

ENERGY & OVERHEATING ASSESSMENT

40 HILLWAY

PROPERTY ADDRESS

40 HILLWAY, London, N6 6HH,

DATE

May 23

PREPARED BY EAL Consult

EAL Consult is a part of Energy Assessors London Ltd. Registered in England 5079365 VAT Registration No. 942704035 www.ealconsult.com. 020 8930 5668

Contents

1.	EXECUTIVE SUMMARY	3
2.	INTRODUCTION	5
3.	PLANNING POLICY CONTEXT	6
4.	ENERGY STRATEGY	9
5.	SUSTAINABLE DESIGN	. 11
6.	Cooling Strategy	. 12
7.	CONCLUSION	. 17
8.	APPENDIX	. 18

1.EXECUTIVE SUMMARY

This Sustainability statement has been prepared to support the installation of three outdoor air condenser units within acoustic enclosures at No 40 Hillway. The works have already been carried out. Two air conditioning units already exist on site and a third unit is proposed. The strategy highlights how the development promotes sustainability throught both design and operation and summarises the relevant regulatory and planning policies applicable and how the relevant policy targets will be addressed and achieved. The report analyses also whether 40 Hillway has comfort level in accordance with the criteria set out in CIBSE TM59 and TM49 to assess the space against the cooling hierarchy presented in section 6 and confirm whether an active cooling system will be required.

The strategy reponds to the UK Planning and regulatory framework, the National Planning Policy Framework 2021, the New London Plan and Camden Local Plan 2017.

This statement outlines an overall commitment to reducing energy consumption under occupancy through the adoption of a 'Fabric First' principle, which will seek enhanced insulation standards and improved heating and lighting efficiencies in comparison to the standard requirements of Approved Document Part L 2013.

Where an existing building is being assessed the dwelling emission rates (DER) of the notional flats and proposed flats are compared to determine the level of improvement. This is in line with Building Regulations 2013 Part L1B for Existing Buildings.

The report also demonstrates that the dwelling, by incorporating the measures above, can achieve an average carbon emission reduction of **38.7%** on Notional Dewelling emission.

Dwelling	Notional DER	Lean DER (without active cooling)	Lean DER (with active cooling)
40 Hillway	59.31	36.36	36.37

Table 1. Carbon Emission Rate

SAP methodology and Building regulations Part L 2013 have been used in the assessment

Table 2. Carbon Dioxide emissions after each stage of the Energy Hierarchy

	Carbon dioxide emissions (Tonnes CO2 per annum) – without Active cooling		Carbon dioxid (Tonnes CO2 per Active c	annum) – with
	Regulated Total		Regulated	Total
Building Regs Notional Development	11.26	13.51	11.26	13.51
After Energy demand Reduction	6.90	8.28	6.90	8.28

	With Active cooling		Without Active cooling	
	Regulated Carbon dioxide savings (Tonnes CO2)% Improvement		Regulated Carbon dioxide savings (Tonnes CO ₂)	% Improvement
Savings from energy efficiency measures	4.35	38.7%	4.35	38.7%

Table 3. Carbon Dioxide Savings from each stage of the Energy Hierarchy

The results show that the carbon dioxide savings are similar for both options, with or without active cooling, and therefore it can be concluded that the use of active cooling does not lead to the increase of carbon emissions.

The reported improvements, that exceed Part L requirements, are also deemed to be at the limit of financial viability for this minor development.

2.INTRODUCTION

Site description

The development is located at 40 Hillway, London, N6 6HH.

Methodology

This energy assessment outlines the energy demand from the development together with the associated CO_2 emissions, using the present Building Regulations Part L as a baseline. It demonstrates how the emissions from energy use in the development will be reduced through energy efficiency measures.

The proposed scheme is required to achieve carbon emission reduction principles in accordance with the UK Planning and regulatory framework,

The methodology employed to determine the potential CO₂ savings is in accordance with the threestep Energy Hierarchy.

- Be Lean Improve the energy efficiency of the scheme;
- **Be Clean** Supply as much of the remaining energy requirement with low carbon; technologies such as district heating if available or combined heat and power (CHP); and
- **Be Green** Offset a proportion of the remaining carbon dioxide emissions by using renewable technologies.

The government approved Standard Assessment Procedure (SAP) methodology software (2013) has been used to determine the CO_2 emissions and energy requirements. It compares CO_2 emissions from regulated energy use (DER) with those of an equivalent dwelling built to Part L 2013 (TER), a notional dwelling of the same size and shape. These calculations do not include emissions from cooking or appliances. As the works have already been completed, Building Regulations Part L 2013 apply.

Opportunities for incorporating features into the development that contribute to the objectives of sustainable development were explored during the design process, to ensure that where possible, the proposals achieve best practice.

3. PLANNING POLICY CONTEXT

National Planning Policy Framework 2021 – emphasised the concept of sustainable development by encouraging local authorities to adopt proactive strategies to mitigate and adapt to climate change. It recommends the move to a low carbon future by:

- Avoiding increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and
- Contributing to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards.
- To help increase the use and supply of renewable and low carbon energy and heat, plans should:
 - provide a positive strategy for energy from these sources, that maximises the potential for suitable development, while ensuring that adverse impacts are addressed satisfactorily (including cumulative landscape and visual impacts);
 - consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and
 - identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for colocating potential heat customers and suppliers.

The London Plan 2021 provides the strategic framework for an integrated socio-economic, transportation and environmental development plan across the capital to 2050. The Plan seeks to ensure new developments are designed to enable the efficient use of energy and support the development of sustainable energy infrastructure to produce energy more efficiently. It sets out a range of policies that apply to new developments.

Policy SI 2 Minimising Greenhouse Gas Emissions:

- A. Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy: a) Be lean: use less energy and manage demand during operation, b) Be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly, c) Be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site.
- B. Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy.
- C. A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either: 1) through a cash in lieu contribution to the borough's carbon offset fund, or 2) off-site provided that an alternative proposal is identified, and delivery is certain.
- D. Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually.

- E. Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations, i.e. unregulated emissions.
- F. Development proposals referable to the Mayor should calculate whole lifecycle carbon emissions through a nationally recognised Whole Life-Cycle Carbon Assessment and demonstrate actions taken to reduce life-cycle carbon emissions.

9.2.1 The Mayor is committed to London becoming a zero-carbon city. This will require reduction of all greenhouse gases, of which carbon dioxide is the most prominent. London's homes and workplaces are responsible for producing approximately 78 per cent of its greenhouse gas emissions. If London is to achieve its objective of becoming a zero-carbon city by 2050, new development needs to meet the requirements of this policy. Development involving major refurbishment should also aim to meet this policy.

9.2.2 The energy hierarchy should inform the design, construction, and operation of new buildings. The priority is to minimise energy demand, and then address how energy will be supplied and renewable technologies incorporated. An important aspect of managing demand will be to reduce peak energy loadings.

Policy SI 4 Managing heat risk

- A. Development proposals should minimise adverse impacts on the urban heat island through design, layout, orientation, materials and the incorporation of green infrastructure.
- B. Major development proposals should demonstrate through an energy strategy how they will reduce the potential for internal overheating and reliance on air conditioning systems in accordance with the following cooling hierarchy:
 - 1. reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure
 - 2. minimise internal heat generation through energy efficient design
 - 3. manage the heat within the building through exposed internal thermal mass and high ceilings
 - 4. provide passive ventilation
 - 5. provide mechanical ventilation
 - 6. provide active cooling systems.

Camden Local Plan 2017

Policy CC1 Climate change mitigation

The Council will require all development to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation.

We will:

- a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy;
- b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met;
- c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks;
- d. support and encourage sensitive energy efficiency improvements to existing buildings;
- e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and
- f. expect all developments to optimise resource efficiency.

For decentralised energy networks, we will promote decentralised energy by:

- g. working with local organisations and developers to implement decentralised energy networks in the parts of Camden most likely to support them;
- h. protecting existing decentralised energy networks (e.g. at Gower Street, Bloomsbury, King's Cross, Gospel Oak and Somers Town) and safeguarding potential network routes; and
- i. requiring all major developments to assess the feasibility of connecting to an existing decentralised energy network, or where this is not possible establishing a new network.

To ensure that the Council can monitor the effectiveness of renewable and low carbon technologies, major developments will be required to install appropriate monitoring equipment.

Policy CC2 Adapting to climate change

All new developments will be expected to submit a statement demonstrating how the London Plan's 'cooling hierarchy' has informed the building design. Any development that is likely to be at risk of overheating (for example due to large expanses of south or south west facing glazing) will be required to complete dynamic thermal modelling to demonstrate that any risk of overheating has been mitigated.

Active cooling (air conditioning) will only be permitted where dynamic thermal modelling demonstrates there is a clear need for it after all the preferred measures are incorporated in line with the cooling hierarchy.

The cooling hierarchy includes:

- Minimise internal heat generation through energy efficient design;
- Reduce the amount of heat entering a building in summer through orientation, shading, albedo, fenestration, insulation and green roofs and walls;
- Manage the heat within the building through exposed internal thermal mass and high ceilings;
- Passive ventilation;
- Mechanical ventilation; and
- Active cooling

4.ENERGY STRATEGY

The Energy strategy for the proposed development is based on the Building Regulations Part L. It adopts a set of principles to guide design and decisions regarding energy, balanced with the need to optimise environmental and economic benefits. It incorporates energy efficiency through the approach detailed below.

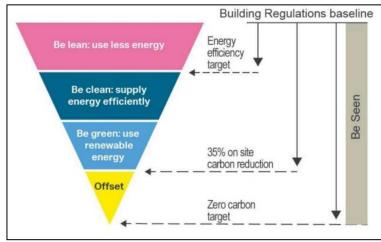


Figure 1. Energy Hierarchy

Be 'Lean' - Demand Reduction

The building fabric performance and engineering systems have been optimised in order to use less energy prior to the inclusion or consideration of Low and Zero Carbon (LZC) Technology.

Passive Design Measures:

Fabric Performance - The fabric performance values aim to reduce unwanted heat loss and heat gains, whilst maintaining a comfortable internal environment.

The table below outlines the U-values for the external walls and reflects the roof and floor upgrade.

Table 3. Fabric energy Efficiency specified

Thermal element	Specification
Wall	0.28/m ² k
Roof	0.18W/m ² k
Floor	0.22 W/m ² k
Doors	1.8 W/m ² k

Space Heating & Cooling - Space heating is provided by radiators.

Efficient Lighting and Controls - Throughout the development natural lighting is optimised. The development incorporates low energy light fittings throughout. All light fittings are low energy lighting and will accommodate LED luminaries only.

Ventilation – There is use of natural ventilation in the building.

Domestic hot water (DHW) system – domestic hot water is provided by the combi-boiler & cylinder.

Be 'Clean' – Supply Energy Efficiently

The Be Clean step of the energy hierarchy refers to the use of 'Clean energy supply'. This includes, but is not limited to, the use of Combined Heat and Power (CHP) and District Heat Networks. Policy TP1 seeks for new development to promote the use of CHP and district heating.

In light of the small-scale nature of the proposed development, it is apparent that the use of CHP is also technically and financially unviable in this instance.

Be 'Green' - Renewable Energy

Once energy demand reduction measures have been applied, methods for generating low and zero carbon energy can be assessed. The following renewable technologies to be considered for the project: Biomass, Water source heat pump, air source heat pump, Wind energy and solar photovoltaic panels.

In the light of the nature of the project, renewable technologies have been considered not feasible for this project as it already achieves a significant reduction in CO2 emissions and the incorporation of renewable technology can be considered at a later stage.

5.SUSTAINABLE DESIGN

The proposed project incorporates sustainable design and construction measures capable of mitigating and adapting to climate change to meet future needs. This section details site-specific initiatives which demonstrate how the development helps to meet the sustainability objectives set out in the National Planning Framework 2021.

Energy Use and Pollution

The design of the development has taken into consideration day lighting to habitable spaces to improve the wellbeing of occupants. Good levels of daylight will offer occupants a pleasant and highly valued connection to the outdoors and plenty of natural light. It will also reduce the use of artificial lighting and therefore energy use. All light fittings are specified as low energy lighting. No external lighting is required.

Pollution: Air, Noise and Light

The layout of the development and the use of openable windows will create horizontal airflow. However, it is not sufficient to eliminate the overheating and therefore the need for air conditioning. Refer to section 6 for more details.

The development does not increase the air pollution of the area by reducing as a start, its energy consumption, which in turn will reduce emissions that lead to air pollution. Other measures will include:

- a. Use of eco-friendly building materials
- b. Non-toxic paints
- c. Installation of energy efficient appliances and devices
- d. Use of renewable technologies

Light pollution can best be described as artificial light that is allowed to illuminate or intrude upon areas not intended to be lit. Light in the wrong place at the wrong time can be intrusive. Intrusive light is over bright or poorly directed lights shining onto neighbouring property which affect the neighbours' right to enjoy their property. Therefore, the proposal incorporates lighting measures in order to avoid causing a nuisance.

Water: Water Efficiency

In domestic and non-domestic buildings, the demand for water can be reduced as much as 50% using a variety of simple and innovative strategies that are integrated into the plumbing and mechanical systems. In order to reduce water consumption the proposed development should include efficient fixtures with low flow rates. Total internal water consumption should not exceed 105 litres/person/day.

Flood Risk

The development site is located in a Low Flood Risk Area on the Environment Agency Flood Risk Map.

6.Cooling Strategy

A dynamic overheating analysis has been carried out to identify the overheating risk of the dwelling at 40 Hillway, using dynamic thermal modelling via TM59 & TM49 and The principles set in Building regulations Part O - Overheating.

6.1 Assessment Criteria

CIBSE TM59:2017 (Design methodology for the assessment of overheating risk in homes) defines overheating criteria for residential buildings. The buildings will be predominantly naturally ventilated and hence the relevant TM59 criteria will be used for the assessment.

Naturally Ventilated Buildings: The criteria below can be applied to homes which are naturally ventilated building. The compliance is based on passing both of the following two criteria.

- **A.** Living rooms, Kitchens and Bedrooms: The number of hours () during which ∆ is greater than or equal to one degree (K) during the period May to September inclusive shall not be more than 3 per cent of occupied hours. Please refer to CIBSE TM59.
- **B.** Bedrooms only: The operative temperature in the bedroom between 10:00pm to 7:00am shall not exceed 26°C for more than 1% of annual hours. (Note: 1% of the annual hours between 22:00 and 07:00 for bedrooms is 32 hours, so 33 or more hours above 26°C will be recorded as a fail).

CIBSE TM49:2014 - In line with guidance from the Greater London Authority, 3 weather files from the CIBSE TM49 document have been used

5.2 Modelling Input

Weather File & Description

- London_GTW_DSY1_2020High50.epw London Gatwick Weather data: 2020 (high emission) DSY 1 Moderately warm summer
- London_GTW_DSY2_2020High50.epw London Gatwick Weather data: featuring short intense warm spell
- London_GTW_DSY3_2020High50.epw London Gatwick Weather data: featuring long, less intense warm spell

Building Category

• Category II - all units: Normal expectation

Window

- Glazed doors are modelled as 100% openable.
- Internal blinds installed

Lighting Gain

• The internal gains from the lighting are based on CIBSE TM59 5.2

Small Power Gains

The house is modelled to include small power gains that are representative of typical equipment use in an everyday occurrence. There are associated with an assumed usage profile to represent which times of the day such appliances would result in a heat gain into the space. Small power gains include appliances such as TV's, fridge/freezers, toasters, kettles, hairdryers etc.

A list of anticipated heat gains in the dwellings are:

- Kitchen and Living spaces: 250W maximum power consumption
- Bedroom spaces: 150W maximum power consumption

5. 3. Summary of Results – Rev I

Note: the proposed model has been done for the extension only which is an open plan living/kitchen area as proposed – Including latest U-Values for walls – 0.28, Floor 0.22, and Roof 0.18

The table below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 1:

Table 04: Summary of Results for Bedrooms

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?				
Dining/Living Room a	Dining/Living Room and Kitchen					
Rear Extension						
Open plan living 3.2% Fail						

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 2:

Table 05: Summary of Results for Dining/living rooms and kitchens

Room Name Dining/Living Room a	Criteria A (During The Period May to September) and Kitchen	TM59 Criteria met ?		
Rear Extension				
Open plan living	3.3%	Fail		

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 3:

Table 06: Summary of Results for Bedrooms

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?				
Dining/Living Room a	Dining/Living Room and Kitchen					
Rear Extension						
Open plan living	3.5%	Fail				

5.4. Additional Results

CIBSE TM49: 2014 Compliance

DYS1 (1989) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	TM49 Compliance
% of spaces	0	0	0	
pass				Fail
% of spaces fail	100	100	100	

DYS2 (2003) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	TM49 Compliance
% of spaces	0	0	0	
pass				Fail
% of spaces fail	100	100	100	

DYS2 (1976) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	TM49 Compliance
% of spaces	0	0	0	
pass				Fail
% of spaces fail	100	100	100	

5.5. Proposed Ventilation Strategy

Mechanical cooling - to maintain comfortable internal temperatures

CIBSE TM49: 2014 Compliance

DYS1 (1989) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	TM59 Compliance
% of spaces	100	100	100	Pass
pass				
% of spaces fail	0	0	0	

DYS2 (2003) Weather Data Results

Room Name	Criteria 1 ≤3.0%	Criteria 2 We≤6	Criteria 3 ΔT ≤4	TM59 Compliance	
% of spaces	100	100	100	Pass	
pass					
% of spaces fail	0	0	0		

DYS2 (1976) Weather Data Results

Room Name	Criteria 1 ≤3.0%			TM59 Compliance	
% of spaces	100	100	100	Pass	
pass					
% of spaces fail	0	0	0		

CIBSE TM59: 2014 Compliance

The table below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 1:

Table 7: Summary of Results for Bedrooms

Room Name Dining/Living Room a	Criteria A (During The Period May to September)	TM59 Criteria met ?
Dining/Living Room a		
	Rear Extension	
Open plan living	2.3%	Pass

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 2:

Table 8: Summary of Results for Bedrooms

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?	
Dining/Living Room a	and Kitchen		
	Rear Extension		
Open plan living	2.5%	Pass	

The tables below demonstrate a sample that has been assessed on by CIBSE TM59 Criteria using weather file Gatwick DSY 3:

Table 9: Summary of Results for Bedrooms

Room Name	Criteria A (During The Period May to September)	TM59 Criteria met ?
Dining/Living Room a	and Kitchen	
Open plan living	2.6%	Pass

5.6 Cooling strategy:

The following strategy has been defined according the cooling hierarchy in Policy SI4 of the London Plan.

Table 10. Cooling Hierarchy

Cooling Hierarchy category	40 Hillway
1. Reduce the amount of heat entering the building through orientation, shading, high albedo material, fenestration, insulation and the provision of green infrastructure.	The project doesn't have opportunities since it is related to an extension to an existing building.
2. Minimise internal heat generation through energy efficient design	Improved U-values and passive measures have been implemented as outlined in section 4. Hence the modelling results in section 5.4 confirmed it is not enough to recover the heat generated.
3. Manage the heat within the building through exposed internal thermal mass and high ceilings.	As above.
4. Provide passive ventilation	The natural ventilation is not enough to recover the heat generated. This has been demonstrated in the results provided in section 5.4.
5. Provide mechanical ventilation	Mechanical ventilation can be used but it won't be enough to recover the heat generated.
6. Provide active cooling system	The use of air conditioning is proposed for the development. Refer to section 5.5 for results.

7.CONCLUSION

The development has been designed to exceed Part L building regulations requirements. In line with the national and local policies, regulated CO₂ emissions from the development are improved by **38.7%** from the notional emissions once energy efficiency measures, lean measures and active cooling are taken into account.

In order to achieve the required carbon emissions reduction, the report concludes and proposes the use of energy efficient measures outlined in the section 4 of this report. The overheating analysis outlined in section 6 supports the use of air conditioning to provide a comfortable space for the tenant.

The results show that the carbon dioxide savings are similar for both options, with or without active cooling, and therefore it can be concluded that the use of active cooling does not lead to the increase of carbon emissions.

The reported improvements, that exceed Part L requirements, are also deemed to be at the limit of financial viability for this minor development.

8.APPENDIX

I. SAP Calculation

Project Information

Building type Semi-detached house

Reference Date 5 May 2023 Project 40 Hillway LONDON N6 6HH

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.05.074, printed on 05/05/2023 at 16:29:50

New extension to existing dwelling

1 TER and DER	•	
Fuel for main heating system: Gas (mains) (fuel factor = 1.0 Target Carbon Dioxide Emission Rate	0) TER = 15.88	
Dwelling Carbon Dioxide Emission Rate	DER = 36.37	Fail
Excess emissions = 20.50kg/m ² (129.1%)		
1b TFEE and DFEE		
Target Fabric Energy Efficiency (TFEE)	TFEE = 59.0	
Dwelling Fabric Energy Efficiency (DFEE)	DFEE = 136.2	Fail
2a Thermal bridging		

a Thermal bridging

Thermal bridging calculated using default y-value of 0.15

2b Fabric U-values				
	<u>Element</u>	<u>Average</u>	<u>Highest</u>	
	Wall	1.16 (max. 0.30)	1.55 (max. 0.70)	Fail
	Floor	0.60 (max. 0.25)	0.73 (max. 0.70)	Fail
	Roof	0.17 (max. 0.20)	0.18 (max. 0.35)	OK
	Openings	1.96 (max. 2.00)	3.00 (max. 3.30)	OK
3 Air permeability				
	Air permeabilit	ty at 50 pascals:	10.00	OK
	Maximum :		10.00	

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Page 1 of 2

Main heating system	/ ·	
Main neating system	Boiler and underfloor heating, mains gas	
	Vaillant ecoTEC plus 630 H system A	
Source of efficiency:	from boiler database	
	Vaillant ecoTEC plus 630 H system A VU GB 306/5-5 A	
	Efficiency: 89.4% SEDBUK2009	
	Minimum: 88.0%	OK
Secondary heating sy	ystem: None -	
5 Cylinder insulatio	n	
Hot water storage		
	Manufacturer's declared cylinder loss factor (kWh/day) 2.14	
	Permitted by DBSCG 2.56	OK
Primary pipework insu	ulated No	Fail
6 Controls		
(Also refer to "Domes	tic Building Services Compliance Guide" by the DCLG)	
Space heating contro	Is Time and temperature zone control	OK
	Cylinderstat - Yes	OK
	Independent timer for DHW - Yes	OK
Boiler Interlock	Yes	OK
7 Low energy lights		
7 Low energy lights		
7 Low energy lights	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0%	ОК
7 Low energy lights	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0%	ОК
	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0%	ОК
	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% ation Not applicable	ОК
8 Mechanical ventil	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% ation Not applicable perature imes Valley):	ОК
8 Mechanical ventils 9 Summertime temp Overheating risk (Tha	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% ation Not applicable	
8 Mechanical ventils 9 Summertime temp Overheating risk (Tha Based on:	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% Ation Not applicable Derature Immes Valley): Not significant	ОК
8 Mechanical ventila 9 Summertime temp Overheating risk (Tha Based on: Thermal mass para	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% Not applicable Derature Immes Valley): Not significant	ОК
8 Mechanical ventila 9 Summertime temp Overheating risk (Tha Based on: Thermal mass para Overshading :	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% Ation Not applicable Derature Immes Valley): Not significant	ОК
8 Mechanical ventila 9 Summertime temp Overheating risk (Tha Based on: Thermal mass para Overshading : Orientation : West	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% ation Not applicable Derature umes Valley): Not significant umeter : 245.72 Average or unknown (20-60 % sky blocked)	ОК
8 Mechanical ventila 9 Summertime temp Overheating risk (Tha Based on: Thermal mass para Overshading : Orientation : West Ventilation rate :	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% Not applicable Derature Immes Valley): Not significant	ОК
8 Mechanical ventile 9 Summertime temp Overheating risk (Tha Based on: Thermal mass para Overshading : Orientation : West Ventilation rate : Blinds/curtains :	Percentage of fixed lights with low-energy fittings: 100.0% Minimum: 75.0% ation Not applicable Derature umes Valley): Not significant umeter : 245.72 Average or unknown (20-60 % sky blocked)	ОК

10 Key features

Fixed cooling system

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP Page 2 of 2

Project Information

Building type Semi-detached house

Reference Date 5 May 2023 Project 40 Hillway LONDON N6 6HH

SAP 2012 worksheet for Existing dwelling - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	73.31	2.76	202.34	(3a)
Ground floor (2)	24.73	2.39	59.10	(3b)
First floor	69.13	2.92	201.86	(3c)
Secondfloor	22.65	2.60	58.89	(3d)
	189.82			(4)
			522.19	(5)

Page 1 of 10

2. Ventilation rate

z. vent	liation r	ate										
											m³ per h	our
							main + s	eondar	y + othe	r		
Number	r of obine						heating		. 10		0.00	$(\mathbf{C}_{\mathbf{C}})$
	r of chim						$0 + 0 + 0 \\ 0 + 0 + 0$		x 40 x 20		0.00 0.00	(6a)
	r of open	niues mittent fa										(6b)
			ns				3		x 10		30.00	(7a) (7b)
		ive vents					0		x 10		0.00	(7b)
Numbe	rottiuele	ess gas fi	res				0	2	x 40		0.00	(7c)
											Air chan	ges per hour
											0.06	(8)
(ns)							3				0.00	(9)
(110)							Ŭ				0.20	(10)
											0.35	(10)
											0.00	(13)
									100.00		0.00	(13) (14)
											0.05	(15)
Infiltratio	onrate										0.66	(16)
	neability										0.66	(18)
p e											2.00	(19)
											0.85	(20)
Infiltrati	on rate ir	ncorporat	tina shelt	erfactor							0.56	(21)
		nodified f			peed						0.00	(= ·)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
0.10	0.00	4.50	4.40	4.00	0.00	0.00	0.70	4.00	4.00	4.00	52.50	(22)
Wind Fa	actor										52.50	(22)
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
1.27	1.20	1.20	1.10	1.07	0.00	0.00	0.00	1.00	1.07	1.10	13.13	(22a)
Adjuste	d infiltra	tion rate (allowing	for shelt	er and w	ind spee	ed)				13.13	(22d)
0.71	0.70	0.68	0.61	0.60	0.53	0.53	0.52	0.56	0.60	0.63	0.66	
									J		7.33	(22b)
	tion : nat re air cha	ural venti nge rate	ilation, in	itermitter	nt extract	fans						· · /
0.75	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.70	0.72	(25)
00			0.00					10.00				()

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 2 of 10

3. Heat losses and heat loss parameter	r					
Element Gross Openings	Netarea	U-value	ΑxU	kappa-value		
area, m ² m ²	A, m²	W/m²K	W/K	kJ/m²K	kJ/K	
Window - Double-glazed,	4.430	1.94 (2.10)	8.58			(27)
argon filled, low-E, En=0.2,						
hard coat (East) REAR						
Window - Triple-glazed,	1.370	1.68 (1.80)	2.30			(27)
air-filled, low-E, En=0.1, soft	1.370	1.00 (1.00)	2.50			(27)
coat (East)						
REAR						
Solid door	2.340	3.00	7.02			(26)
FRONT						. ,
Full glazed door -	6.830	1.80	12.29			(26)
Triple-glazed, air-filled,						
low-E, En=0.1, soft coat						
(East)						
REAR	0 000	4.00	40.00			(00)
Full glazed door -	6.830	1.80	12.29			(26)
Triple-glazed, air-filled, low-E, En=0.1, soft coat						
(East)						
REAR						
Rooflight at 70° or less -	4.330	1.68 (1.80)	7.27			(27)
Double-glazed, argon filled,		. ,				. ,
low-E, En=0.1, soft coat						
(n/a)						
ROOF	10 -0			10.00		(00)
Walls	12.79	0.22 (Ru=0.9	90) 2.86	18.00	230.22	(29)
ROOF VOID WALL Walls	51.51	0.28	14.42	150.00	7726.50	(29)
EXTERNAL#WINDOWS&DOORS	51.51	0.20	14.42	130.00	1120.00	(29)
#PROPOSED						
Walls	146.79	1.55	227.52	135.00	19816.65	(29)
EXTERNAL#WINDOWS&DOORS						()
Groundfloors	73.31	0.73	53.52	110.00	8064.10	(28)
EXISTING, UNDERGROUND						
Ground floors	24.73	0.22	5.44	110.00	2720.30	(28)
PROPOSED, UNDERGROUND	40.04	0.40	0.45	0.00	400.40	(00)
Flat roofs DORMER ROOF	13.61	0.18	2.45	9.00	122.49	(30)
Flat roofs	23.90	0.18	4.30	9.00	215.10	(30)
GFREAR #ROOFLIGHTS	20.00	0.10	4.00	0.00	210.10	(00)
Pitched roofs with integrated insulation	46.48	0.15(Ru=0.9	90) 7.20	9.00	418.32	(30)
ROOF VOID ABOVE FF TO SF		,	,			()
Pitched roofs insulated between rafters	9.04	0.16	1.45	9.00	81.36	(30)
MAINROOF						
Party wall	26.50	0.50	13.25	180.00	4770.00	
SOLID	~~~~			10.00		
Internal floor SF	22.65	0.00	0.00	18.00	407.70	
SF Internal floor	69.13	0.00	0.00	18.00	1244.34	
FF	03.15	0.00	0.00	10.00	1277.04	
Internal ceiling	22.65	0.00	0.00	9.00	203.85	
FF						

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 3 of 10

	er heatin ed occup	g energ y ancv. N	y require	ements							kWh/year 2.99	(42)
		hot water	r usage ir	n litres pe	er day Vd	l,average	9				110.72	(43)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hot wate	er usage	in litres	per day f	or each r	nonth							
121.79	117.36	112.93	108.50	104.07	99.64	99.64	104.07	108.50	112.93	117.36	121.79	(44)
Energy	content o	of hot wat	ter used									
180.61	157.96	163.00	142.11	136.36	117.67	109.03	125.12	126.61	147.56	161.07	174.91	
	content (a tion loss	annual)									1742.00	(45)
27.09	23.69	24.45	21.32	20.45	17.65	16.36	18.77	18.99	22.13	24.16	26.24	(46)
Volume Tempera Energy	factor ature fact	store (k)	,	h/day)							0.0000 0.0000 0.0000 0.00	(51) (52) (53) (55)
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(56)
Net stor	age loss											
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(57)
Primary	loss											
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	(59)
-		ulated for		·					V			
50.96	46.03	50.96	49.32	50.96	49.14	50.78	50.96	49.32	50.96	49.32	50.96	(61)
		ed for wa	jr.	<u> </u>			0	·	¥	1		
231.57	203.99	213.96	191.42	187.32	166.81	159.81	176.08	175.93	198.51	210.38	225.87	(62)
		er heater					1		1	1	·	
231.57	203.99	213.96	191.42	187.32	166.81	159.81	176.08	175.93	198.51	210.38	225.87	(64)
Heat gai	ins from	water he	ating, kW	/h/month	ı						2341.65	(64)
72.79	64.03	66.94	59.58	58.08	51.41	48.95	54.34	54.43	61.80	65.88	70.90	(65)

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP Page 4 of 10

5. Internal gains

	ganne										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Metabo	lic gains,	Watts									
179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32
Lighting	gains										
203.04	180.34	146.66	111.03	83.00	70.07	75.71	98.42	132.09	167.72	195.76	208.68
Applian	ces gains	5									
539.20	544.80	530.70	500.68	462.79	427.18	403.39	397.79	411.89	441.91	479.80	515.41
Cooking	ggains										
55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92
Pumps	and fans	gains									
3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Losses	e.g.evap	oration (r	negative	values)							
-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55
Water h	eating ga	ins									
97.84	95.28	89.97	82.75	78.06	71.40	65.79	73.04	75.59	83.07	91.51	95.29
Total int	ernal gai	ns									
958.77	939.11	886.02	813.16	742.54	687.34	663.58	687.94	738.27	811.39	885.75	938.08

6. Solar gains (calculation for January)

	Area & Flux	g & FF	Shading	Gains	
Window - Double-glazed, argon filled, low-E, En=0.2, hard coat (East)	0.9 x 4.430 19.64	0.72 x 0.70	0.77	30.3889	
REAR Window - Triple-glazed, air-filled, low-E,	0.9 x 1.370 19.64	0.57 x 0.80	0.77	8.5029	
En=0.1, soft coat (East) REAR					
Solid door FRONT	0.9 x 2.340 0.00	0.00 x 0.70	0.77	0.0000	
Full glazed door - Triple-glazed, air-filled,	0.9 x 6.830 19.64	0.57 x 0.80	0.77	42.3903	
low-E, En=0.1, soft coat (East) REAR					
Full glazed door - Triple-glazed, air-filled, low-E, En=0.1, soft coat (East)	0.9 x 6.830 19.64	0.57 x 0.80	0.77	42.3903	
REAR Rooflight at 70° or less - Double-glazed,	0.9 x 4.330 26.00	0.63 x 0.80	1.00	51.0663	
argon filled, low-E, En=0.1, soft coat (n/a) ROOF					
Total solar gains, January				174.74	(83-1)
Solargains					
	21.81 1065.24 904.5	689.25 416	.70 219.02	142.95	(83)
Total gains]	

1133.51 1287.10 1473.00 1688.85 1831.78 1809.15 1728.83 1592.46 1427.52 1228.09 1104.77 1081.03 (84)

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 5 of 10

7. Mean internal temperature

	ature dui system r			ds in the	living are	a, Th1 (°	°C)				21.00 1.00
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau											
22.48	22.55	22.61	22.93	22.99	23.27	23.27	23.32	23.16	22.99	22.87	22.74
alpha											
2.50	2.50	2.51	2.53	2.53	2.55	2.55	2.55	2.54	2.53	2.52	2.52
Utilisatio	on factor	for gains	forliving	area							
1.00	0.99	0.99	0.98	0.95	0.90	0.83	0.86	0.95	0.98	0.99	1.00
Mean in	ternal ter	nperatur	e in living	garea T1							
17.84	18.03	18.45	19.05	19.69	20.27	20.62	20.55	20.06	19.25	18.46	17.83
Temper	ature du	ring heat	ing perio	ds in rest	of dwelli	ng Th2					
19.48	19.49	19.49	19.51	19.52	19.53	19.53	19.54	19.53	19.52	19.51	19.50
Utilisatio	on factor	for gains	for rest	of dwellin	ng						
0.99	0.99	0.99	0.97	0.93	0.85	0.70	0.75	0.92	0.98	0.99	1.00
Mean in	ternal te	mperatu	re in the r	est of dv	velling T2	2					
16.65	16.84	17.26	17.88	18.50	19.08	19.37	19.33	18.88	18.08	17.28	16.64
•	rea fracti	•		,	<u>л</u>			_R			0.10
Mean in	ternal ter	nperatur	e (for the	wholed	welling)						
16.77	16.96	17.38	18.00	18.62	19.20	19.50	19.45	19.00	18.20	17.40	16.76
Apply a	djustmen	it to the m	nean inte	rnal tem	perature	, where a	appropria	ate			
17.37	17.56	17.98	18.60	19.22	19.80	20.10	20.05	19.60	18.80	18.00	17.36

8. Space heating requirement

	••	9.09	•••••								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisatio	n factor	for gains									
0.99	0.99	0.98	0.96	0.93	0.86	0.76	0.80	0.92	0.97	0.99	0.99
Useful ga	ains										
1125.02	1273.20	1446.02	1628.31	1700.85	1556.99	1313.57	1273.05	1311.23	1196.35	1092.98	1073.95
Monthly	average	external	tempera	ture							
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20
Heat los	s rate for	mean in	ternal te	mperatur	е						
7530.9	7275.1	6575.9	5479.7	4240.7	2893.7	1947.86	2029.8	3074.4	4621.3	6178.2	7499.3
Fraction	of month	n for heat	ing								
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00
Space h	eating re	quireme	nt for eac	ch month	, kWh/m	onth					
4766.0	4033.3	3816.6	2773.0	1889.63	-	-	-	-	2548.1	3661.3	4780.5
		• •	•	oer year (ar) (Octol	ber to Ma	ay)			28268.4
Space h	eating re	quireme	nt per m ²	² (kWh/m	²/year)						148.92

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 6 of 10

8c. Space cooling requirement

la in	F ab	Man.	A			l. d	A	0.00	0.4	Nieri	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Externa	Itempera	aturers									
-	-	-	-	-	14.60	16.60	16.40	-	-	-	-
Heat los	ss rate V	V									
-	-	-	-	-	5234.5	4120.8	4222.6	-	-	-	-
Utilisatio	on factor	for loss		R	я			A	лл	N	R
-	-	-	-	-	0.35	0.41	0.38	-	-	-	-
Useful I	oss W		<u>_</u>	R	я						R
-	-	-	-	-	1830.93	1704.25	1588.47	1-	-	-	-
Internal	gains W	,		R						k	
0.00	0.00	0.00	0.00	0.00	684.34	660.58	684.94	0.00	0.00	0.00	0.00
Solar ga	ains W	_,					л		N	R	
0.00	0.00	0.00	0.00	0.00	1244.89	1182.42	1005.17	0.00	0.00	0.00	0.00
Gains V	V				л			·	Л	<u>n</u>	R
-	-	-	-	-	1929.23	1843.00	1690.11	-	-	-	-
Fractior	of mont	h for coo	ling		л			·	J	<u>n</u>	R
0.00	0.00	0.00	0.00	0.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00
Space h	neating k	Wh		_ n	л			·	JL	<u>n</u>	
-	-	-	-	-	717.67	162.27	148.15	-	-	-	-
Space of	cooling k	Ŵh	_1(<u></u>	л			I	
-	-	-	-	-	70.78	103.23	75.62	-	-	-	-
Total							1	J			249.63
Cooled											0.22
Intermit	tency fac	tor						2			
-	-	-	-	-	0.25	0.25	0.25	-	-	-	-
Space c	cooling re	equireme	ent for mo	onth							
opuoo		1	1	1	3.89	5.68	4.16	-	-	_	-

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP Page 7 of 10

9a. Energy requirements

9a. Ene	ergy requ	uremen	ts								kWh/year	
Fraction Efficien	ondary he n of space cy of mai system e	e heat fro n heating	om main g system	system(s	5)				1.0000 6.00% .00%			(202) (206) (209)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Spaceh	eating re	quireme	nt	A	л	- <u>h</u>			JL	_ <u>I</u>		
4766.0	4033.3	3816.6	2773.0	1889.63	s -	-	-	-	2548.1	3661.3	4780.5	(98)
Append	lix Q - mo	onthly ene	ergy save	ed (main	heating	system '	1)		J	JL		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space h	neating fu	iel (main	heating	system 1)	н.	n.		л			
7221.2	6111.0	5782.8	4201.5	2863.1	-	-	-	-	3860.8	5547.5	7243.2	(211)
Append	lix Q - mo	onthly ene	ergy save	ed (main	heating	system	2)		л			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(212)
Space h	neating fu	iel (main	heating	system 2	2)				л			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(213)
Append	lix Q - mo	nthly ene	ergy save	ed (seco	ndary he	ating sys	stem)		1			
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
Space h	neating fu	el (secor	ndary)	A	л	- <u>n</u>				_ <u>_</u>		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(215)
Water h Water h	eating eating ree	quiremer	nt									
231.57	203.99	213.96	191.42	187.32	166.81	159.81	176.08	175.93	198.51	210.38	225.87	(64)
Efficien	cy of wate	er heater	J	J	Л][1	J	Л		57.00	(216)
65.52	65.50	65.45	65.33	65.07	57.00	57.00	57.00	57.00	65.26	65.44	65.53	(217)
Waterh	eating fu	el	J		,	JL	1		Л	1		
353.43	311.42	326.90	292.99	287.85	292.64	280.37	308.91	308.65	304.21	321.50	344.66	(219)
Space h Water h	totals neating fu neating fu eating fu cooling fu	el (secor el		stem 1	я	J	JI.	<u>д</u>		J	kWh/year 42831.03 0.00 3733.54 0.00	(211) (215) (219) (221)
-	-	-	-	-	0.00	0.00	0.00	-	-	-	-	(221)
central Total ele Electrici	ity for pur heating ectricity for ity for ligh saving/ge	pump or the ab nting (0.0	ove, kWł 0% fixec	n/year I LEL)	p-hot						30.00 30.00 1434.31	(230c) (231) (232)
Energ	y saved o ly used ()	-	ated ():								0.000 0.000	(236a) (237a)
Total de	livered e	nergy for	alluses								48028.87	(238)

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

10a. Fuel costs using Table 12 prices

	kWh/year	Fuel price	£/year	
		p/kWh		
Space heating - main system 1	42831.026	3.480	1490.52	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
Water heating cost	3733.54	3.480	129.93	(247)
Space cooling	0.000	13.190	0.00	(248)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	30.000	13.190	3.96	(249)
Energy for lighting	1434.310	13.190	189.19	(250)
Additional standing charges			120.00	(251)
Electricity generated - PVs	0.000	0.000	0.00	(252)
Appendix Q -				
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			1933.59	(255)

11a. SAP rating

	0.42 3.46	(256) (257)
SAPvalue	51.75	
SAP band	52 E	(258)

Page 9 of 10

12a. Carbon dioxide emissions

	Energy kWh/year	Emission factor kg CO2/kWh	Emission kg CO2/ye	-
Space heating, main system 1	42831.03	0.216	9251.50	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	0.00	0.519	0.00	(263)
Water heating	3733.54	0.216	806.44	(264)
Space and water heating			10057.95	(265)
Space cooling	0.00	0.519	0.00	(266)
Electricity for pumps and fans	30.00	0.519	15.57	(267)
Electricity for lighting	1434.31	0.519	744.41	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			10817.92	(272)
			kg/m²/yea	ır
CO2 emissions per m ²			56.99	(273)
Elvalue			41.98	(273a)
El rating			42	(274)
El band			E	

Calculation of stars for heating and DHW

Main heating energy efficiency Main heating environmental impact Water heating energy efficiency Water heating environmental impact (3.48 / 0.6600) x (1 + (0.29 x 0.00)) = 5.2727, stars = 4 (0.2160 / 0.6600) x (1 + (0.29 x 0.00)) = 0.3273, stars = 4 3.48 / 0.6259 = 5.5598, stars = 3 0.2160 / 0.6259 = 0.3451, stars = 3

Page 10 of 10

Project Information

Building type Semi-detached house

Reference 5 Date 5 Project 4

5 May 2023 40 Hillway LONDON N6 6HH

REGULATION COMPLIANCE REPORT - Approved Document L1A, 2012 Edition, England

assessed by program JPA Designer version 6.05.074, printed on 05/05/2023 at 16:29:50

Existing dwelling

1 TER and DER Fuel for main heating Target Carbon Dioxid Dwelling Carbon Diox Excess emissions =	de Emission Rate xide Emission Ra	te	TER = 16.04 DER = 59.31	Fail
1b TFEE and DFEE Target Fabric Energy Dwelling Fabric Ener	Efficiency (TFEE		TFEE = 59.0 DFEE = 139.0	Fail
2a Thermal bridgin	-	ng calculated using default	y-value of 0.15	
2b Fabric U-values	<u>Element</u> Wall Party Wall Floor Roof Openings	<u>Average</u> 1.16 (max. 0.30) 0.50 (max. 0.20) 0.60 (max. 0.25) 0.17 (max. 0.20) 1.96 (max. 2.00)	<u>Highest</u> 1.55 (max. 0.70) - 0.73 (max. 0.70) 0.18 (max. 0.35) 3.00 (max. 3.30)	Fail Fail OK OK

3 Air permeability

Air permeability at 50 pascals:10.00OKMaximum :10.00

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Page 1 of 2

4 Heating efficiency Main heating system:		
	Boiler and radiators, mains gas Vaillant Combicompact	
Source of efficiency:	from boiler database	
	Vaillant Combicompact vcw280h Efficiency: 65.0% SEDBUK2009	
Secondary heating sy	Minimum: 88.0%	Fail
becondary nearing by	None -	
5 Cylinder insulation	I	
Hot water storage	No cylinder	
6 Controls		
(Also refer to "Domes"	ic Building Services Compliance Guide" by the DCLG)	
Space heating control		Fail
Hot water controls	No cylinder	
Boiler Interlock	Yes	OK
Hot water controls	No cylinder	
7 Low energy lights		
	Percentage of fixed lights with low-energy Minimum: 75.0%	fittings: 0.0% Fail
8 Mechanical ventila	Not applicable	
9 Summertime temp	erature	
Overheating risk (Tha		OK
0 (Not significant	OK
Based on:	Ű	
Thermal mass para	neter: 245.72	
Overshading :	Average or unknown (20-60 % sky blocked)
Orientation : West		
Ventilation rate :	8.00	
Blinds/curtains :		
None with blinds/sh	utters closed 0.00% of daylight hours	

Fixed cooling system

Project Information

Building type Semi-detached house

Reference Date 5 May 2023 Project 40 Hillway LONDON N6 6HH

SAP 2012 worksheet for New extension to existing dwelling - calculation of energy ratings

1. Overall dwelling dimensions

	Area	Av. Storey	Volume	
	(m²)	height (m)	(m³)	
Ground floor (1)	73.31	2.76	202.34	(3a)
Ground floor (2)	24.73	2.39	59.10	(3b)
First floor	69.13	2.92	201.86	(3c)
Secondfloor	22.65	2.60	58.89	(3d)
	189.82			(4)
			522.19	(5)

Page 1 of 10

2. Ventilation rate

											m³ per h	our
							main + s	eondar	y + othe	r		
							heating					
	r of chim						0 + 0 + 0		‹ 40		0.00	(6a)
	r of open						0 + 0 + 0		< 20		0.00	(6b)
		nittent fa	ns				3		‹ 10		30.00	(7a)
		ve vents					0		‹ 10		0.00	(7b)
Numbe	r of fluele	ess gas fi	res				0)	‹ 40		0.00	(7c)
											Air chan	ges per hour
											0.06	(8)
(ns)							3					(9)
(-)											0.20	(10)
											0.35	(11)
											0.00	(13)
									100.00			(14)
											0.05	(15)
Infiltratio	on rate										0.66	(16)
	neability										0.66	(18)
/ po	loability										2.00	(19)
											0.85	(20)
Infiltrati	on rate ir	corporat	tina shelt	erfactor							0.56	(21)
		nodified f			need						0.00	(21)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
5.10	5.00	4.90	4.40	4.30	3.80	3.80	3.70	4.00	4.30	4.50	4.70	
0.10	0.00	4.00	7.70	4.00	0.00	0.00	0.70	1.00	4.00	4.00	52.50	(22)
Wind Fa	actor										52.50	(22)
1.27	1.25	1.23	1.10	1.07	0.95	0.95	0.93	1.00	1.07	1.13	1.18	
				_R							13.13	(22a)
Adjuste	d infiltrat	ion rate (allowing	for shelt	er and wi	ind spee	d)					
0.71	0.70	0.68	0.61	0.60	0.53	0.53	0.52	0.56	0.60	0.63	0.66	
											7.33	(22b)
	ion : nat e air cha	ural venti ngo rato	ilation, in	termitter	nt extract	fans						
	0.74	0.73	0.69	0.68	0.64	0.64	0.63	0.66	0.68	0.70	0.72	(25)
0.75	0.74	0.73	0.69	0.08	0.04	0.64	0.63	0.66	0.08	0.70	0.72	(20)

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

Page 2 of 10

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

3. Heat losses and heat loss paramete						
Element Gross Openings area, m ² m ²	Netarea A, m²		A x U W/K	kappa-value kJ/m²K	A x K kJ/K	
Window - Double-glazed,	4.430	1.94 (2.10)	8.58	KJ/III-K	KJ/N	(27)
argon filled, low-E, En=0.2,		- (-)				()
hard coat (East)						
REAR Window - Triple-glazed,	1.370	1.68 (1.80)	2.30			(27)
air-filled, low-E, En=0.1, soft			2.00			()
coat (East)						
REAR	0.040	2.00	7.00			(00)
Solid door FRONT	2.340	3.00	7.02			(26)
Full glazed door -	6.830	1.80	12.29			(26)
Triple-glazed, air-filled,						. ,
low-E, En=0.1, soft coat						
(East) REAR						
Full glazed door -	6.830	1.80	12.29			(26)
Triple-glazed, air-filled,						、 ,
low-E, En=0.1, soft coat						
(East) REAR						
Rooflight at 70° or less -	4.330	1.68 (1.80)	7.27			(27)
Double-glazed, argon filled,						
low-E, En=0.1, soft coat						
(n/a) ROOF						
Walls	12.79	0.22(Ru=0.9	0) 2.86	18.00	230.22	(29)
ROOF VOID WALL	- 4 - 4			450.00		(00)
Walls EXTERNAL#WINDOWS&DOORS	51.51	0.28	14.42	150.00	7726.50	(29)
#PROPOSED						
Walls	146.79	1.55	227.52	135.00	19816.65	(29)
EXTERNAL#WINDOWS&DOORS	70.04	0.70	50.50	110.00	0004 40	(00)
Ground floors EXISTING, UNDERGROUND	73.31	0.73	53.52	110.00	8064.10	(28)
Groundfloors	24.73	0.22	5.44	110.00	2720.30	(28)
PROPOSED, UNDERGROUND	10.01	0.40	0.45	0.00	400.40	(00)
Flat roofs DORMER ROOF	13.61	0.18	2.45	9.00	122.49	(30)
Flat roofs	23.90	0.18	4.30	9.00	215.10	(30)
GFREAR #ROOFLIGHTS						
Pitched roofs with integrated insulation ROOF VOID ABOVE FF TO SF	46.48	0.15(Ru=0.9	0) 7.20	9.00	418.32	(30)
Pitched roofs insulated between rafters	9.04	0.16	1.45	9.00	81.36	(30)
MAINROOF			-			()
Party wall	26.50	0.00	0.00	180.00	4770.00	
SOLID Internal floor	22.65	0.00	0.00	18.00	407.70	
SF	22.00	0.00	0.00	10.00	407.10	
Internal floor	69.13	0.00	0.00	18.00	1244.34	
FF Internal calling	00 EE	0.00	0.00	0.00	202 05	
Internal ceiling FF	22.65	0.00	0.00	9.00	203.85	

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 3 of 10

	er heatin ed occup		y require	ements							kWh/year 2.99
Annual	average	hot water	[.] usage ir	n litres pe	er day Vd	,average	9				110.72
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Hot wat	er usage	in litres p	ber day f	or each r	nonth			R			
121.79	117.36	112.93	108.50	104.07	99.64	99.64	104.07	108.50	112.93	117.36	121.79
Energy	content o	of hot wat	er used	A	J.						
180.61	157.96	163.00	142.11	136.36	117.67	109.03	125.12	126.61	147.56	161.07	174.91
	content (a tion loss	annual)		P	я			A			1742.00
27.09	23.69	24.45	21.32	20.45	17.65	16.36	18.77	18.99	22.13	24.16	26.24
	r volume,						250.00				
	cturer's c		cylinder l	oss facto	or (kWh/c	day)	2.14				
	ature Fac lost from		vr cylinde	r (k) / b / c			0.5400				1.16
	orage los		i cynnue		ay)						1.10
35.82	32.36	35.82	34.67	35.82	34.67	35.82	35.82	34.67	35.82	34.67	35.82
	age loss	JI		J		JL	JI		J	JI	
35.82	32.36	35.82	34.67	35.82	34.67	35.82	35.82	34.67	35.82	34.67	35.82
Primary	' loss	JI		u		Л	Л		J	Л	
43.31	39.12	43.31	41.92	43.31	41.92	43.31	43.31	41.92	43.31	41.92	43.31
Total he	at requir	ed for wa	ter heati	ng calcul	ated for o	each mo	nth	Л	J	JL	
259.75	229.44	242.14	218.69	215.49	194.25	188.17	204.26	203.20	226.69	237.65	254.05
Output f	from wate	er heater	for each	month, l	Wh/mor	nth	л	n	,	<u>л</u>	
259.75	229.44	242.14	218.69	215.49	194.25	188.17	204.26	203.20	226.69	237.65	254.05
		n		<u>a</u>	л		,				2673.77
Heat ga	ins from	water he	ating, kW	/h/month	ו						
123.36	109.70	117.51	108.52	108.65	100.39	99.56	104.91	103.37	112.37	114.82	121.47

Page 4 of 10

5. Internal gains

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Metabolic gains, Watts 179.32 </th <th>••••••••</th> <th>iai gaint</th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	••••••••	iai gaint	•									
179.32 159.32 55.92 55.92 55.92	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Lighting gains 101.52 90.17 73.33 55.52 41.50 35.04 37.86 49.21 66.05 83.86 97.88 104.34 Appliances gains 539.20 544.80 530.70 500.68 462.79 427.18 403.39 397.79 411.89 441.91 479.80 515.41 Cooking gains 55.92 55.92 55.92 55.92 55.92 55.92 55.92 55.92 55.92 55.92 55.92 55.92 55.92 Pumps and fans gains 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Metabol	ic gains,	Watts									
101.52 90.17 73.33 55.52 41.50 35.04 37.86 49.21 66.05 83.86 97.88 104.34 Appliances gains 539.20 544.80 530.70 500.68 462.79 427.18 403.39 397.79 411.89 441.91 479.80 515.41 Cooking gains 55.92	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32	179.32
Appliances gains 539.20 544.80 530.70 500.68 462.79 427.18 403.39 397.79 411.89 441.91 479.80 515.41 Cooking gains 55.92 59.92 59.92 90 3.0	Lighting	gains										
539.20 544.80 530.70 500.68 462.79 427.18 403.39 397.79 411.89 441.91 479.80 515.41 Cooking gains 55.92 55	101.52	90.17	73.33	55.52	41.50	35.04	37.86	49.21	66.05	83.86	97.88	104.34
Cooking gains 55.92 55	Applianc	ces gains	5									
55.92 55.92 <td< td=""><td>539.20</td><td>544.80</td><td>530.70</td><td>500.68</td><td>462.79</td><td>427.18</td><td>403.39</td><td>397.79</td><td>411.89</td><td>441.91</td><td>479.80</td><td>515.41</td></td<>	539.20	544.80	530.70	500.68	462.79	427.18	403.39	397.79	411.89	441.91	479.80	515.41
Pumps and fans gains 3.00	Cooking gains											
3.00 3.00	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92	55.92
Losses e.g. evaporation (negative values) -119.55 -11	Pumps a	and fans	gains									
-119.55 -119.55	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Water heating gains 165.81 163.25 157.94 150.72 146.03 139.43 133.82 141.01 143.56 151.04 159.48 163.26 Total internal gains	Lossese	e.g. evap	oration (r	negative	values)							
165.81 163.25 157.94 150.72 146.03 139.43 133.82 141.01 143.56 151.04 159.48 163.26 Total internal gains	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55	-119.55
Total internal gains	Water he	eating ga	iins									
	165.81	163.25	157.94	150.72	146.03	139.43	133.82	141.01	143.56	151.04	159.48	163.26
925.22 916.91 880.66 825.61 769.01 720.34 693.76 706.70 740.19 795.50 855.85 901.71	Total inte	ernal gaiı	าร									
	925.22	916.91	880.66	825.61	769.01	720.34	693.76	706.70	740.19	795.50	855.85	901.71

6. Solar gains (calculation for January)

	Area & Flux	g & FF	Shading	Gains	
Window - Double-glazed, argon filled, low-E, En=0.2, hard coat (East) REAR	0.9 x 4.430 19.64	0.72 x 0.70	0.77	30.3889	
Window - Triple-glazed, air-filled, low-E, En=0.1, soft coat (East) REAR	0.9 x 1.370 19.64	0.57 x 0.80	0.77	8.5029	
Solid door FRONT	0.9 x 2.340 0.00	0.00 x 0.70	0.77	0.0000	
Full glazed door - Triple-glazed, air-filled, low-E, En=0.1, soft coat (East) REAR	0.9 x 6.830 19.64	0.57 x 0.80	0.77	42.3903	
Full glazed door - Triple-glazed, air-filled, low-E, En=0.1, soft coat (East) REAR	0.9 x 6.830 19.64	0.57 x 0.80	0.77	42.3903	
Rooflight at 70° or less - Double-glazed, argon filled, low-E, En=0.1, soft coat (n/a) ROOF	0.9 x 4.330 26.00	0.63 x 0.80	1.00	51.0663	
Total solar gains, January				174.74	(83-1)
Solargains			1		
174.74 347.99 586.98 875.69 1089.24 11	21.81 1065.24 904.5	52 689.25 41	6.70 219.02	142.95	(83)
Total gains					

1099.96 1264.90 1467.64 1701.30 1858.25 1842.15 1759.00 1611.23 1429.45 1212.20 1074.87 1044.66 (84)

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 5 of 10

7. Mean internal temperature

•	ature du I system I	0	ing perio veness	ds in the	living are	ea, Th1 ('	°C)				21.00 0.75
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
tau											
23.01	23.08	23.15	23.48	23.54	23.83	23.83	23.89	23.72	23.54	23.41	23.28
alpha											
2.53	2.54	2.54	2.57	2.57	2.59	2.59	2.59	2.58	2.57	2.56	2.55
Utilisati	on factor	for gains	for living	garea							
1.00	0.99	0.99	0.98	0.95	0.90	0.82	0.86	0.95	0.99	0.99	1.00
Mean in	iternal ter	mperatu	re in living	g area T1	l						
18.55	18.70	19.01	19.47	19.94	20.38	20.63	20.58	20.21	19.61	19.02	18.54
Temper	ature du	ring heat	ing perio	ds in res	t of dwell	ing Th2					
18.77	18.77	18.78	18.80	18.80	18.82	18.82	18.82	18.81	18.80	18.79	18.78
Utilisati	on factor	for gains	s for rest	of dwelli	ng						
0.99	0.99	0.98	0.96	0.92	0.80	0.58	0.64	0.89	0.97	0.99	1.00
Mean in	iternal te	mperatu	re in the I	rest of dv	velling T	2					
15.70	15.92	16.38	17.05	17.73	18.32	18.59	18.56	18.12	17.26	16.39	15.70
•	rea fracti Iternal tei	•		,	welling)						0.10
15.99	16.20	16.64	17.30	17.95	18.53	18.79	18.76	18.33	17.50	16.66	15.99
Apply a	djustmer	nt to the n	nean inte	ernal tem	perature	, where a	appropria	ate	<u>, , , , , , , , , , , , , , , , , , , </u>		
15.99	16.20	16.64	17.30	17.95	18.53	18.79	18.76	18.33	17.50	16.66	15.99

8. Space heating requirement

	••	9.09	•••••								
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Utilisatic	on factor	for gains		~							
0.99	0.99	0.98	0.95	0.89	0.77	0.57	0.63	0.87	0.96	0.99	0.99
Useful g	ains										
1090.11	1247.95	1432.48	1616.59	1660.95	1422.84	1005.80	1022.62	1237.00	1167.53	1060.35	1036.56
Monthly	average	external	tempera	ture							
4.30	4.90	6.50	8.90	11.70	14.60	16.60	16.40	14.10	10.60	7.10	4.20
Heat los	s rate for	mean in	ternal te	mperatur	е						
6582.9	6343.3	5677.6	4635.4	3442.2	2135.7	1192.43	1280.39	2309.2	3796.8	5289.9	6558.2
Fraction	of month	n for heat	ing								
1.00	1.00	1.00	1.00	1.00	-	-	-	-	1.00	1.00	1.00
Space h	eating re	quireme	nt for eac	ch month	, kWh/m	onth					
4086.6	3424.1	3158.4	2173.5	1325.21	-	-	-	-	1956.18	3045.3	4108.1
•	ace heati	• •	•	•	•	ar) (Octol	per to Ma	ay)			23277.36
Space h	eating re	quireme	nt per m ²	(kWh/m	²/year)						122.63

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Apr Jan Feb Mar May Jun Jul Sep Oct Nov Dec Aug **External temperaturers** 14.60 16.60 16.40 Heat loss rate W (100) 5110.0 4022.7 4121.9 -_ Utilisation factor for loss (101)0.36 0.43 0.39 _ Useful loss W 1857.41 1725.29 1602.32 -(102)_ Internal gains W 0.00 0.00 0.00 0.00 717.34 690.76 703.70 0.00 0.00 0.00 0.00 0.00 Solar gains W 0.00 0.00 0.00 0.00 0.00 1244.89 1182.42 1005.17 0.00 0.00 0.00 0.00 Gains W 1962.22 1873.18 1708.88 -(103)Fraction of month for cooling 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 (103a) Space heating kWh 392.92 44.28 (98) 6.04 _ Space cooling kWh (104)_ 75.47 110.03 79.27 Total 264.77 (104) 0.22 Cooled fraction (105)Intermittency factor 0.25 0.25 0.25 (106)- | --Space cooling requirement for month 4.15 6.05 4.36 _ Space cooling (June to August) 14.56 (107)Space cooling requirement per m² (kWh/m²/year) 0.08 (108)

8c. Space cooling requirement

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP Page 7 of 10

9a. Energy requirements

9a. Ene	ergy requ	uiremen	ts								kWh/yea	
Fractior Efficien	ondary he n of space cy of mai I system e	e heat fro n heating	om main g system	system(:	5)				1.0000 0.40% .05%			(202) (206) (209)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Spaceh	neating re	quireme	nt	J	J][][J		
4086.6	3424.1	3158.4	2173.5	1325.21	-	-	-	-	1956.18	3045.3	4108.1	(98)
Append	lix Q - mo	onthly en	ergy sav	ed (main	heating	system '	1)][J		
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(210)
Space h	neating fu	iel (main	heating	system 1					1	J		
4520.6	3787.7	3493.8	2404.4	1465.94	, -	-	-	-	2163.9	3368.6	4544.3	(211)
Append	lix Q - mo	onthly en][system 2	2)		1	J		. ,
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(212)
	neating fu	uel (main	heating	system 2	2)		1][J		. ,
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(213)
	lix Q - mo	nthly en	ergy save	ed (seco	ndary he	ating sys	stem)][J		. ,
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(214)
	neating fu				J	JI						· · /
0.00	0.00	0.00	0.00	0.00	-	-	-	-	0.00	0.00	0.00	(215)
Waterh		1			J	JI	J					· · /
	eating re	quireme	nt									
259.75	229.44	242.14	218.69	215.49	194.25	188.17	204.26	203.20	226.69	237.65	254.05	(64)
Efficien	cy of wate	er heater	,	.,	л	Ju			J	1	79.70	(216)
89.68	89.64	89.54	89.30	88.73	79.70	79.70	79.70	79.70	89.16	89.53	89.70	(217)
Waterh	eating fu	el	Л		,	Л	Л		J	JL		
289.63	255.94	270.41	244.89	242.85	243.73	236.10	256.28	254.95	254.26	265.44	283.22	(219)
Annual	tatala	JI		Л	J				1	J		
Annual Space h	heating fu	iel used	main sv	stem 1							kWh/year 25749.30	(211)
•	neating fu										0.00	(215)
•	eating fu	•	,								3097.72	(219)
Space of	cooling fu	el used									3.60	(221)
-	-	-	-	-	1.02	1.49	1.08	-	-	-	-	(221)
	ity for pu	•	s and ele	ectric kee	ep-hot							
	l heating with a far		ما السم								30.00	(230c)
	ectricity f			h/vear							45.00 75.00	(230e) (231)
	ity for light										717.15	(232)
	saving/ge	• •										· · /
Append											.	(000
-	ly saved (-	ated ():								0.000	(236a)
⊏nerg	gy used ()										0.000	(237a)
Total de	elivered e	nergy foi	all uses								29642.77	(238)

JPA Designer Version 6.03x , SAP Version 9.92 Licensed to Energy Assessors London Ltd

W:\EAL\Viral's PC\SAPS\40 Hillway\40 Hillway.JDP

Approval of JPA Designer by BRE applies only to the software, data is not subject to quality control procedures, users are themselves responsible for the accuracy of the data. The results of the calculation should not be accepted without first checking the input data.

Page 8 of 10

10a. Fuel costs using Table 12 prices

	kWh/year	Fuel price	£/year	
		p/kWh		
Space heating - main system 1	25749.297	3.480	896.08	(240)
Space heating - main system 2	0.000	0.000	0.00	(241)
Water heating cost	3097.72	3.480	107.80	(247)
Space cooling	3.596	13.190	0.47	(248)
Mech vent fans cost	0.000	13.190	0.00	(249)
Pump/fan energy cost	75.000	13.190	9.89	(249)
Energy for lighting	717.155	13.190	94.59	(250)
Additional standing charges			120.00	(251)
Electricity generated - PVs	0.000	0.000	0.00	(252)
Appendix Q -				
Energy saved or generated ():	0.000	0.000	0.00	(253)
Energy used ():	0.000	0.000	0.00	(254)
Total energy cost			1228.84	(255)

11a. SAP rating

	0.42 2.20	(256) (257)
SAPvalue	69.34	(-)
SAP band	69 C	(258)

Page 9 of 10

12a. Carbon dioxide emissions

	Energy kWh/year	Emission factor kg CO2/kWh	Emission kg CO2/ye	
Space heating, main system 1	25749.30	0.216	5561.85	(261)
Space heating, main system 2	0.00	0.000	0.00	(262)
Space heating, secondary	0.00	0.519	0.00	(263)
Waterheating	3097.72	0.216	669.11	(264)
Space and water heating			6230.96	(265)
Space cooling	3.60	0.519	1.87	(266)
Electricity for pumps and fans	75.00	0.519	38.93	(267)
Electricity for lighting	717.15	0.519	372.20	(268)
Electricity generated - PVs	0.00	0.519	0.00	(269)
Electricity generated - µCHP	0.00	0.000	0.00	(269)
Appendix Q -				
Energy saved ():	0.00	0.000	0.00	(270)
Energy used ():	0.00	0.000	0.00	(271)
Total CO2, kg/year			6643.95	(272)
			kg/m²/yea	ır
CO2 emissions per m ²			35.00	(273)
Elvalue			62.09	(273a)
El rating			62	(274)
El band			D	

Calculation of stars for heating and DHW

Main heating energy efficiency Main heating environmental impact Water heating energy efficiency Water heating environmental impact (3.48 / 0.9040) x (1 + (0.29 x 0.25)) = 4.1287, stars = 4 (0.2160 / 0.9040) x (1 + (0.29 x 0.25)) = 0.2563, stars = 4 3.48 / 0.8617 = 4.0383, stars = 4 0.2160 / 0.8617 = 0.2507, stars = 4

Page 10 of 10