

APPENDIX B Structural calculations

Company No. 5873122 . VAT No. 894 2993 61 . ISO 9001:2015 No. 599017 . Registered in England & Wales

70 LADY MARGARET ROAD

WEARE Symmetrys Structural calculation Package

70 LADY MARGARET ROAD

22276-SYM-XX-XX-RP-S-0001 MAY 2023 REV B

	SYMMETRYS	Job No.	Sheet No.	Revision
	STRUCTURAL / CIVIL ENGINEERS	22276	1	А
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Introduction	May-2023	KL	EB

INTRODUCTION

The structure comprises a four-storey retaining structure and proposed three-storey extension structure. It is proposed to demolish the existing extension, replace by excavting and forming a new one-storey basement with three-storey superstructure, with 2 No. of stair, one to rear garden and one to retaining structure.

CODES OF PRACTICE

The following codes and standards have been used within this document:

BS EN 1990Eurocode: Basis of structural designBS EN 1991Eurocode 1: Action on structures

EXECUTIVE SUMMARY

The proposed development involves the demolition of the existing extension structure. A new basement excavated 1-level underground. Above ground the proposed extension consists of ground plus 3 storeys attached to existing retained structure.

	SYMMETRYS	Job No.	Sheet No.	Revision
	STRUCTURAL / CIVIL ENGINEERS	22276	2	А
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Introduction	May-2023	KL	EB

Prepared by:

Ka Ka Lo Beng(Hons), GIStructE Graduate Structural Engineer at Symmetrys

Checked and Signed by:

Ĵ

Ernest Bohm BArch(Hons), MSc Senior Structural Engineer at Symmetrys

	SYMMETRYS	Job No.	Sheet No.	Revision
	STRUCTURAL / CIVIL ENGINEERS	21286	3	А
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Vertical Loads	May-2023	KL	EB

Vertical Loads

for

70 Lady Margaret Road

SYM	METR	YS					Jo	b No.	Revision					
STRUCTUR	AL / CIVIL ENG	INEERS					2	2276	4		1			
ob Title70 Lady Margaret RoadSectionVertical Loads						Γ	Date	Made	e by	Checked By EB				
						01/0	05/2023	KL	-					
Loading														
The retaining and pr	opose struc [.]	ture for a r	nulti-leve	el struc	cture. Th	nis four-storey	building	g is divided ir	nto four s	ections wit	th different and			
determine the appro	priate load a	acting on e	ach secti	ion.										
ive load														
Area Qk(l	kN/m ²)	Façade n	naterial	Load	ding (m	2)								
Floors	1.5	Conc	rete		∠.⊃ 1									
Balconies	2.5	BLICK	VUI K		-									
Balconnes .	2.5								_					
Proposed Structure														
Storey	Height(m)	Floor ma	aterial ⁻	Trib Ar	rea (m²)	Dead Load (H	:N/m ²)	Live Load (k	Nm ²) S	<u>SL (kN/m²)</u>	UDL(kN/m ²)			
New Basement	2.84	250mm F	RC Slab	38	8.3	6.25		2		8.25	11.4375			
Existing Basement	1.9	250mm I	RC Slab	19	1.7/	6.25		2		8.25	11.4375			
1st	3.1	250mm F	RC Slab	79	0.67	6.25		2		8.25	11.4375			
2nd	3.1	250mm F	RC Slab	76	.88	6.25		2		8.25	11.4375			
3rd	3.1	250mm I	RC Slab	63	3.6	6.25		2		8.25	11.4375			
Roof	/	250mm I	RC Slab	133	1.74	6.25		0.6		6.85	9.3375			
Oterrer	A A a A a Mind	1 La Carla de	1	_		Les d'an Otena								
Storey New Basement	Concrete	2.84	7.1	Ig	Base	ment & Ground	l floor	37.81	2) Iotal S	23.35	32.2125			
Existing Basement	Concrete	1.9	4.75			Ground floor		9.56		15.1	20.775			
Ground	Brickwork	3.1	3.1		Grou	and floor to 2nd	floor	12.72		31.6	43.65			
1st	Brickwork	2.7	2.7		G	round to 3rd flo	or	70.89	70.89 39.85		55.0875			
2nd	Brickwork	2.3	2.3		Bas	sement to 3rd f	loor	19.87		48.1	66.525			
3rd	Brickwork	2.3	2.3			New Stairs		4.07 1 98		23.75	32 8125			
											02.0120			
Wall Loading Sto	rey Leng	th Façad	de Load (H	<n m)<="" td=""><td></td><td>Wall</td><td>Loadi</td><td>ng Storey</td><td>Length</td><td>Façade L</td><td>.oad (kN/m)</td></n>		Wall	Loadi	ng Storey	Length	Façade L	.oad (kN/m)			
A GF	3.3		3.1			М	GF	+1F+2F	3.3		8.1			
B GF	0.9		3.1			N	GF	+1F+2F	3.3	ļ .	8.1			
L B1+GF	3.5		10.2			0		LF+2F+3F	2.8 २.२	1	0.4			
E B1+GF	6.8	3	10.2			Г 0	GF+1	LF+2F+3F	9.6	1	.0.4			
F B1	4.7		7.1			R	GF+1	LF+2F+3F	2.6	1	.0.4			
G GF	7.4		3.1			S	B1+GF	+1F+2F+3F	2.3	1	5.15			
H B1	1.8		7.1			Т	B1+GF	+1F+2F+3F	7.0	1	5.15			
I B1	1.9		7.1			U	B1+GF	+1F+2F+3F	8.7	1	5.15			
J B1+GF	2.8		10.2			V	GF+1	LF+2F+3F	4.4	1	.0.4			
	1.5 2 3		8.1 8.1			X	B1+GF	+1F+2F+3F	2.2	1	5.15			
(1++++)+	<u>∠</u> .J		0.1			^	51.01		2.2		0.10			
L GF+IF+2F														

	SYMMETRYS	Job No.	Sheet No.	Revision
V	STRUCTURAL / CIVIL ENGINEERS	22276	5	1
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Vertical Loads	01/05/2023	KL	EB

	SYMMETRYS	Job No.	Sheet No.	Revision
V	STRUCTURAL / CIVIL ENGINEERS	22276	7	1
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Vertical Loads	01/05/2023	KL	EB

	SYMMETRYS	Job No.	Sheet No.	Revision
	STRUCIURAL / CIVIL ENGINEERS	21286	7	А
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Structural Calculations	May-2023	KL	EB

Structural Calculations

for

70 Lady Margaret Road

	SYMMETRYS	Job No.	Sheet No.	Revision
	STRUCTURAL / CIVIL ENGINEERS	22276	8	1
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Structural Calculations	01/05/2023	KL	EB

Design of a basement sla	ab for he	eave												
Expected heave forces			-									_		
Detailed analysis has bee	n under	taken by	GEA										_	
Approximate conservative	e heave	forces												
Evolution dopth		2.0	m		-							_	_	
Excavation depth	-	2.0	111										-	
Hydroestatic pressure	=	2.8	х	10	=	28	kN/m2							
Oberburden pressure	=	2.8	х	18	=	51	kN/m2					_	_	
Therefore expected heavy	a =	28	+	0.5*(9	51 12	-28 =	40 kN/m2					_	+	
		20		0.0 (0		20.								
Basement Slab Selfweigh	<u>it</u>		-								$\left - \right + \left - \right $		+	
Selfweight	=	0.3	x	25	=	6.3	kN/m2						+	
Screed	=	0.075	х	24	=	1.8	kN/m2							
		Total	-	_	-	0 1	kN/m2					_	_	
		TULAI	-	-	-	0.1	KIN/IIIZ						-	
Uplift Design														
													_	
Overal Uplift	=	40	-	8.05	=	31.7	kN/m2						_	
Therefore - ULS	=	31.7	X	1.5	=	47.6	kN/m2						-	
The basement slab will be	e desigr	ied to trar	ismi	t forces	s to f	he reta	ining wall foundt	ations spanni	ng betwee	en both sid	es of the	retaini	ng v	٨
The distance between the	e fondat	ions is		= 3	3.2	m							-	
Therefore: Mmax	=	47.56	65X(3.2^2)	-	= (0.86kNm						_	
			8		-				_			_	_	
			-		-								+	
			_								- +	_	\rightarrow	
			-										\rightarrow	
			-								$\left \right $		+	
			-											

SYMMETRYS		Job No.	Sheet No.	Revision	
STRUCTURAL / CIVIL ENGINEERS	STRUCTURAL/CIVIL ENGINEERS 22276 9				
b Title 70 Lady Margaret Road		Date	Made by	Checked By	
ection Structural Calculations		01/05/2023	KL	EB	
Design of a baement slab for heave					
Slab Properties					
Design Moment, M = 60.86 kNm fcu	= 30 N/n	nm^2 $\gamma c =$	1.50		
Bb = 1.00 fy	= 500 N/n	nm ² $\gamma \sigma =$	1.15		
snan – 3200 mm Steel Class	- Δ				
Slab thickness, h = 250 mm					
Bar Ø = 12					
cover = 50 mm					
<u>Check</u>					
d = 250 - 50 - 12/2 = 194.0 mm					
K' = 0.156 > K = 0.054 ok					
z = 194.0 [0.5 + (0.25 - 0.054 /0.893)]^1/2 = 181.6 < 0.95d = 184.3 r	nm				
As = 60.86E6 /500 /181.5 x 1.15 = 771 > min As = 325 mm²/m					
PROVIDE H12 @ 150 = 754 mm²/m					
fs = 2/3 x 500 x 771 /754 /1.00 = 341.0 N/mm ²					
Teris filod factor = $0.55 + (477 - 341.0)/120/(0.9 + 1.617) = 1.000$	ELEMENT DE	ESIGN to BS 8110:2	005	(mpp)	
Comp mod factor = 1 + 0.691/(3 + 0.691) = 1.187	Originated from RO	ABS C11.xls v4.0 © 2006 - 20	10 TCC	The Concrete Cent	
Permissible L/d = 20.0 x 1.000 x 1.187 = 23.750	INPUT Loc Design mome	ation <u>70 Lady Marga</u> nt, M <u>60.86</u> kNm	aret Road NW5 2NP	N/mm ² $\gamma c = 1.50$	
Actual L/d = 3200 /194.0 = 16.495 ok		ßb 1.00 span 3200 mm	fy <u>500</u> steel class <u>A</u>	N/mm ² $\gamma s = 1.15$	
Therefore:		BarØ 12 ▼ mm cover 50 mm	Compression stee	SPECIFY (deflection control only)	
Deflection is el	OUTPUT 70	Lady Margaret Road	NW5 2NPCompressi	ONE or TWO WAY SLA	
	d = (3.4.4.4) K' = (3.4.4.4) 7 =	250 - 50 - 12/2 = 19 = 0.156 > K = 0.054 194 0 [0 5 + (0 25 - (4.0 mm ok 0.054 /0.893)1^1/4 = 18	31.6 < 0.95d = 184.3 mm	
Maximum spacing is ok	(3.4.4.1) As	= 60.86E6 /500 /181 OVIDE H12 @ 150 =	.5 x 1.15 = 771 > min = 754 mm²/m	As = 325 mm²/m	
Minimum spacing is ok	(Eqn 8) fs = (Eqn 7) Ter (Equation 9) Con (3.4.6.3) Per	$2/3 \times 500 \times 771 /75$ ns mod factor = 0.55 mp mod factor = 1 + missible L/d = 20.0 /	i4 /1.00 = 341.0 N/mn + (477 - 341.0) /120 / 0.691/(3 + 0.691) = 1 x 1.000 x 1.187 = 23.7 0 = 16 495 oct	1 ² '(0.9 + 1.617) = 1.000 .187 750	

		Project				Job no.	
	SYMMETRYS		70 Lady Ma	22276			
	STRUCTURAL / CIVIL ENGINEERS	Calcs for				Start page no./Re	vision
Syr	mmetry's Limited		Retainin	g Wall A			1
Ur	nit 6, The Courtyard Lynton Road	Calcs by KL	Calcs date 22/05/2023	Checked by EB	Checked date 13/03/2023	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.17

Retaining wall details	
Stem type	Cantilever
Stem height	h _{stem} = 3000 mm
Stem thickness	tstem = 300 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{stem} = 25 \text{ kN/m}^3$
Toe length	Itoe = 4000 mm
Base thickness	t _{base} = 250 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 3000 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2000 mm
Water density	γw = 9.8 kN/m ³
Retained soil properties	
Soil type	Firm clay
Moist density	γmr = 18 kN/m ³
Saturated density	$\gamma_{sr} = 18 \text{ kN/m}^3$
Characteristic effective shear resistance angle	$\phi'_{r.k} = 22 \text{ deg}$
Characteristic wall friction angle	δr.k = 11 deg
Base soil properties	
Soil type	Stiff silty clay
Soil density	γь = 19 kN/m ³
Characteristic effective shear resistance angle	φ'b.k = 22 deg
Characteristic wall friction angle	δ _{b.k} = 11 deg
Characteristic base friction angle	δ _{bb.k} = 14.7 deg
Presumed bearing capacity	$P_{\text{bearing}} = 150 \text{ kN/m}^2$
Loading details	
Variable surcharge load	Surcharge $q = 5 \text{ kN/m}^2$
Vertical line load at 4150 mm	Pg1 = 60 kN/m
	Pq1 = 9 kN/m

SYMMETRYS	Project 70 Lady Margaret Road				Job no. 22276		
STRUCTURAL / CIVIL ENGINEERS	Calcs for				Start page no./Revision		
Symmetry's Limited		Retaining Wall A				3	
Unit 6, The Courtyard Lynton Road	Calcs by KL	Calcs date 22/05/2023	Checked by EB	Checked date 13/03/2023	Approved by	Approved date	
Line loads		F _{P_v} = P _{G1} +	- Pq1 = 69 kN/m				
Total		$F_{total_v} = F_{ster}$	em + Fbase + FP_v ·	+ F _{water_v} = 118.4	kN/m		
Horizontal forces on wall							
Surcharge load		$F_{sur_h} = K_A >$	$< \cos(\delta_{r.k}) \times Surc$	hargeq × heff = 6	5 .6 kN/m		
Saturated retained soil		$F_{sat_h} = K_A >$	\times COS(δ r.k) \times (γ sr -	γ_w) × (h _{sat} + h _{base}	e)² / 2 = 8.4 kN	/m	
Water		$F_{water_h} = \gamma_w$	× (hwater + d _{cover} -	+ h _{base}) ² / 2 = 24	.8 kN/m		
Moist retained soil		$F_{moist} = K_{A}$	$\times \cos(\delta r.k) \times \gamma mr$	imes ((heff - hsat - hba	ase) ² / 2 + (heff -	hsat - h $_{base}$) $ imes$	
	(h _{sat} + h _{base})) = 20.1 kN/m						
Base soil $F_{pass_h} = -K_P \times cos(\delta_{b,k}) \times \gamma_b \times (\delta_{b,k})$				× (dcover + hbase) ²	lcover + hbase) ² / 2 = -1.7 kN/m		
Total	Ftotal_h = Fsur_h + Fsat_h + Fwater_h + Fmoist_h + Fpass_h = 58.2 kN/m						
Moments on wall							
Wall stem	em Mstem = Fstem × Xstem = 93.4 kNm/m						
Wall base		Mbase = Fbas	$e \times X$ base = 57.8 k	:Nm/m			
Surcharge load		$M_{sur} = -F_{sur}$	$h \times Xsur_h = -10.7$	kNm/m			
Line loads		MP = (PG1 +	PQ1) × p1 = 286	.4 kNm/m			
Saturated retained soil		Msat = -Fsat_	h × X sat_h = -6.3 k	Nm/m			
Water		Mwater = -Fwa	ater_h \times Xwater_h = -	18.6 kNm/m			
Moist retained soil		Mmoist = -Fm	oist_h × Xmoist_h = -	27.9 kNm/m			
Total	Mtotal = Mstem + Mbase + Msur + MP + Msat + Mwater + Mmoist = 374 kNm/m					74 kNm/m	
Check bearing pressure							
Propping force		Fprop_base = I	Fprop_base = Ftotal_h = 58.2 kN/m				
Distance to reaction	$\overline{\mathbf{x}} = \mathbf{M}_{\text{total}}$ /	$\overline{x} = M_{\text{total}} / F_{\text{total}_v} = 3159 \text{ mm}$					
Eccentricity of reaction	e = x - I _{base} / 2 = 1009 mm						
Loaded length of base	$I_{Ioad} = 3 \times (I_{base} - \overline{x}) = 3423 \text{ mm}$						
Bearing pressure at toe	$q_{toe} = 0 \text{ kN/m}^2$						
Bearing pressure at heel		$q_{\text{heel}} = 2 \times F$	$t_{total_v} / I_{load} = 69.2$	2 kN/m²			
Factor of safety		$FoS_{bp} = P_{be}$	aring / max(q _{toe} , q	heel) = 2.169			
	PASS - Allowable bearing pressure exceeds maximum applied bearing pressure						

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.17

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

C30/37
f _{ck} = 30 N/mm ²
f _{ck,cube} = 37 N/mm ²
fcm = fck + 8 N/mm ² = 38 N/mm ²
$f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$
$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
$E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837 \text{ N/mm}^2$
γc = 1.50
αcc = 0.85
$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_c = 17.0 \text{ N/mm}^2$
h _{agg} = 20 mm

		SYMMETRYS	Project 70 Lady Margaret Road				Job no. 22276		
	STRUCTURAL / CIVIL ENGINEERS								
	Symmetry's Limited			Retainir	Retaining Wall A			5	
	Ur	hit 6, The Courtyard Lynton Road	Calcs by KL	Calcs date 22/05/2023	Checked by EB	Checked date 13/03/2023	Approved by	Approved date	
R	ectar	ngular section in flexure	- Section 6.1		. ,				
D	esign	bending moment combin	hation 1	M = 68.5 K	Nm/m				
D	eptn	to tension reinforcement		$d = h - C_{sr} - $	$\phi_{sr} / 2 = 242 \text{ mr}$	n			
				K = M / (d²	\times fck) = 0.039				
				K' = (2 × η	× αcc/γc)×(1 - λ :	$\times (\delta - K_1)/(2 \times K_2)$)×(λ × (δ - K1)/	(2 × K2))	
				K' = 0.207					
				· (0 =	K' > K - N			nt is required	
Le	ever a	arm		z = min(0.5)	+ 0.5 × (1 - 2 ×	κ / (η × αcc / γc))	^{0.5} , 0.95) × d =	230 mm	
D	epth	of neutral axis		$x = 2.5 \times (d$	l – z) = 30 mm				
A	rea o	f tension reinforcement re	quired	Asr.req = M /	$(f_{yd} \times z) = 686 r$	nm²/m			
Т	ensio	n reinforcement provided		16 dia.bars	@ 200 c/c				
A	rea o	f tension reinforcement p	rovided	$A_{sr.prov} = \pi \times$	$\langle \phi_{\rm sr}^2 / (4 \times S_{\rm sr}) =$	= 1005 mm²/m			
Μ	linimu	um area of reinforcement	- exp.9.1N	Asr.min = ma	$x(0.26 \times f_{ctm} / f_{yk})$, 0.0013) × d = 3	64 mm²/m		
Μ	laxim	um area of reinforcement	- cl.9.2.1.1(3)	$A_{sr.max} = 0.0$	04 × h = 12000 ۱	mm²/m			
				max(Asr.req,	Asr.min) / Asr.prov =	= 0.682			
			PASS - Area o	f reinforcement	provided is gr	eater than area	of reinforcem	ent required	
–	ofloo	tion control Section 7	4			Lic	orary item: Rectang	jular single output	
U D	effec	tion control - Section 7.	4	a = a/f + f	$1 N/mm^2) / 1000$	0.005			
			rotio	$\rho_0 = \sqrt{1} c_k / 1$) = 0.005			
R	Required tension reinforcement ratio		$\rho = Asr.req / 0$	d = 0.003					
R	equir	ed compression reinforce	ment ratio	$\rho' = A_{sr.2.req}$	/ d2 = 0.000				
S	Structural system factor - Table 7.4N		Kb = 0.4						
R	Reinforcement factor - exp.7.17		$K_s = min(50)$	00 N/mm² / (fyk >	< Asr.req / Asr.prov), 1	1.5) = 1.466	1		
LI	Limiting span to depth ratio - exp.7.16.a		min(Ks × Kt	5 × [11 + 1.5 × √	(fck / 1 N/mm ²) ×	ρο / ρ + 3.2 × ν	/(tck / 1		
				$N/mm^2) \times (h)$	N/mm ²) × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 16				
A	ctual	span to depth ratio		hstem / d = 1	2.4				
				PASS	- Span to depti	n ratio is less th	an deflection	control limit	
С	rack	control - Section 7.3							
Li	mitin	g crack width		Wmax = 0.3 r	mm				
V	ariabl	le load factor - EN1990 –	Table A1.1	ψ2 = 0.6					
S	ervice	eability bending moment		Msis = 46.1	kNm/m				
Т.	ensile	e stress in reinforcement		$\sigma_s = M_{sls} / (A_s)$	$A_{sr.prov} \times z) = 19$	9.5 N/mm²			
Lo	bad d	luration		Long term					
Lo -	bad d	luration factor		kt = 0.4					
E.	ffectiv	ve area of concrete in ten	sion	$A_{c.eff} = min($	2.5 × (h - d), (h	- x) / 3, h / 2)			
				Ac.eff = 899 1	17 mm²/m				
M	lean \	value of concrete tensile s	strength	Tct.eff = Tctm =	2.9 N/mm ²				
R				ρp.eff = Asr.pr	ov / Ac.eff = 0.011				
IM	lodula	ar ratio		$\alpha_{\rm e} = E_{\rm s} / E_{\rm c}$	m = 6.091				
B	Bond property coefficient Strain distribution coefficient		K1 = 0.8	k1 = 0.8					
5			$k_2 = 0.5$	$k_2 = 0.5$					
				∿3 = 3.4 k₄ = 0 125					
Γ.4	lavim	um crack spacing - eyo 7	11	N4 - U.423	$C_{ar} + k_1 \vee k_2 \vee k_1$	4 × φος / ορ ε# - /1	3 mm		
IVI N A	lavim	um crack width ovo 7 °		$31.\text{max} = 13 \times 10^{-1}$	$max(\sigma_{-} = k \sim t)$	fato# / ο= -#) × /1 ·	• · · · · · · · · · · · · · · · · · · ·	(× (m)) / E	
IVI	Maximum crack width - exp.7.8		$Wk = Sr.max \times$ $Wk = 0.247$	$w_k = 0.247 \text{ mm}$ $w_k = 0.247 \text{ mm}$					

		Project				Job no.			
	SYMMEIRYS		70 Lady Ma	argaret Road		22	276		
	STRUCTURAL / CIVIL ENGINEERS	Calcs for	5			Start page no./Re	evision		
Syr	Symmetry's Limited		Retainir	Retaining wall A			6 T		
U	nit 6, The Courtyard Lynton Road	Calcs by KI	Calcs date 22/05/2023	Checked by FB	Checked date 13/03/2023	Approved by	Approved date		
			22,00,2020		10,00,2020				
			Wk / Wmax =	0.824					
			PASS	- Maximum cra	ck width is less	s than limiting	, crack width		
Recta	ngular section in shear	- Section 6.2							
Desigr	n shear force		V = 69.2 kM	l/m					
			$C_{Rd,c} = 0.18$	8 / γc = 0.120					
			k = min(1 +	√(200 mm / d),	2) = 1.909				
Longite	udinal reinforcement ratio	1	ρι = min(Ası	.prov / d, 0.02) = (0.004				
			Vmin = 0.035	5 N ^{1/2} /mm × k ^{3/2} >	< fck ^{0.5} = 0.506 N/	/mm²			
Desigr	n shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$(C_{Rd.c} \times k \times (100))$	$N^2/mm^4 \times \rho_1 \times f_c$	k) ^{1/3} , Vmin) \times d			
			VRd.c = 128	. 5 kN/m					
			$V / V_{Rd.c} = 0$).539			-		
Horizo	ontal reinforcement nara	ullel to face of s	PAS tem - Section 0	S - Design snea	ar resistance ex	ceeds design	i snear torce		
Minim	im area of reinforcement	- cl 9 6 3(1)	Asy reg = ma	x(0.25 × Asr prov. (0 001 × t _{stem}) = 3	00 mm²/m			
Maxim	um spacing of reinforcem	nent – cl.9.6.3(2)	Ssx max = 40	0 mm		••••••			
Transv	verse reinforcement provid	ded	10 dia.bars	10 dia.bars @ 200 c/c					
Area o	f transverse reinforcemer	nt provided	$A_{sx,prov} = \pi \times \phi_{sx^2} / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$						
		PASS - Area of	reinforcement	einforcement provided is greater than area of reinforcement required					
Check	base design at toe								
Depth	of section		h = 250 mn	n					
Recta	ngular section in flexure	e - Section 6.1							
Desigr	n bending moment combin	nation 1	M = 72.4 kl	M = 72.4 kNm/m					
Depth	to tension reinforcement		d = h - c _{bb} - φ _{bb} / 2 = 165 mm						
			$K = M / (d^2 \times f_{ck}) = 0.089$						
			$K' = (2 \times \eta \times \alpha_{ccc} / \gamma_{c}) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2))$						
			K' = 0.207						
1				K' > K - N	o compression		it is required		
Levera	arm		z = min(0.5)	+ 0.5 × (1 - 2 ×	Κ / (η × αcc / γc))	^{0.3} , 0.95) × d =	151 mm		
Depth	or neutral axis	a wire d	$\mathbf{x} = 2.5 \times (0$	(-2) = 35 mm	mm ² /m				
Tensio	n reinforcement provided	l	Abb.req = $M/$	$(1yd \times 2) = 1103$	11111-/111				
	f tension reinforcement n	rovided		с @ 130 С/С х фьь² / (4 х sьь) -	– 2094 mm²/m				
Minim	im area of reinforcement	- exp 9 1N	$A_{bb,min} = max(0.26 \times f_{ctm} / f_{vk} 0.0013) \times d = 249 \text{ mm}^2/\text{m}$						
Maxim	um area of reinforcement	t - cl.9.2.1.1(3)	$A_{bb,max} = 0.0$	$04 \times h = 10000 r$	nm²/m				
		0	max(Abb.reg,	Abb.min) / Abb.prov	= 0.527				
		PASS - Area of	reinforcement	provided is gre	eater than area	of reinforcem	ent required		
					Lit	orary item: Rectang	jular single output		
Crack	control - Section 7.3								
Limitin	g crack width		Wmax = 0.3 I	nm					
Variab	le load factor - EN1990 –	Table A1.1	ψ2 = 0.6	,					
Service	eability bending moment		Msis = 52.6	kNm/m					
I ensile	e stress in reinforcement		$\sigma_s = M_{sis} / (A_s)$	$Abb.prov \times Z) = 166$	5.3 N/MM²				
LUBU C	luration factor		Long term k₁ – 0 4						
Effectiv	ve area of concrete in ten	sion	$A_{c,eff} = min($	2.5 × (h - d) (h -	• x) / 3. h / 2)				
				$A_{c.eff} = 71574 \text{ mm}^2/\text{m}$					

SYMMETRYS	Project Job no 70 Lady Margaret Road				Job no. 2	2276
STRUCTURAL / CIVIL ENGINEERS	Calcs for				Start page no./I	Revision
Symmetry's Limited	Symmetry's Limited					7
Unit 6, The Courtyard Lynton Road	Calcs by KL	Calcs date 22/05/2023	Checked by EB	Checked date 13/03/2023	Approved by	Approved date
Mean value of concrete tensile	strength	fct.eff = fctm =	2.9 N/mm ²			
Reinforcement ratio	<u> </u>	$\rho_{p.eff} = A_{bb.pro}$	ov / Ac.eff = 0.0	29		
Modular ratio		$\alpha_{e} = E_{s} / E_{cr}$	n = 6.091			
Bond property coefficient		k1 = 0.8				
Strain distribution coefficient		k2 = 0.5				
		k3 = 3.4				
		k4 = 0.425				
Maximum crack spacing - exp.7	.11	$s_{r.max} = k_3 \times$	$c_{bb} + k_1 \times k_2 \times k_2$	$k_4 \times \phi_{\text{bb}} / \rho_{\text{p.eff}} = 3$	71 mm	
Maximum crack width - exp.7.8		$W_k = S_{r.max} \times$	$max(\sigma_s - k_t \times$	(fct.eff / $\rho_{p.eff}$) × (1 +	$\alpha_{e} \times \rho_{p.eff}$), 0.	$6 \times \sigma_s$) / Es
		Wk = 0.222 I	nm			
		$W_k / W_{max} = 0$	0.74			
		PASS	- Maximum c	rack width is less	s than limitin	ig crack width
Rectangular section in shear	- Section 6.2					
Design shear force		V = 100.4 k	N/m			
		$C_{Rd,c} = 0.18$	/ γc = 0.120			
		K = min(1 +	√(200 mm / d	(0, 2) = 2.000		
Longitudinal reinforcement ratio)	$\rho_{\rm I} = \min(A_{\rm bb})$.prov / 0, 0.02)	= 0.013	1	
		Vmin = 0.035	N ^{1/2} /mm × K ^{3/}	$^{2} \times \text{fck}^{0.3} = 0.542 \text{ N}$	/mm²	
Design snear resistance - exp.e	0.28 & 0.20	$V_{Rd.c} = max$	$(\mathbf{C} Rd.c \times \mathbf{K} \times (1)$	$UU N^2/mm^2 \times \rho \times R$	ck) ¹⁷³ , Vmin) $\times 0$	
		V R d.c = 133.	754			
		PAS	S - Design sh	ear resistance ex	kceeds desig	n shear force
Check base design at toe			0			, ,
Depth of section		h = 250 mm	1			
Rectangular section in flexur	- Section 6 1					
Design bending moment combi	nation 1	M = 10.3 kN	lm/m			
Depth to tension reinforcement		$d = h - c_{bt} - c_$	фы / 2 = 195 n	าm		
		$K = M / (d^2)$	< fck) = 0.009			
		K' = (2 × η >	< αcc/γc)×(1 - λ	$L \times (\delta - K_1)/(2 \times K_2)$)×(λ × (δ - K ₁))/(2 × K2))
		K' = 0.207				
			K' > K -	No compression	reinforceme	ent is required
Lever arm		z = min(0.5	+ 0.5 × (1 - 2	\times K / ($\eta \times \alpha_{cc}$ / γc)) ^{0.5} , 0.95) × d	= 185 mm
Depth of neutral axis		x = 2.5 × (d	– z) = 24 mm			
Area of tension reinforcement r	equired	$A_{bt.req} = M /$	$(f_{yd} \times z) = 128$	mm²/m		
Tension reinforcement provided	1	10 dia.bars	@ 150 c/c			
Area of tension reinforcement p	rovided	Abt.prov = $\pi \times$	$\phi_{bt}^2 / (4 \times S_{bt})$	= 524 mm²/m		
Minimum area of reinforcement	- exp.9.1N	Abt.min = max	(0.26 × fctm / 1	f_{yk} , 0.0013) × d = 2	2 94 mm²/m	
Maximum area of reinforcemen	t - cl.9.2.1.1(3)	$A_{bt.max} = 0.0$	4 × h = 10000	0 mm²/m		
	DASS Aroa o	max(Abt.req, . f roinforcomont	Abt.min) / Abt.prov	r = 0.561	of roinforco	mont required
	- AUCA U		မိုင်စိုင်ရင်ရင်ခြင့်	Li	brary item: Recta	ngular single output
Crack control - Section 7.3					-	
Limiting crack width		w _{max} = 0.3 n	nm			
Variable load factor - EN1990 -	Table A1.1	ψ2 = 0.6				
Serviceability bending moment		M _{sls} = 0 kNr	n/m			
Tensile stress in reinforcement		$\sigma_s = M_{sls} / (A)$	$A_{bt.prov} \times z) = 0$	N/mm ²		

	Project	70 Lady Ma	argaret Road		Job no. 22	276
STRUCTURAL / CIVIL ENGINEERS	Calcs for		-		Start page no./R	evision
Symmetry's Limited		Retainir	ng Wall A			8
Unit 6, The Courtyard	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
Lynton Road	KL	22/05/2023	EB	13/03/2023		
Load duration		Long term				
Load duration factor		kt = 0.4				
Effective area of concrete in ten	sion	Ac.eff = min((2.5 × (h - d), (l	h - x) / 3, h / 2)		
		Ac.eff = 752	08 mm²/m			
Mean value of concrete tensile	strength	$f_{ct.eff} = f_{ctm} =$	2.9 N/mm ²			
Reinforcement ratio		$\rho_{p.eff} = A_{bt.pr}$	rov / Ac.eff = 0.00)7		
Modular ratio		$\alpha_{e} = E_{s} / E_{c}$	cm = 6.091			
Bond property coefficient		k1 = 0.8				
Strain distribution coefficient		k2 = 0.5				
		k3 = 3.4				
		k4 = 0.425			4	
Maximum crack spacing - exp.7	.11	$Sr.max = K3 \times$	$C_{bt} + K_1 \times K_2 \times$	$K_4 \times \phi bt / \rho p.eff = 41$	4 mm	
Maximum crack width - exp.7.8		Wk = Sr.max >	× max(σs – kt ×	(fct.eff / ρ p.eff) × (1 +	$\alpha e \times \rho p.eff$), 0.6	oʻ×σs) / Es
		$W_k = 0 mm$	0			
		Wk / Wmax =	U Maximum c	rack width is loss	than limiting	a crack width
Secondary transverse reinford	cement to base	- Section 9.3				
Minimum area of reinforcement	- cl.9.3.1.1(2)	$A_{\text{bx,reg}} = 0.2$	$2 \times A_{bb, prov} = 41$	9 mm²/m		
Maximum spacing of reinforcem	ent – cl.9.3.1.1	(3) Sbx max = 45	50 mm			
Transverse reinforcement provid	bed	10 dia.bars	s @ 150 c/c			
Area of transverse reinforcemer	nt provided	$A_{bx.prov} = \pi$	$ imes$ ϕ bx ² / (4 $ imes$ Sbx) = 524 mm²/m		
	PASS - Area of	f reinforcement	t provided is g	greater than area	of reinforcen	nent required
			40	-IL		
			10 dia.bars (g 200 c/c			
			parallol to face of stem			
				1 1		
				4 4		
				1		
				4 4		
1			8 dia bars @ 200 o/o 10 dia bars @ 160 o/o	16 dia.bars @ 200 ol	2	
150		· · · · · · · ·	<u></u>	ġŢŢŢŢ		
b	• • • • •	- · · · · · ·	/			
			20 dia.bars @ 150 c/c			
10 dia bans 8 trintrivities ni in base	150 o/c tioscentent					
Reinforc	ement details					

			Project				Job no.	
		SYMMETRYS		70 Lady Ma	22276			
		STRUCTURAL / CIVIL ENGINEERS	Calcs for				Start page no./Re	vision
Symmetry's Limited			Retainin	g Wall A		1	9	
	Ur	nit 6, The Courtyard	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
		Lynton Road	KL	22/05/2023	EB	13/03/2023		

CONTINUE THE CONVERSATION

TO DISCUSS YOUR PROJECT WITH US PLEASE GET IN TOUCH ON 020 8340 4041 OR EMAIL US AT INFO@Symmetrys.com

hillips . Hai ineers . JAC an Construct ark Pinney . Ma Pegasus Life . pH-ioda Studio . Spacela NS , Brick by Brick , Broadgate Estates , BUFA , Bureau De Change , srsity of London , Club Peloton , Coffey Architects , Collado Collins 54. Gardiner & Theobald . Geraghty Taylor . Get Turner . Gibsoi. over Green Retail . Heart of the City . HO+K . Hollis . Howard D.