do not guarantee this email is free of viruses, errors or interference.

From: DEVELOPER.SERVICES@THAMESWATER.CO.U [mailto:DEVELOPER.SERVICES@THAMESWATER.CO.UK]

Sent: 26 August 2020 12:44

To: Craig Marchant < Craig.Marchant@meinhardt.co.uk >

Subject: RE: RE: 2413 - Museum Street, London - Pre Development Enguiry (1 of 2)

response attched; please note this application is for Capacity check and the response relates to it;

please note that this is in Mr Alan Doveys area and as he is on leave i have responded; if you have further query please contact Alan D;

regards

Siva Sivarajan Developer Services- Wastewater Adoptions Engineer Mobile: 07747642603 siva.sivarajan@thameswater.co.uk

Thames Water Utilities Ltd, Clearwater Court, Vastern Road, Reading, Berkshire, RG1 8DB Find us online at developers.thameswater.co.u

Get advice on making your sewer connection correctly at connectright.org.uk

Original Text

From: Craig Marchant <<u>Craig.Marchant@meinhardt.co.uk</u>> DEVELOPER.SERVICES@THAMESWATER.CO.U To: <DEVELOPER.SERVICES@THAMESWATER.CO.UK> CC: 19.08.20 18:42:49 Sent:

To whom it may concern

RE: Pre-Development Enguiry, 1 Museum Street, London, WC1A 1JP

Please find attached our Application for a Pre-Development Enguiry for the abovementioned development.

Once reviewed could you please contact me to discuss servicing requirements for this site.

Please do not hesitate to contact me should you require any further information.

Kind Regards

Craig Marchant MEng(Hons) Senior Civil Engineer Civil & Infrastructure

MEIN-ARDI

Meinhardt (UK) Ltd, 10 Aldersgate Street, London, EC1A 4HJ T: +44 (0) 207 831 7969

Co. Reg. No. 4131858

Infrastructure & Environment | Structures | MEP | Project Management | Planning & Urban Development | Façade Engineering | Environmentally Sustainable Design | Specialist and Architectural Lighting | Fire Performance Engineering | Integrated Design Management | Mission Critical Facility Design

E: Craig.Marchant@meinhardt.co.uk | W: www.meinhardt.co.uk

Go Green . Print Less

This email communication may contain information that is privileged or confidential. It is intended for the sole use of the individual or entity to whom it is addressed. If you are not the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. Our company does not accept responsibility for the content of any email transmitted by its staff for any reason other than legitimate business purposes. Our company uses virus-scanning software, however we do not guarantee this email is free of viruses, errors or interference.

Visit us online www.thameswater.co.uk, follow us on twitter www.twitter.com/thameswater or find us on www.facebook.com/thameswater. We're happy to help you 24/7.

Subject: RE: 2413 - Museum Street, London - Pre Development Enquiry (1 of 2)

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

Visit us online www.thameswater.co.uk, follow us on twitter www.twitter.com/thameswater or find us on www.facebook.com/thameswater. We're happy to help you 24/7.

Thames Water Limited (company number 2366623) and Thames Water Utilities Limited (company number 2366661) are companies registered in England and Wales, both are registered at Clearwater Court, Vastern Road, Reading, Berkshire RG1 8DB. This email is confidential and is intended only for the use of the person it was sent to. Any views or opinions in this email are those of the author and don't necessarily represent those of Thames Water Limited or its subsidiaries. If you aren't the intended recipient of this email, please don't copy, use, forward or disclose its contents to any other person – please destroy and delete the message and any attachments from your system.

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

Mr Craig Marchant

Meinhardt (UK) Ltd 10 Aldersgate Street, London, E1A 4HJ

06 July 2022

Pre-planning enquiry: Confirmation of sufficient capacity

Site: 1 West Central Street, London - WC1V6PJ

Dear Craig,

Thank you for providing information on your proposed development.

Existing site: Flats (2 units), Public House (889 people), Offices (733m2) and Shopping Centre (587m2).

Proposed site: Flats (26 units).

Proposed foul water discharge by gravity into manholes TQ30812410, TQ3081141B and TQ30811404

Proposed surface water discharge at 5.0 l/s for all storm events up to and including 1:100yr+40\$CC into manhole TQ30811404.

We're pleased to confirm that there will be sufficient foul water and surface water capacity in our sewerage network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design - for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you've any further questions, please contact me on 07747 647 155.

Kind Regards

Zaid Kazi

Developer Services - Major Projects, Project Engineer zaid.kazi@thameswater.co.uk Get advice on making your sewer connection correctly at connectright.org.uk Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at developers.thameswater.co.uk

Ms Carmel Lennon – Heyne Tillett Steel 16 Chart Street LONDON N1 6DD

02 June 2023

Pre-planning enquiry: Confirmation of sufficient capacity

Site address: 1 Museum Street, London WC1A 1JR

Dear Ms Lennon,

Thank you for providing information on your development of 23 new houses and 23,625 m² office space with proposed foul water discharge via gravity and surface water discharge via gravity at max. 5.0 l/s to the 1676x914 mm combined water sewer in High Holborn.

We have completed the assessment of the foul water and surface water flows based on the information submitted in your application with the purpose of identifying sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the nearby combined water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, up to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number/density of units. Such changes could mean that there is no longer sufficient capacity.

Surface Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the nearby combined water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, up to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase of the impermeable area. Such changes could mean that there is no longer sufficient capacity.

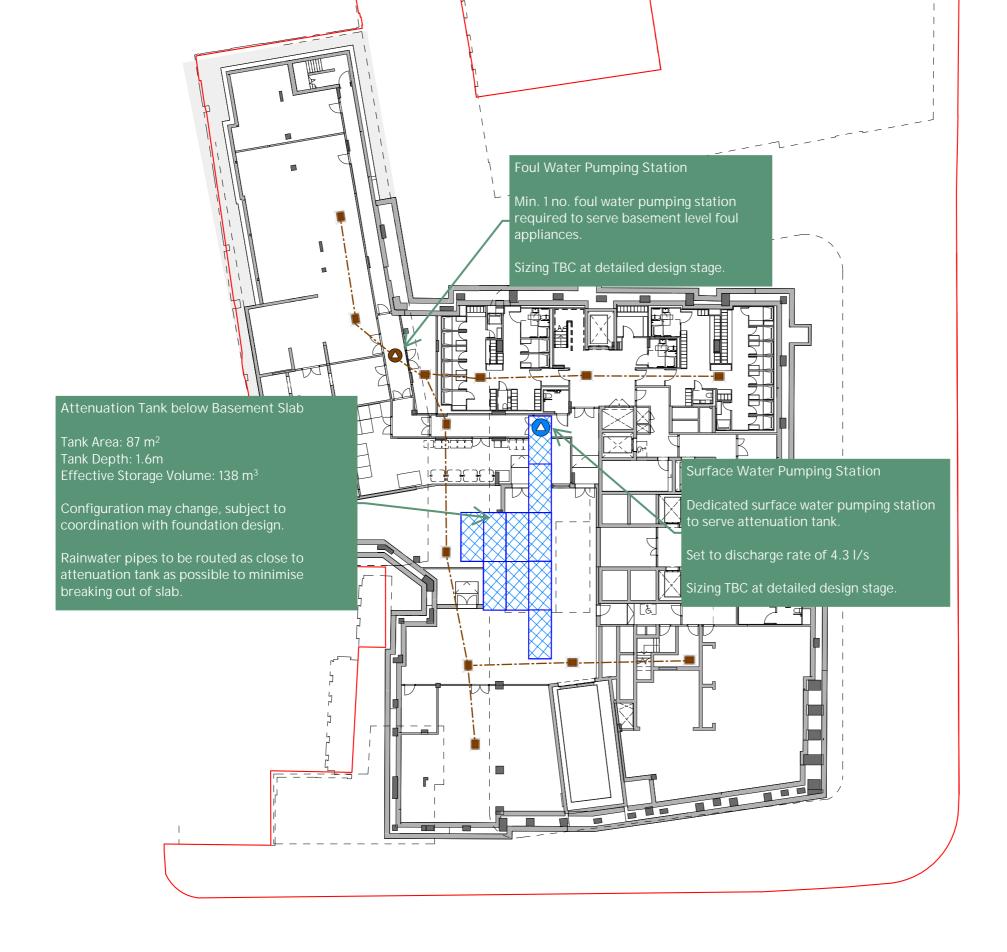
Thame Water

What happens next?

Please make sure to submit your sewer connection application, giving us at least 21 days' notice of the date you wish to make your new connection(s).

If you have any queries, please give me a call on 07747 644 979 (9am to 5pm, Monday to Friday) or email <u>developer.services@thameswater.co.uk</u>.

Yours sincerely,


Nicholas Short BSc (Hons) Adoption & Pre-planning Engineer Waste Connections Thames Valley & Home Counties Service Delivery

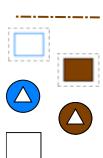
Page 1 of 2

Appendix G Preliminary SuDS Layouts & Exceedance Layouts

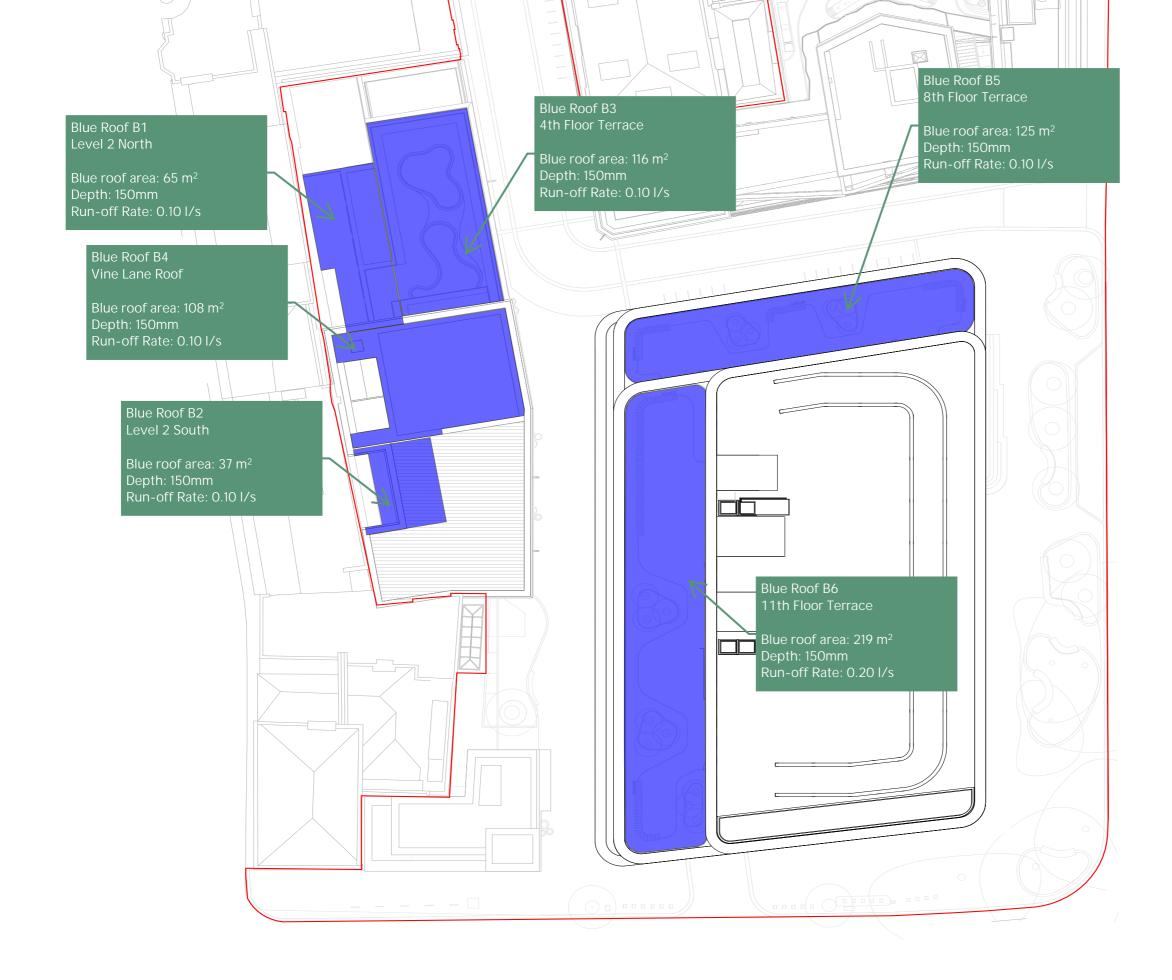
Job 1 Museum Street

Job No. 2952

Sheet SK016


LEGEND

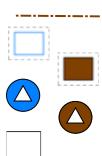
Attenuation Tank


Blue Roof

Surface Water Drain Run Foul Water Drain Run Surface Water Manhole Foul Water Manhole Surface Water Pump Foul Water Pump Existing Manhole

105/2023	02/05/2023	Date	
	CL	Eng.	t
STEEL	P1	Rev.	

Job	1 Museum Street	
Title	Preliminary Drainage L	ayout: Museum Street Site - Roof
Job N	o. 2952	Sheet SK017

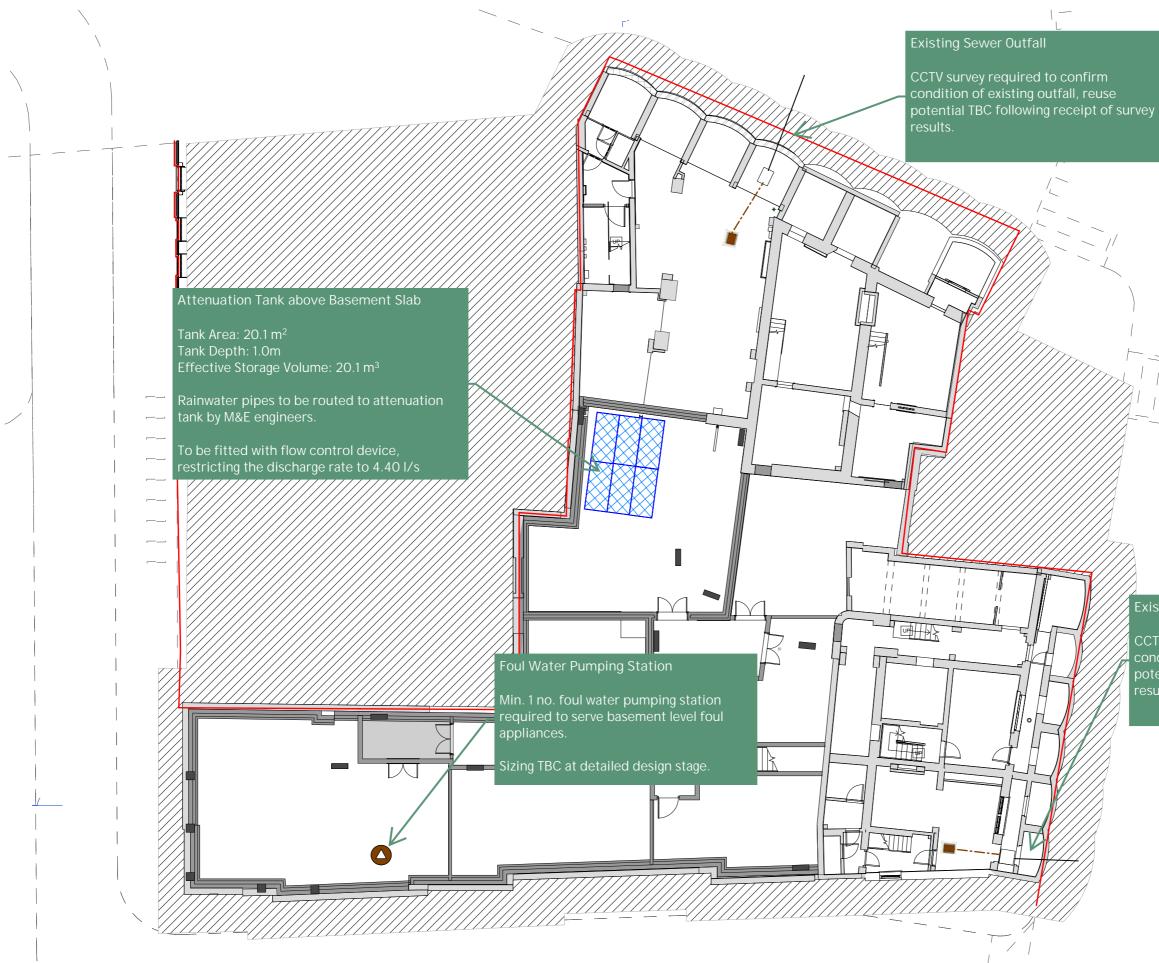

LEGEND

Attenuation Tank

Blue Roof

Surface Water Drain Run Foul Water Drain Run Surface Water Manhole Foul Water Manhole Surface Water Pump Foul Water Pump Existing Manhole

Date 02/05/2023


Eng. CL

Rev. P1

NOTES & KEY
+ Proposed finished floor levels are higher than adjacent existing ground levels.
+ In an exceedance event, overland flows would not enter the buildings.
+ The proposed levels on Vine Street will be designed to ensure falls away from the buildings.
Proposed finished floor level: FFL: 25.350
Existing ground level: EGL: 25.310

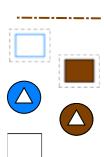
1 Museum Street - Exceedance Plan

1 Museum Street Job

Job No. 2952

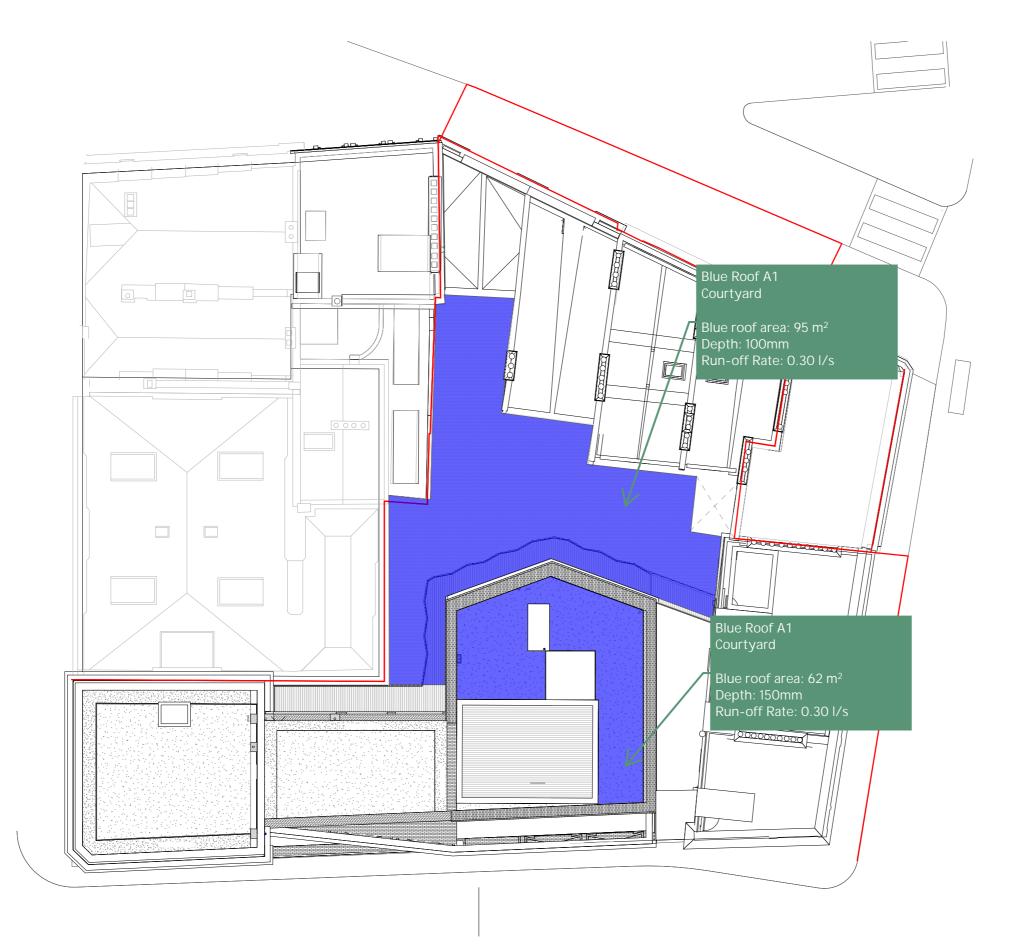
Preliminary Drainage Layout: West Central Street Site - Basement Title

Sheet SK018


LEGEND

Attenuation Tank

Blue Roof


Surface Water Drain Run Foul Water Drain Run Surface Water Manhole Foul Water Manhole Surface Water Pump Foul Water Pump Existing Manhole

Existing Sewer Outfall

condition of existing outfall, reuse potential TBC following receipt of survey

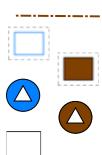
Date	02/05/2023		HEYNE
Eng.	CL	[T	ILLETT
Rev.	P1		STEEL

Job 1 Museum Street

Job No. 2952

Title Preliminary Drainage Layout: West Central Street Site - Basement

Sheet SK019


LEGEND

Attenuation Tank

Blue Roof

Surface Water Drain Run Foul Water Drain Run Surface Water Manhole Foul Water Manhole Surface Water Pump Foul Water Pump Existing Manhole

Date	02/05/2023	Iī	HEYNE
Eng.	CL		ETT
Rev.	P1		STEEL

Appendix H Drainage Maintenance Plan

Job Number: 2952 Name: 1 Museum Street Date: 04/05/2023

- Inlets, Outlets and Inspection Chambers:

Maintenance Period	Maintenance Task	Frequency
	Inspect surface structures and covers removing obstructions and silt as necessary.	
Regular Maintenance	Check there is no physical damage. Remove overgrown vegetation 1m min. around structures and keep hard aprons free from silt and debris.	Monthly or as required
	Remove cover and inspect inside, ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt. Undertake inspection after leaf fall in autumn.	Annually
Occasional Maintenance	Check topsoil levels are 20mm above edges off baskets and chambers to avoid mower damage.	As necessary
Remedial Work	Unpack stone in basket features and unblock or repair and repack stone as design detail as necessary.	As required
	Repair physical damage is necessary.	Astequired

Green/Brown/Blue Roof

Maintenance Period	Maintenance Task	Frequency
Regular Maintenance	During establishment, replace dead plants as required (for 12 months following installation) Mow grasses (where required) and remove resultant clippings	Monthly
	Remove fallen leaves and debris from deciduous plant foliage Remove nuisance and invasive vegetation, including weeds Remove debris & litter to prevent clogging of inlet drains an interference with plant growth Noxious weed treatment (3 times a year)	Six Monthly
Occasional Maintenance	Replace dead plants as required (typically in the Autumn) Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes, and roof structure for proper operation, integrity of waterproofing and structural stability, take action where required Inspect soil substrate for evidence of erosion channels and identify any sediment sources, take action where required Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system, take action where required Inspect underside of roof for evidence of leakage, take action where required Inspect and document the presence of wildlife	Annually
Remedial Action	Inspect and carry out essential recovery works to return the feature to full working order	Following all significant storm events
Monitoring	Initial inspection	Monthly for three months after installation
	Inspect for evidence of poor operation and/or weed growth	Six monthly

Drainage Inspection and Maintenance Strategy

This document has been prepared to support the inspection and maintenance of the proposed below ground drainage at Museum Street. The drainage network comprises surface and foul water drainage systems:

- Surface water networks will route all the rainwater towards the nearby public sewer network via blue roofs and attenuation tanks.
- Foul water network from above ground level will be routed towards the outfall manholes.

In accordance with CIRIA C625 it is recommended that a private SuDS maintenance agreement is undertaken as a simple contract between the property owner and the maintenance provider (the maintainer). It is mainly to facilitate continuing maintenance of the SuDS that are in private ownership. The maintenance requirements are in accordance with the CIRIA C753 SuDS Manual 2015 and product manufacturer's requirements.

The following Drainage / SuDS measures are proposed within the development:

- General Drainage:

Maintenance Period	Maintenance Task	Frequency
	Inspect and identify areas that are not operating correctly. If required, take remedial action.	Monthly
Regular maintenance	Inspect surface structures and covers removing obstructions and silt as necessary.	
maintenance	Check there is no physical damage.	Monthly or as required
	Remove overgrown vegetation 1m min. around structures and keep hard aprons free from silt and debris.	
	Remove sediment from pre-treatment structures (e.g. gullies, channels silt traps).	Six-monthly or as required
Occasional Maintenance	Remove cover and inspect inside, ensuring water is flowing freely and that the exit route for water is unobstructed.	
	Remove debris and silt.	Annually or as required
	Undertake inspection after leaf fall in autumn.	
Remedial Actions	Repair/rehabilitation of inlets, outlets, overflows and vents.	As required
Monitoring	Inspect all manholes, inspection chambers, inlets, outlets, overflows and vents to ensure they are in good condition and operating as designed.	Annually or after large storms.

- Flow control Structures:

Maintenance Period	Maintenance Task	Frequency
Regular	Inspect and identify any areas that are not operating correctly. If required, take remedial action (for 3 months following installation).	Monthly
maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Six Monthly
	Remove sediment from pre-treatment structures.	
Monitoring	Inspect and carry out essential recovery works to return the feature to full working order.	Following all significant storm events

- Geocellular Storage Tank:

Maintenance Period	Maintenance Task	Frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for three months, then every six months.
	Debris removal from catchment surface (where may cause risks to performance).	Monthly.
Remedial Actions	Repair/rehabilitation of inlets, outlets, overflows and vents.	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed.	Annually or after large storms.

- Hydro-Brake (Flow Control):

Maintenance Period	Maintenance Task	Frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for three months, then every six months.
	Remove sediment from pre-treatment structures.	
Remedial Actions	Repair/rehabilitation of Hydro-Brake.	
	If problems are experienced, please contact the company (Hydro International) so that an investigation may be made. Contact: enquiries@hydro-int.com (+44 (0)118 933 1325).	As required
Monitoring	Inspect and with a hose down if required.	Annually or after large storms.

- Pump Installations:

Maintenance Period	Maintenance Task	Frequency
Regular Maintenance	Visual inspection of the unit. Rise and inspection of the pump. Seal chamber oil check. Level control equipment cleaned and tested. Inspection and test of Control Panel functionality. Motor Insulation tested and recorded.	Annually or as agreed with manufacturer to maintain efficient and reliable system in operation
Remedial Action	Repair / rehabilitation of inlets, outlets, vents and other components.	As required or stated by manufacturer

Reference shall be made to CIRIA publication C753 (The SuDS Manual) and to the relevant maintenance guidance from the products manufacturers.

+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
	+ + + +
	+ + + +
	+ + + +
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
· · · · · · · · · · · · · · · · · · ·	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
· · · · · · · · · · · · · · · · · · ·	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +
+ + + + + + + + + + + + + + + + + + + +	+ + + +

