

Drainage Statement & Flood Risk Assessment 20 Crediton Hill, Camden

SD Structures Project Reference SDS1585

Issuing Date 19/04/2023

Revision Number Rev P01

CONTENTS

1.0	Introduction3
2.0	Existing Site & Proposed Site3
3.0	Policy and Climate Change4
4.0	Flood Risk Assessment5
5.0	Drainage Hierarchy6
6.0	Surface Water Drainage Strategy7
7.0	Management and Maintenance9
8.0	Summary10
8.0 APPI	Summary
8.0 APPI APPI	Summary 10 ENDIX A 11 ENDIX B1 12
8.0 APPI APPI APPI	Summary 10 ENDIX A 11 ENDIX B1 12 ENDIX B2 13
8.0 APPI APPI APPI	Summary 10 ENDIX A 11 ENDIX B1 12 ENDIX B2 13 ENDIX B3 14
8.0 APPI APPI APPI APPI	Summary 10 ENDIX A 11 ENDIX B1 12 ENDIX B2 13 ENDIX B3 14 ENDIX C 15

1.0 Introduction

- 1.1. SD Structures have been commissioned by Scenario Architecture to undertake a Flood Risk Assessment & Drainage Strategy to be submitted along with the additional documents to request planning approval for a residential development located at 20 Crediton Hill, Camden, London, NW6 1HP.
- 1.2. The report has been completed in accordance with guidance presented within the National Planning Policy Framework and its associated Planning Practice Guidance.

2.0 Existing Site & Proposed Site

2.1. The site is located at 20 Crediton Hill, Camden (Coordinate reference: E: 525732, N: 185068) with a total site area of 0.016ha. An extract of the redline boundary can be seen in Figure 1 below.

Figure 1 - Proposed redline boundary.

- 2.2. The site is currently consisting of a single residential dwelling and is made up of 100% impermeable area.
- 2.3. Based on the British Geological Survey mappings, the underlying geology is made up of London Clay Formation Bedrock with no overlying superficial deposit.

- 2.4. The proposed development comprises of the demolition of the existing residential dwelling and the erecting of a new 2 story dwelling, which will also include a new basement.
- 2.5. The existing drainage on site has been surveyed. From the survey it is evident that the existing drainage from the development discharged into a private combined network, discharging into a public combined sewer within Crediton Hill. The survey has been included within the appendices.
- 2.6. Greenfield and Pre-development discharge rates have been calculated using synthetic rainfall data derived from the Flood Study Report (FSR).
- 2.7. Greenfield runoff rates have been calculated using the IH124 methodology, whereas Predevelopment rates have been calculated using the Modified Rational Method. These rates are outlined in Table 1 below.

Return Period	Greenfield Runoff Rates (I/s/ha)	Pre-Development Discharge Rates (I/s)
1:1yr	0.49	3.2
QBAR	0.58	N/A
1:30yr	1.33	7.8
1:100yr	1.85	10.1

Table 1 - Existing discharge rates

3.0 Policy and Climate Change

- 3.1. The proposed development is smaller than 1000m² in total floor space making the proposed development a minor development.
- 3.2. The Royal Borough of Camden's Local Plan states under Policy CC3 that developments will be required to utilise Sustainable Drainage Systems in line with the drainage hierarchy to achieve a greenfield runoff rate where feasible.
- 3.3. Additionally, due to the development being located within a Critical Drainage Area, the proposed development will also require a Flood Risk Assessment addressing the potential risk of all sources of flooding.
- 3.4. In addition to Royal Borough of Camden's Local Plan Policy SI13 of the London Plan will also apply to this development.
- 3.5. From the online data provided by the Department for Environment Food & Rural Affairs states that the proposed development is in the London Catchment. This catchment will require developments to increase their peak discharge rate by 40% to allow for future climatic changes.

4.0 Flood Risk Assessment

- 4.1. **Risk of Tidal Flooding:** The site is located a significant distance inland and is elevated above predicted extreme tide levels. Consequently, the risk of flooding from this source is considered to be low.
- 4.2. **Risk of Flooding from Fluvial Sources:** Inspection of the EA's 'Flood Map for Planning' identifies that the site is situated in Flood Zone 1 and OS mapping shows that there are no main rivers, ordinary or manmade watercourses near to the site. Consequently, the risk of flooding to the site from rivers is considered to be low.
- 4.3. **Risk of Flooding from Pluvial Sources:** After inspection of the EA's 'Extent of flooding from Surface Water' it is evident that the site is not located within an area of very low risk of surface water flooding. The EA's mapping is a national dataset which can provide an indication of the surface water flood risk to an area.

The London Borough of Camden has also undertaken detailed modelling of the extent of surface water flooding within the borough. From this mapping it is evident that the proposed development is located outside of the modelling extent. Therefore, it is concluded that the risk of flooding from this source is low.

- 4.4. **Risk of Flooding from Sewer:** From the CCTV survey it is assumed that the public sewer network within Crediton Hill is a combined system. During an unlikely event of a combined sewer surcharging, i.e., following an extreme rainfall event or a blockage within the system, surcharging sewer water would likely leave the system at a location lower than the development. Nonetheless the proposed development will be fitted with a non-return valve and positive pump device for any basement drainage. Consequently, it is concluded that the risk of flooding from this source is low.
- 4.5. **Risk of Flooding from Groundwater:** From the mappings provided within the Strategic Flood Risk Assessment developed by London Borough of Camden, show that the development is in a location of low risk of groundwater flooding. Nonetheless, to reduce the risk of groundwater flooding to the proposed development a two-tier waterproofing system will be implemented within the basement construction, consisting out of a Type A or B system in combination with a Type C system. Consequently, with the inclusion of the mitigation measure the risk of flooding from this source is considered to be low.
- 4.6. The proposed development has been asset for all sources of flooding, and it has been concluded the risk is considered to be low from these sources.

5.0 Drainage Hierarchy

- 5.1. Policy S13 of the London Plan set out a drainage hierarchy to provide the most sustainable method of discharging surface water runoff from developments. Policy S13 states that the preferred method of managing surface water runoff is by utilising it on site. If this is not feasible, discharging it via infiltration, or discharging it into a watercourse should be considered. The least favourable method of discharging surface water runoff is to connect it into a public sewer system, with a surface water sewer being more favourable than a public foul sewer.
- 5.2. **Infiltration:** The underlying geology has been assessed using the mapping provided by the British geological Survey. From the mapping it is evident that the underlying geology is made up of London Clay formation with no overlying superficial deposit. London Clay is commonly associated with very low infiltration rates, due this discharging all surface water runoff via infiltration-based SuDS has been deemed not viable for this development.
- 5.3. **Connection into Watercourse:** There is no watercourse or drainage ditch located in close proximity to the development. Due to this discharging surface water runoff via a connection into a watercourse or drainage ditch has been discounted.
- 5.4. **Connection into Public Sewer:** From the CCTV survey it is evident that the existing development has an existing connection into the assumed public combined sewer running along Crediton Hill. The existing connection into this sewer will be utilised to discharge all surface water runoff from the development.

6.0 Surface Water Drainage Strategy

- 6.1. From Figure 1, it is evident that the proposed redline boundary only overs the extent of the development and does not include any open space or garden areas. Due to this there is limited opportunity to implement SuDS within the development.
- 6.2. The Architectural layout has suggested the utilisation of green roofs for the development. To provide benefits regarding water quantity controls a minimum of 80mm sub-base should be provided. These are designed by a specialist to delay the peak discharge rate by slowing down infiltrating surface water. The green roof should be design with an adequate drainage layer to avoid stagnation within the sub-base, additionally and overflow should be designed to reduce the risk of overflowing surface water runoff in the event the downpipe becomes blocked. In Figure 2 below the areas of green roof have been shown. The proposed green roof will also provide a betterment regarding biodiversity and water quality.

Figure 2 - Location of proposed green roofs.

- 6.3. The proposed drainage system has been modelled using the industry standard Causeway Flow+ software. The undertaken hydraulic calculations use synthetic rainfall data derived using the Flood Estimation Report (FSR). A 40% allowance in rainfall has been made to allow for any future climatic changes.
- 6.4. To represent the green roof's ability to delay peak discharge rates within the hydraulic model, a time of entry of 10 minutes for the green roof catchments has been used.
- 6.5. In Table 2 the proposed and existing discharge rates have been provided.

	Greenfield Runoff Rates	Proposed Runoff Rates
Return Period	(I/s)	(l/s)
1:1yr	3.2	2.3
1:30yr	7.8	5.6
1:100yr	10.1	7.2
1:100yr+CC	14.2	9.6

Table 2 – Pre & post discharge rates.

6.6. Based on the above table and the included results of the hydraulic model it is evident that the proposed drainage system can accommodate up to and including the design event. Additionally, with the inclusion of the proposed green roofs the proposed development will provide a reduction in discharge rates when compared to the existing situation.

7.0 Management and Maintenance

- 7.1. The proposed drainage system will be located within a private garden; therefore, the owner of the development will be required to manage and maintain the proposed SuDS.
- 7.2. Typical management requirements have been outlined in Table 4 below. The management company should also refer to any manufacture's specific management and maintenance requirements.

Drainage Asset	Responsible Organisation	Maintenance Work	Frequency
General Pipework and manholes	Private ownership	Inspect pipework and manholes and clear any blockages; Repair to any defects over long-term usage	Annually or after severe storm events
		Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually or after severe storm events
	Private ownership	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
Green Roof		Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
		If erosion channels are evident, these should be stabilised with extra soil substrate like the original material, and sources of erosion damage should be identified and controlled	As required
		Inspect underside of roof for evidence of leakage	Annually and after severe Storms

Table 3 – Maintenance Schedule

7.3. The manufacturers management and maintenance requirements for the green roof should be provided to the owners and should be followed for the lifetime of the development.

8.0 Summary

- 8.1. This report has been undertaken to be accompanied for the planning application for the development located at land off 20 Crediton Hill, Camden, London, NW6 1HP.
- 8.2. As part of the assessment, the risk of flooding from a wide range of sources has been assessed, it has been identified that the risk of the proposed development is low. In order to minimise the impact of offsite flooding from the proposed development, the opportunities for managing surface water at the site have been analysed.
- 8.3. The report outlines that the most viable method of discharging surface water runoff is via the existing connection into the public combined sewer system.
- 8.4. Due to the limited space within the redline boundary, there has been a limited possibility to included SuDS within the development. Nonetheless green roofs have been proposed for the roof area to provide a reduction in peak runoff rates and increase biodiversity within the development.
- 8.5. Typical management and maintenance requirements have been included within this report. Before commissioning the development, a manual outlining the management and maintenance requirements for each proposed SuDS system should be provided to the end owner and user.

APPENDIX A

ARCHITECTURAL DRAWINGS

Not For Construction Rev Date

EXISTING Not For Construction Rev Date

S

10b Branch Place London N1 5PH p: 0207 686 3445 e: info@scenarioarchitecture.com w: www.scenarioarchitecture.com

Project Name: 20 Crediton Hill

Client: Sendi & Daniel Young

Site Location:

20 Crediton Hill, London NW6 1HP London UK

Drawing not to be used other than the purpose for which it was prepared. It's supplied without liability for errors or omissions. All dimensions are to be checked on site. This drawing is to be read in conjunction with all other drawings. Notes on this drawing will apply to all other drawings where a similar position exists.

Project No. 168

Drawing Name Block Plan

Drawing Number

Rev

Rev

Date

LEGEND

Area of Freehold Site and Premises subject of Application

Ownership form below existing ground level

Adjacent land over which Application Site and Premises have the established full unconditional legal rights of pedestrian and vehicular access, parking/garaging, all other general uses, full use of Communal Gardens, own Services: Gas, Mains Water, Mains Electricity, Drainage, Cable Services, communal General Waste and Recycle Waste Bin facilities, own CCTV Security system Full use of Communal Gardens

10b Branch Place London N1 5PH p: 0207 686 3445 e: info@scenarioarchitecture.com

Project Name: 20 Crediton Hill

Site Location:

1HP London UK

Sendi & Daniel Young

Client:

w: www.scenarioarchitecture.com

20 Crediton Hill, London NW6

S

Drawing not to be used other than the purpose for which it was prepared. It's supplied without liability for errors or omissions. All dimensions are to be checked on site. This drawing is to be read in conjunction with all other drawings. Notes on this drawing will apply to all other drawings where a similar position exists.

Drawing Name

Drawing Number

PR-A0.01

Rev

Site Plan

8m

1:200

S 10b Branch Place London N1 5PH p: 0207 686 3445 e: info@scenarioarchitecture.com w: www.scenarioarchitecture.com

Project Name: 20 Crediton Hill

Client: Sendi & Daniel Young

Site Location: 20 Crediton Hill, London NW6 1HP London UK Drawing not to be used other than the purpose for which it was prepared. It's supplied without liability for errors or omissions. All dimensions are to be checked on site. This drawing is to be read in conjunction with all other drawings. Notes on this drawing will apply to all other drawings where a similar position exists. Project No. **168** Scale @ A1 **1:50**

Drawing Name
Proposed Basement Floor
Plan
Drawing Number Rev

PR-A1.01

1:50

10b Branch Place London N1 5PH p: 0207 686 3445 e: info@scenarioarchitecture.com w: www.scenarioarchitecture.com

Project Name: 20 Crediton Hill

Client: Sendi & Daniel Young

	9 '
rawing not to be used other than the purpose for which it repared. It's supplied without liability for errors or ormission imensions are to be checked on site. This drawing is to be conjunction with all other drawings. Notes on this drawin pply to all other drawings where a similar position exists.	wa ns. e r
20 Crediton Hill, London NW6 IHP London UK	
Site Location:	
Site Location:	

Drawing Name Proposed Ground Floor Plan

Drawing Number PR-A1.02

SCALE 1:50 | | | | 0 1000

2000mm

1:50

First Floor

5 10b Branch Place London N1 5PH

p: 0207 686 3445 e: info@scenarioarchitecture.com w: www.scenarioarchitecture.com

Project Name: 20 Crediton Hill

Client: Sendi & Daniel Young

Site Location: 20 Crediton Hill, London NW6 1HP London UK

Drawing not to be used other than the purpose for which it was prepared. It's supplied without liability for errors or omissions. All dimensions are to be checked on site. This drawing is to be read in conjunction with all other drawings. Notes on this drawing will apply to all other drawings where a similar position exists. Scale @ A1 **1:50** Project No. **168**

Proposed First Floor Plan

1:50

Drawing Number PR-A1.03

Drawing Name

Rev

S

10b Branch Place London N1 5PH p: 0207 686 3445 e: info@scenarioarchitecture.com w: www.scenarioarchitecture.com

Project Name: 20 Crediton Hill

Client: Sendi & Daniel Young

Scale @ A1 **1:50**

Site Location:

20 Crediton Hill, London NW6 1HP London UK Drawing not to be used other than the purpose for which it was prepared. It's supplied without liability for errors or omissions. All dimensions are to be checked on site. This drawing is to be read in conjunction with all other drawings. Notes on this drawing will apply to all other drawings where a similar position exists.

Project No. **168**

Rev

1:50

Drawing Number PR-A1.04

Drawing Name Proposed Roof Plan

PR-A2.01

D

Rev

Drawing Number PR-A3.01

APPENDIX B1

CALCULATIONS: Greenfield rates

Print

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Elijah Sser	unjogi		Site Details				
Site name:	SDS1521			Latitude:	51.55186° N			
Site name.	2021221			Longitude [.]	0 18802° W			
Site location:	20 Credito	n Hill		Longhudo.	0.10002 W			
This is an estimation of practice criteria in lin management for deve and the non-statutor runoff rates may be the runoff from sites.	of the greenfi e with Environ elopments", S0 y standards fo he basis for se	eld runoff rate ment Agency (2013) or SuDS (Defra, etting consent	es that are used to I guidance "Rainfall r , the SuDS Manual (, 2015). This informa ts for the drainage	meet normal best unoff C753 (Ciria, 2015) tion on greenfield Date: of surface water	1231945196 Apr 19 2023 15:15			
Runoff estimation	on approad	ch IH124						
Site characteris	tics			Notes				
Total site area (ha): 0.1311			(1) $\ln \Omega_{\rm res} < 2.0 l/c/ha^2$				
Methodology				(1) IS $QBAR < 2.01/5/11a$:				
Q _{BAR} estimation m	ethod: Ca	alculate from	m SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha tl	hen limiting discharge rates			
SPR estimation method: Calcu		alculate from	m SOIL type	are set at 2.0 l/s/ha.				
Soil characteris	tics Det	ault	Edited					
SOIL type:	4	4		(2) Are flow rates < 5.0 l/s	\$?			
HOST class:	N/A	N	/A	Where flow rates are less	than $50 l/s$ consent for			
SPR/SPRHOST:	0.47	0.	47	discharge is usually set at	t 5.0 l/s if blockage from			
Hydrological characteristics		Defaul	lt Edited	vegetation and other mat consent flow rates may be risk is addressed by using	erials is possible. Lower e set where the blockage appropriate drainage			
SAAR (mm):		650	650	elements.				
Hydrological regio	n:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?				
Growth curve fact	or 1 year.	0.85	0.85					
Growth curve fact	or 30 years:	2.3	2.3	Where groundwater levels are low enough the use of				
Growth curve factor 100 3. years:		3.19	3.19	be preferred for disposal	of surface water runoff.			
Growth curve factor 200 3. years:			3.74					

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.58	0.58
1 in 1 year (l/s):	0.49	0.49
1 in 30 years (l/s):	1.33	1.33
1 in 100 year (l/s):	1.85	1.85
1 in 200 years (l/s):	2.17	2.17

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

APPENDIX B2

CALCULATIONS: Pre-Development rates

SD Structures (London) Ltd	File: 1584-SDS-00-XX-CA-C-1100-SW F Page 1							
60 Grays Inn Road	Network: Storm Network							
WC1X 8AQ	19/04/2023							
	Design Settings							
Rainfall Methodology FSR	Maximum Time of Concentration (mins) 30.00							
Return Period (years) 100 Maximum Rainfall (mm/hr) 50.0								
Additional Flow (%) 40 Minimum Velocity (m/s) 1.00								
FSR Region England and Wales Connection Type Level Soffits								
Ratio-R 0.400	Preferred Cover Depth (m) 0.000							
CV 1.000	Include Intermediate Ground 🗸							
Time of Entry (mins) 4.00	Enforce best practice design rules \checkmark							
	<u>Nodes</u>							
Name Area	T of E Cover Diameter Easting Northing Depth							
(ha)	(mins) Level (mm) (m) (m) (m)							
Modified Rational Method 0.016	(m) 5 4.00 10.000 1900 0.000 0.000 1.000							
Outlet	9.900 1900 10.000 0.000 1.900							
	Links							
Name US DS Leng	gth ks (mm) / US IL DS IL Fall Slope Dia T of C Rain							
Node Node (m	n) n (m) (m) (m) (1:X) (mm) (mins) (mm/hr)							
1 Modified Rational Method Outlet 10.0	000 0.600 9.000 8.000 1.000 10.0 1000 4.02 50.0							
Name Vel Cap Flow	ow US DS ΣArea ΣAdd Pro Pro							
(m/s) (l/s) (l/s	s) Depth Depth (ha) Inflow Depth Velocity							
1 10.602 8327.0 /	(m) (m) (l/s) (mm) (m/s)							
1 10.002 0327.0 4.	Pipeline Schedule							
Link Length Slong Dia Li	ink US CL US II US Denth DS CL DS II DS Denth							
(m) (1:X) (mm) Ty	ype (m) (m) (m) (m) (m) (m)							
1 10.000 10.0 1000 Circ	cular 10.000 9.000 0.000 9.900 8.000 0.900							
Link US Dia	Node MH DS Dia Node MH							
Node (mm)	n) Type Type Node (mm) Type Type							
1 Modified Rational Method 1900	0 Manhole Adoptable Outlet 1900 Manhole Adoptable							
	Manhole Schedule							
Node Easting Northi (m) (m)	ing CL Depth Dia Connections Link IL Dia) (m) (m) (mm) (m) (mm)							
Modified Rational Method 0.000 0.0	000 10.000 1.000 1900							
Outlet 10.000 0.0	0 1 9.000 1000 000 9.900 1.900 1900 1 1 8.000 1000							
	1							

Simulation Settings

Rainfall Methodology FSR Region M5-60 (mm) Ratio-R Summer CV Winter CV	FSR England and Wales 20.000 0.400 1.000 1.000	s Sk Drain Dov Additional S Check Dis Check Dis	Analysis Speed ip Steady State vn Time (mins) Storage (m³/ha) scharge Rate(s) charge Volume	Normal x 240 20.0 x x
15 60 180 30 30 120 240 40	Storm D 360 600 9 480 720 14	urations 160 2160 140 2880	4320 7200 5760 8640	10080
Return Period	Climate Change	Additional Area	Additional Flow	v
(years)	(CC %)	(A %)	(Q %)	
1	0	0		0
30	0	0		0
100	0	0		0
100	40	0		0

Results for 1	year Critical Storm Duration	on. Lowest mass balance: 100.00)%

Node Event	US Node		Peak mins)	Level (m)	Dep (m	th Inflov) (I/s)	v Node Vol (m³)	Flood (m³)	Status
15 minute summ	er Modified Rational Meth	od	10	9.016	0.0	16 3.	2 0.0513	0.0000	ОК
15 minute summ	er Outlet		10	8.014	0.0	14 3.	2 0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outf (I/	low s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Modified Rational Method	1	Outlet	:	3.2	1.363	0.000	0.0235	1.2

Node Event	US Node	(Peak mins)	Level (m)	Dep (m	th Inflov) (l/s)	v Node Vol (m³)	Flood (m³)	Status
15 minute summ	er Modified Rational Meth	od	10	9.024	0.0	24 7.	8 0.0767	0.0000	ОК
15 minute summ	er Outlet		10	8.024	0.0	24 7.	8 0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outf (I/	low s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Modified Rational Method	1	Outlet	t	7.8	1.718	0.001	0.0454	3.0

Node Event	US Node		Peak (mins)	Level (m)	Dep (m	th In) (flow I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summ	er Modified Rational Meth	od	10	9.027	0.0	27	10.1	0.0862	0.0000	ОК
15 minute summ	er Outlet		10	8.026	0.0	26	10.1	0.0000	0.0000	ОК
Link Event (Upstream Depth) 15 minute summer	US Node Modified Rational Method	Link	DS Node Outlet	Outf (I/:	low s) 10.1	Veloci (m/s	ty F) 61	low/Cap	Link Vol (m³) 0.0543	Discharge Vol (m³) 3.9

Node Event	US Node		Peak (mins)	Level (m)	Dep (m	th Inflov) (I/s)	v Node Vol (m³)	Flood (m³)	Status
15 minute summ	er Modified Rational Meth	od	10	9.032	0.03	32 14.	2 0.1008	0.0000	ОК
15 minute summ	er Outlet		10	8.030	0.03	30 14.	2 0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outf (I/	low s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Modified Rational Method	1	Outlet	t 1	L4.2	2.061	0.002	0.0689	5.5

APPENDIX B3

CALCULATIONS: Proposed rates

		ondon NC1X 8/	AQ				Jerome 18/04/2	Klein 2023							
						I	De	sign Sett	tings						
		Rainfall Return Addit	Method Period (y ional Flo FSR R M5-60 Ra of Entry (ology years) w (%) .egion (mm) atio-R CV mins)	FSR 100 40 England 20.000 0.400 1.000 4.00	d and V	/ales	Maxim	num Time Ma Minim Pr Inclu Enforce b	of Concen aximum Rai Minimum ^V Cor um Backdro eferred Cov de Interme est practico	tration (I nfall (mr Velocity Inection op Heigh Ver Dept diate Gr e design	mins) n/hr) (m/s) Type t (m) h (m) ound rules	30.00 50.0 1.00 Level Sc 0.960 0.750 √ √	offits	
								<u>Nodes</u>							
			Na	ime	Ar (h	rea 1 na) (「 of E mins)	Cover Level (m)	Diamete (mm)	er Easting (m)	g Nortl (m	hing 1)	Depth (m)		
		<u>ا</u> ((green roo Green roo 3 Combine 5	of 1 of 2 d manho	0.0 0.0 0.0	006 003 007	10.00 10.00 4.00	10.000 10.000 10.000 9.000 9.000	120 120 120 120 120	0 0.000 0 0.000 0 0.000 0 10.943 0 17.016) 0.) 10.) 20. 3 9. 5 9.	.000 .000 .000 .416 .374	0.850 0.850 0.850 0.850 0.850 0.953		
								<u>Links</u>							
Name 1.000 3.000 2.000 1.001	3 Green r green r Combir	US Node roof 2 roof 1 ned mar	C C nhole 5	I Na Combine Combine Combine	DS ode ed manh ed manh ed manh	Lole 1 ole 1 ole 1	ength (m) 5.224 0.959 4.436 6.073	ks (mm) n 0.60 0.60 0.60) / US I (m) 00 9.15 00 9.15 00 9.15 00 8.15	L DS IL (m) 0 8.150 0 8.150 0 8.150 0 8.047	Fall (m) 1.000 1.000 1.000 0.103	Slope (1:X) 15.2 11.0 14.4 59.0	Dia (mm) 100 100 100 100	T of C (mins) 4.13 10.08 10.12 10.22	Rain (mm/hr) 50.0 50.0 50.0
			Name	Vel (m/s) 1.990	Cap (I/s) 15.6	Flow (I/s)	US Depth (m) 0.750	DS Dept (m) 0.75	Σ Area h (ha)	a Σ Add Inflow (I/s) 7 0.0	Pro Depth (mm) 23	Pr Velo (m, 1.	ro ocity /s) 328		
			2.000 1.001	2.044 1.005	16.1 7.9	0.8 1.5 4.0	0.750 0.750 0.750	0.75 0.75 0.85	0 0.00 0 0.00 3 0.01	5 0.0 6 0.0 6 0.0	21 50	1. 1. 1.	280 008		
							<u>Pipe</u>	<u>line Sch</u>	<u>edule</u>						
		Link 1.000 3.000 2.000 1.001	Length (m) 15.224 10.959 14.436 6.073	Slope (1:X) 15.2 11.0 5 14.4 59.0	e Dia (mm 2 10 0 10 4 10 0 10	L n) Ty 0 Cirr 0 Cirr 0 Cirr 0 Cirr	ink (ype cular 1 cular 1 cular 1 cular	US CL (m) 0.000 0.000 0.000 9.000	US IL ((m) 9.150 9.150 9.150 8.150	US Depth (m) 0.750 0.750 0.750 0.750	DS CL (m) 9.000 9.000 9.000 9.000	DS IL (m) 8.150 8.150 8.150 8.047	DS De (m) 0.7 0.7 0.8	pth 750 750 750 853	
	Link 1.000 3.000	3 Greer	US Node		Dia (mm) 1200 1200	Nod Type Manh Manh	e e ole Ad ole Ad	MH Type optable optable	Combir Combir	DS Node ned manho ned manho	Dia (mn le 120 le 120	a Ma n) 1 00 Ma 00 Ma	lode Type anhole anhole	MH Type Adoptable Adoptable	2

	SD Structures (London) Ltd	File: 1584-SDS-00-XX-CA-C-1010-SW F	Page 2
	60 Grays Inn Road	Network: Storm Network	
	London	Jerome Klein	
	WC1X 8AQ	18/04/2023	

Manhole Schedule												
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connectio	ns	Link	IL (m)	Dia (mm)		
green roof 1	0.000	0.000	10.000	0.850	1200	() so				<u> </u>		
Green roof 2	0.000	10.000	10.000	0.850	1200		0	2.000	9.150	100		
						()→o	0	3.000	9.150	100		
3	0.000	20.000	10.000	0.850	1200	\bigcirc						
Combined manhole	10 9/3	9./16	9 000	0.850	1200		0	1.000	9.150	100		
	10.545	5.410	5.000	0.050	1200	$1 \xrightarrow{2}{2} 0$	2 3	2.000 1.000	8.150 8.150 8.150	100 100 100		
5	17.016	9.374	9.000	0.953	1200	1	0	1.001	8.150 8.047	<u>100</u> 100		
			<u>Simul</u>	ation Set	<u>ttings</u>							
Rainfal	l Methodo FSR Re M5-60 (i Rat Summe Winte	logy FSR gion Engla mm) 20.00 tio-R 0.400 rr CV 1.000 rr CV 0.840	and and W DO D D D	Vales	Drair Additio Chec Checl	Analysis S Skip Steady Down Time (nal Storage (n k Discharge R C Discharge Vo	Speed State mins) n ³ /ha) ate(s) olume	Norm x 240 20.0 x x	al			
			Stor	m Durati	ions							
15 60 30 12) 180 0 240	360 480	600 720	960 1440	2160 2880) 4320) 5760	72(864	00 1 40	.0080			
	Return Pe (years	eriod Clima)	ate Chang (CC %)	ge Add	itional A (A %)	rea Additio (Q	nal Fl %)	ow				
		1 30		0		0		0				
		100		0		0		0				
		100	4	10		0		0				

Results for 1	year Critical Storm Duration.	Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	green roof 1	14	9.164	0.014	0.7	0.0182	0.0000	ОК
30 minute summer	Green roof 2	20	9.160	0.010	0.4	0.0119	0.0000	ОК
15 minute summer	3	10	9.170	0.020	1.4	0.0263	0.0000	ОК
15 minute summer	Combined manhole	11	8.189	0.039	2.4	0.0437	0.0000	ОК
15 minute summer	5	11	8.084	0.037	2.3	0.0000	0.0000	OK

Link Event	ık Event US Link		DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	green roof 1	2.000	Combined manhole	0.7	0.569	0.044	0.0251	
30 minute summer	Green roof 2	3.000	Combined manhole	0.4	0.312	0.020	0.0162	
15 minute summer	3	1.000	Combined manhole	1.4	0.826	0.090	0.0299	
15 minute summer	Combined manhole	1.001	5	2.3	0.841	0.288	0.0164	1.2

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	green roof 1	13	9.172	0.022	1.7	0.0281	0.0000	ОК
30 minute summer	Green roof 2	20	9.165	0.015	0.9	0.0180	0.0000	ОК
15 minute summer	3	10	9.182	0.032	3.4	0.0412	0.0000	ОК
15 minute summer	Combined manhole	10	8.218	0.068	5.8	0.0773	0.0000	ОК
15 minute summer	5	10	8.109	0.062	5.6	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	green roof 1	2.000	Combined manhole	1.7	0.687	0.106	0.0500	
30 minute summer	Green roof 2	3.000	Combined manhole	0.9	0.390	0.048	0.0332	
15 minute summer	3	1.000	Combined manhole	3.4	0.937	0.218	0.0597	
15 minute summer	Combined manhole	1.001	5	5.6	1.035	0.707	0.0328	3.0

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	green roof 1	20	9.175	0.025	2.2	0.0319	0.0000	ОК
30 minute summer	Green roof 2	21	9.167	0.017	1.1	0.0200	0.0000	ОК
15 minute summer	3	10	9.186	0.036	4.4	0.0472	0.0000	OK
15 minute summer	Combined manhole	11	8.235	0.085	7.4	0.0962	0.0000	OK
15 minute summer	5	11	8.122	0.075	7.2	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	green roof 1	2.000	Combined manhole	2.2	0.691	0.137	0.0595	
30 minute summer	Green roof 2	3.000	Combined manhole	1.1	0.403	0.060	0.0417	
15 minute summer	3	1.000	Combined manhole	4.4	0.997	0.282	0.0733	
15 minute summer	Combined manhole	1.001	5	7.2	1.073	0.913	0.0407	3.9

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute summer	green roof 1	20	9.180	0.030	3.1	0.0380	0.0000	ОК
30 minute summer	Green roof 2	20	9.170	0.020	1.6	0.0240	0.0000	ОК
15 minute summer	3	10	9.194	0.044	6.2	0.0569	0.0000	ОК
15 minute summer	Combined manhole	11	8.340	0.190	10.5	0.2151	0.0000	SURCHARGED
15 minute summer	5	11	8.141	0.094	9.6	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
30 minute summer	green roof 1	2.000	Combined manhole	3.1	0.729	0.193	0.0706	
30 minute summer	Green roof 2	3.000	Combined manhole	1.6	0.408	0.087	0.0490	
15 minute summer	3	1.000	Combined manhole	6.2	1.090	0.397	0.0847	
15 minute summer	Combined manhole	1.001	5	9.6	1.231	1.221	0.0469	5.5

APPENDIX C

DRAINAGE DRAWINGS

Below Ground Drainage Key					
G	eneral Notation				
100mmØ ID (pipe diameter) at 1/80 (approximate gradient)	Pipework other than that covered by the general drainage notes will be identified as adjacent BD - Backdrop connection UIL - Upper Invert Level				
E>	kisting Drainage				
	Existing Drainage - Combined Water				
	Existing Drainage - Foul Water				
	Existing Drainage - Surface Water				
<u></u>	Existing Drainage - to be abandoned				
	Existing Drainage - Manholes Sizes as shown on plan / schedules Information as per services survey				
РРМ	Existing Drainage - Pump and Rising Main Sizes shown indicatively Information as per services survey				
C	ombined Water				
	Proposed Drainage - Combined Water drain				
	Proposed Drainage - Combined Water Manholes Sizes are per plan and schedules PPIC - Polypropylene Inspection Chamber PCC - Pre-Cast Concrete				
	Foul Water				
	Proposed Drainage - Foul Water drain				
	Proposed Drainage - Foul Water Manholes Sizes are per plan and schedules PPIC - Polypropylene Inspection Chamber PCC - Pre-Cast Concrete				
РРМ	Proposed Drainage - Foul Water Pumping Chamber and Rising Main Sizes shown indicatively Refer to pump manufacturers' specification				
•	Foul Connection: SVP - Soil Vent Pipe SS - Stub Stack AAV - Air Admittance Valve FA - From Above (refer to Architectural / M&E plans) FS - Floor Socket (for internal gullies / shower drains)				
	FG - Foul Gully (trapped and roddable)				
	Surface Water				
	Proposed Drainage - Surface Water drain				
	Proposed Drainage - Surface Water land drain				
	Proposed Drainage - Surface Water channel drain (ACO or similar approved)				
	Proposed Drainage - Foul Water Manholes Sizes are per plan and schedules PPIC - Polypropylene Inspection Chamber PCC - Pre-Cast Concrete FC - Flow Control chamber (Hydro-Brake™ by Hydro International or similar approved) CP - Catch Pit chamber				
РРМ	Proposed Drainage - Surface Water Pumping Chamber and Rising Main Sizes shown indicatively Refer to pump manufacturers' specification				
	Proposed Drainage - Cellular storage structure or soakaway Sizes as per plan and schedules Refer to crate manufacturers' specification				
	Proposed Drainage - Permeable surfacing Permeable paving / permeable asphalt Refer to Landscape Architect's / Construction build-ups drawings for more information				
•	RWP - Rain Water Pipe				
	YG - Yard Gully (trapped and roddable) RG - Road Gully				

General Notes:

- Do not scale from this drawing manually or electronically. Written permission must be obtained from SD Structures prior to scaling.
 Contact SD Structures in the event of any discrepancies between findings on
- site and these drawings.
- Site and these drawings.
 This drawing is also to be read in conjunction with all relevant Architect's, Engineer's and Specialist's drawings and specifications.
 3D views are indicative only and any conflicting 2D information should take precedence. If in doubt contact SD Structures prior to starting work.
 All work is to be carried out in accordance with the relevant British Standards, European norms, codes of practice and building practice.
 The Contractor shall obtain licences from the Highway Authority prior to carrying out any workings within the existing Public Highway.

Below Ground Drainage Key						
General Notation						
100mmØ ID (pipe diameter) at 1/80 (approximate gradient)	Pipework other than that covered by the general drainage notes will be identified as adjacent BD - Backdrop connection UIL - Upper Invert Level					
E	kisting Drainage					
	Existing Drainage - Combined Water					
	Existing Drainage - Foul Water					
	Existing Drainage - Surface Water					
— <u> </u>	Existing Drainage - to be abandoned					
	Existing Drainage - Manholes Sizes as shown on plan / schedules Information as per services survey					
PPM	Existing Drainage - Pump and Rising Main Sizes shown indicatively Information as per services survey					
С	ombined Water					
	Proposed Drainage - Combined Water drain					
	Proposed Drainage - Combined Water Manholes Sizes are per plan and schedules PPIC - Polypropylene Inspection Chamber PCC - Pre-Cast Concrete					
Foul Water						
	Proposed Drainage - Foul Water drain					
	Proposed Drainage - Foul Water Manholes Sizes are per plan and schedules PPIC - Polypropylene Inspection Chamber PCC - Pre-Cast Concrete					
PPM	Proposed Drainage - Foul Water Pumping Chamber and Rising Main Sizes shown indicatively Refer to pump manufacturers' specification					
•	Foul Connection: SVP - Soil Vent Pipe SS - Stub Stack AAV - Air Admittance Valve FA - From Above (refer to Architectural / M&E plans) FS - Floor Socket (for internal gullies / shower drains)					
\boxtimes	FG - Foul Gully (trapped and roddable)					
	Surface Water					
\longrightarrow \longrightarrow \longrightarrow	Proposed Drainage - Surface Water drain					
	Proposed Drainage - Surface Water land drain Perforated pipe laid within sub-base material					
	Proposed Drainage - Surface Water channel drain (ACO or similar approved)					
	Proposed Drainage - Foul Water Manholes Sizes are per plan and schedules PPIC - Polypropylene Inspection Chamber PCC - Pre-Cast Concrete FC - Flow Control chamber (Hydro-Brake™ by Hydro International or similar approved) CP - Catch Pit chamber					
PPM	Proposed Drainage - Surface Water Pumping Chamber and Rising Main Sizes shown indicatively Refer to pump manufacturers' specification					
	Proposed Drainage - Cellular storage structure or soakaway Sizes as per plan and schedules Refer to crate manufacturers' specification					
	Proposed Drainage - Permeable surfacing Permeable paving / permeable asphalt Refer to Landscape Architect's / Construction build-ups drawings for more information					
•	RWP - Rain Water Pipe					
	YG - Yard Gully (trapped and roddable) RG - Road Gully					

Cavity pump rising main to be 7 SVP connected into existing outlet Foul pump rising main to connect into existing outlet Cavity drainage system shown indicatively, location and placement of channel and outlets TBC by manufacturer F 1.0 PPIC _____ SVP Note: Internal stack and drainage layout subject to M&E and architectural layout. TBC during detailed design stage.

Basement Level Scale 1:100

General Notes:

- 1. Do not scale from this drawing manually or electronically. Written permission must be obtained from SD Structures prior to scaling. 2. Contact SD Structures in the event of any discrepancies between findings on
- site and these drawings.

- Site and these drawings.
 This drawing is also to be read in conjunction with all relevant Architect's, Engineer's and Specialist's drawings and specifications.
 3D views are indicative only and any conflicting 2D information should take precedence. If in doubt contact SD Structures prior to starting work.
 All work is to be carried out in accordance with the relevant British Standards, European norms, codes of practice and building practice.
 The Contractor shall obtain licences from the Highway Authority prior to carrying out any workings within the existing Public Highway.

P01 Issued for information Rev Amendment

Road, London WC1X 8AQ C Ū

CCTV SURVEY

