HORWITZ ASSOCIATES

Civil & Structural Engineering Consultants

CALCULATION REPORT

JACK STRAW'S CASTLE

UNDERPINNING CALCULATION

Project 8149 (rev. 2)

May 2023

Horwitz Associates is the trading style of Horwitz Associates Limited 135-137 New London Road, Chelmsford, Essex CM2 0QT <u>Tel: 01245</u> 809510 <u>rhh@rhorwitz.co.uk</u> <u>www.rhorwitz.co.uk</u>

Company Number: 10525469 (Registered in England and Wales), Registered Office Address: 57a broadway, Leigh-on-sea SS9 1PE

HORWITZ ASSOCIATES

135-137 New London Rd Chelmsford

Address:

Jack Straw's Castle - Camden

General and Safety Note:

Building Regulations Approval

Most structural alterations will require Building Control approval and must be examined by a Building Inspector prior to concealing or covering structural members. It is the client's and contractor's responsibility to ensure that applications and inspections have been carried out.

Party Wall Agreements

Structural alterations to a Party Wall, or excavations in the vicinity of a neighbour's property, will require the adjoining owner's consent under the Party Wall Act 1996. This will require a Party Wall Agreement to be made before commencement of the works. Advice may be obtained from the government Planning Portal <u>www.planningportal.gov.uk</u> or by contacting a Chartered Building Surveyor.

Temporary Support

Installation of beams, lintels or other supporting structures should be undertaken only with the provision of suitable temporary support to the structure above. Attention should be paid to the nature of the supported loads (from the calculations) and the capacity of props, shores and needle beams as appropriate. If in doubt about the requirements, contact the engineer before commencement of work.

Dimensions etc.

The dimensions given in these documents are for design purposes only and should be checked on site for construction. Beam sizes are given for identification of the section and the span dimension is between centrelines of supports (i.e. neither the length of the beam nor the opening width).

Copyright

No part of this material may be used, issued, or copied without the express consent of Horwitz Associates Ltd.

Design Standards

- EN 1990 **Basis of Structural Design** EN 1991 Actions on Structures EN 1992 **Design of Concrete Structures** 1993 EN Design of Steel Structures **Design of Composite Steel & Concrete Structures** EN 1994 ΕN 1995 **Design of Timber Structures** EN 1996 **Design of Masonry Structures**
- EN 1997 Geotechnical Design

The Building Regulations

Horwitz Associates is the trading style of Horwitz Associates Limited 135 - 137 New London Road, Chelmsford, Essex CM2 0QT Tel: 01245 809510 thh@rhorwitz.co.uk www.thorwitz.co.uk

PAGE 0.2

Project: 8149

Engineer: RR

HORWITZ ASSOCIATES

135-137 New London Rd Chelmsford

Address:	Project: 8149
Jack Straw's Castle – Camden	Engineer: RR

CALCULAT	ION REPO	RT	
PageRevisionContentsUpdate0.1 to 0.32ReferenceMay-23L1 to L52LoadingMay-23C1 to C92CalculationsMay-23APPENDICESPageRevisionContentsUpdateImage: ContentsUpdate	Update		
0.1 to 0.3	2	Reference	May-23
L1 to L5	2	Loading	May-23
C1 to C9	2	Calculations	May-23
APPENDICE	S		
Page	Revision	Contents	Update

New and updated entries shown BOLD

Company Number: 10525469 (Registered in England and Wales), Registered Office Address: 57a Broadway, Leigh-on-Sea SS9 1PE

HORWITZ ASSOCIATES Chill & Simetical Consulting Engineers	HORWITZ ASSOCIATES Civil & Structural Engineering Consultants	JACK STRAW	'S CASTLE	Revision		
	135-137 New London Road Chemistord CM2 OQ1	Job No:	8149	Page:	L 1	
Building: JA	CK STRAW'S CASTLE LOADING	Prepared By:	RR	Date:	05/05/2023	

PITCHED R	OOF (slope)	γ [kN/m³]	Load [kN/m ²]
	Red clay roof tiles		0.580
	Timber battens		0.200
4 mm	Felt	13.00	0.052
38 mm	Blockboard	5.00	0.190
	Trusses		0.350
	Ealing Joists		0.050
	Plasterboard (13mm), including skim coat		0.180
		Total [kN/m ²]:	1.60

TYPICAL UP	PER FLOOR:	γ [kN/m³]	Load [kN/m ²]
	Timber Partition		0.500
	Floor Finishes (carpet)		0.100
25 mm	Blockboard	5.00	0.125
25 mm	Pugging	18.00	0.450
	Floor joists		0.080
12 mm	Blockboard	5.00	0.060
	Services - residential		0.050
	Plasterboard (13mm), including skim coat		0.180
		Total [kN/m ²]:	1.55

GROUND FL	OOR:	γ [kN/m³]	Load [kN/m ²]
	Floor Finishes		0.500
50 mm	Sand and cement screed	22.00	1.100
175 mm	RC Slab	25.00	4.375
75 mm	Sand and cement screed	22.00	1.650
100 mm	Insulation board, styrofoam (PUR)	0.45	0.045
	Services - residential		0.050
	Plasterboard (13mm), including skim coat		0.180
		Total [kN/m ²]:	7.90

BASEMENT:		γ [kN/m³]	Load [kN/m ²]
	Floor Finishes		0.500
50 mm	Sand and cement screed	22.00	1.100
	Waterproof membrane		0.050
75 mm	RC Slab	25.00	1.875
		Total [kN/m ²]:	3.53

2 12 1 X		JACK STRAW	S CASTLE		
& Structural Consulting Engineers	135-137 New London Road Chelmsford CM2 0QT	:		Revision	
		Job No:	8149	Page:	L 2
uilding: JA	ACK STRAW'S CASTLE LOADING	Prepared By:	RR	Date:	05/05/202
	IMPOSED LOADS:			γ [kN/m³]	Load [kN/m ²]
	Imposed load on roof with no access				0.750
				Total [kN/m ²]:	0.75
				γ Page: L Z Date: 05/05/202: γ [kN/m³] Load [kN/m²] 0.750 Total [kN/m²]: 0.75 γ [kN/m³] Load [kN/m²] 1.500 Total [kN/m²]: 1.500 Total [kN/m²]: 1.50	
	Job No: 8149 Page: X STRAW'S CASTLE LOADING Prepared By: RR Date: 05/ IMPOSED LOADS: y [kk/m²] Load Imposed load on roof with no access 0 IMPOSED LOADS: y [kk/m²]: C C IMPOSED LOADS: y [kk/m²]: C IMPOSED LOADS: y [kk/m²]: C Imposed load for residential 1 Imposed load for residential 1	LOad [kN/m]			
	imposed load for residential	DS: γ (kN/m ³) Load (k mposed load on roof with no access 0.7 Total (kN/m ³): 0.7 DS: γ (kN/m ³) Load (k Imposed load for residential 1.5 Total (kN/m ²): 1.5	1.500		
					1.50

	Civ	New Lo Chelms Essex CM2 00	ndon ford QT								
PROJECT JACK S	STRAW'S C	ASTLE	NR 8149 ENGINEER RR			SHEETDATEL3May-23LOADING					
Load	Loads on Foundation										
from	Pitched Ro	oof									
S	=			2.08	m	(spacing)					
q_{DL}	=	D.L.(PR) x s	=	4.91	kN/m	(linear loads)					
q_{imp}	=	Imposed (PR) x s	=	1.04	kN/m	()					
from	Second Flo	por									
S	=			2.08	m	(spacing)					
q_{DL}	=	D.L.(2F) x s	=	3.22	kN/m	(linear loads)					
q _{imp}	=	Imposed (2F) x s	=	3.11	kN/m						
from	First Floor										
S	=			2.08	m	(spacing)					
q_{DL}	=	D.L.(1F) x s	=	3.22	kN/m	(linear loads)					
q _{imp}	=	Imposed (1F) x s	=	3.11	kN/m	(inteal loads)					
from	Ground Fl	oor									
S	=			2.08	m	(spacing)					
q_{DL}	=	D.L.(GF) x s	=	16.39	kN/m	(lipear loads)					
q _{imp}	=	Imposed (GF) x s	=	3.11	kN/m	(iiiieai ioaus)					
from	External V	Vall (Type 1)									
H _{EW1}	=			3.28	m	(wall height)					
q _{EW1}	=	D.L.(EW1) x H _{SW1}	=	23.97	kN/m	(linear loads)					
from	External V	Vall (Type 2)									
H _{EW2}	=			8.80	m	(wall height)					
q _{EW2}	=	D.L.(EW2) x H _{SW2}	=	64.42	kN/m	(linear loads)					
foun	dation self	weight									
q_{DL}	=			7.68	kN/m	(800x400DP)					
	Tatali	d _{DL-JSC}	=	123.81	kN/m						
	i otal Loa	as q _{IMP-JSC}	; =	10.38	kN/m						
Note on to	: cutting bo op of the ur	ack the exsiting four nderpinning equal to	datic :	n toe we	e have d	an eccentricity					
		e = 0.096 m	(see	e C1 and (C2 pages)					

PROJECT JACK STF	HORWITZ A	ASSOCIATES Consulting Engineers PROJECT NR 8149 ENGINEER RR	S SHEET L 5	135-137 New London Rd Chelmsford Essex CM2 0QT DATE May-23 LOADING
from Ja Q _{DL-JSC-B} Q _{IMP-JSC} - S _{DL-KSC-B} S _{IMP-KSC} -	ack Straw's Castle Baseme as Bas Sas = Q _{DL-JSC-Bas} X Bas = Q _{IMP-JSC-Bas} X	nt h x tan ² [45- ϕ '/2] h x tan ² [45- ϕ '/2] wall	= 3.53 = 1.50 = 9.11 = 3.87	kN/m ² kN/m ² kN/m kN/m
	Ssoil +Sauscau +Sauscau g	water		

Takle Tadda	Project		Job Ref.			
		JACK STRA	8149			
Horwitz Associates	Section		Sheet no./rev.			
135-137 New London Road	INTERACTIO	N BETWEEN E	C 1			
CHELMSFORD	Calc. by	Date	Chk'd by	Date	App'd by	Date
Essex. CM2 0QT	RR	28/04/2023				

ROJECT] [PROJEC 81	CT NI 149	2	SHEE C	T 3	DATE May-	-23
	JACK STRAW'S C	ASTL	E] [ENGINI F	e er RR			LO	ADING	
			R	ЭΤ	ΑΤΙΟ	N CHEC	СК					
	Favorable Load	ls (fa	ctored)									
	S _{Wup1(f)}	=	0.9	х	SW	up1	=	45.67	kN/m			
	S _{Wup2(f)}	=	0.9	х	SW	up2	=	5.60	kN/m			
	S _{DL-JSC(f)}	=	0.9	х	S _{DL-J}	SC	=	111.43	kN/m			
	S _{IMP-JSC(f)}	=	0.0	х	S _{IMP}	JSC	=	0.00	kN/m			
	Unfavorable Lo	bads	(factored))								
	S _{soil(f)}	=	1.1	х	S_{soil}		=	126.49	kN/m			
	S _{water(f)}	=	1.1	х	S _{wate}	er	=	27.17	kN/m			
	$S_{DL\text{-}JSC\text{-}Bas(f)}$	=	1.1	х	S _{DL-K}	SC-Bas	=	10.02	kN/m			
	$S_{IMP-JSC-Bas(f)}$	=	1.5	х	S _{IMP} .	-KSC-Bas	=	5.81	kN/m			
	Resistent Morr	ent	(R-rotatio	n p	oint)						
	M _{SWup(f)1}	=	S _{Wup(f)1}		х	[(a/2) +	· (b-a	ı)]	=	32.29	kNm	
	M _{SWup(f)2}	=	S _{Wup(f)2}		х	[(b-a)/2	2)]		=	1.17	kNm	
	M _{SDL-JSC(f)}	=	S _{DL-JSC(f)}		х	[((a/2)-	e) +	(b-a)]	=	68.08	kNm	
	M _{SIMP-JSC(f)}	=	S _{IMP-JSC(f)}		х	[((a/2)-	e) +	(b-a)] M_R	=	0.00 L 01.54	kNm kNm	
	Moment (R-ro	tatio	n point)									
	M _{Ssoil(f)}	=	S _{soil(f)}		х	h/3			= 2	208.70	kNm	
	M _{Swater(f)}	=	S _{water(f)}		х	h _{water} /2	2		=	33.55	kNm	
	M _{SDL-JSC-Bas} (f)	=	S _{DL-KSC-Bas}	f)	х	h/2			=	24.81	kNm	
	M _{SIMP-JSC-Bas(f)}	=	S _{IMP-KSC-Ba}	s(f)	х	h/2			=	14.37	kNm	
								М	= 2	281.44	kNm	
	M / M _R	=	2.772	>	1	(no	t ver	ified)				
	important note	: we	have to pi	rov	ide a	tempo	rary	propping	g syste	em.		

F

PROJECT	HORWITZ ASSOCIATES135-137 New Londor Chelmsford Essex CM2 0QTCivil & Structural Consulting EngineersEssex CM2 0QTChelmsford Essex CM2 0QTJACK STRAW'S CASTLEPROJECT NR 8149SHEET CDATE May-23Image: Structural Consulting EngineersENGINEER RRImage: Colspan="2">Image: Colspan="2" Image: Colspan="2" Im	n Rd
	SLIDING CHECK	
	Favorable Loads (factored)	
	$S_{Wup1(f)} = 0 \times SVV_{up1} = 0.00 \text{ kN/m}$	
	$S_{Wup2(f)} = U \times SW_{up2} = 0.00 \text{ kN/m}$	
	$S_{DL-JSC(f)}$ = 1 x S_{DL-JSC} = 111.43 kN/m	
	$S_{IMP-JSC(f)} = 0 \times S_{IMP-JSC} = 0.00 \text{ kN/m}$	
	$S_{tot} = 111.43 \text{ kNm}$	
	S _R = S _{tot} x tan(φ') = 36.92 kN	
	Unavorable Loads (factored)	
	$S_{soil(f)}$ = 1 x S_{soil} = 114.99 kN/m	
	$S_{water(f)}$ = 1 x S_{water} = 24.7 kN/m	
	$S_{DL-ISC-Bas}(f) = 1 \times S_{DL-KSC-Bas} = 9.11 \text{ kN/m}$	
	$S_{IMP-ISC-Bas}(f) = 1 \times S_{IMP-KSC-Bas} = 3.87 \text{ kN/m}$	
	$S_{\rm B} = 152.67 \text{ kNm}$	
	S / S _R = 4.135 > 1 (not verified)	
	important note: we have to provide a temporary support at the bottom of the underpinning.	

PROJECT	HORWITZ A Civil & Structural C	ASSOCIATES Consulting Engineers PROJECT NR 8149 ENGINEER RR	135-137 New London Rd Chelmsford Essex CM2 0QT SHEET DATE L 5 May-23 LOADING
	from Jack Straw's Castle Basemen q _{DL-JSC-Bas} q _{IMP-JSC-Bas} S _{DL-KSC-Bas} = q _{DL-JSC-Bas} x S _{IMP-KSC-Bas} = q _{IMP-JSC-Bas} x	= = = = = = = = = = = = = = = = = = =	3.53 kN/m ² 1.50 kN/m ² 9.11 kN/m 3.87 kN/m
	Soci + Sousces + Survaces	vale valer • = 96 mm • = 96 mm • = 96 mm • = 96 mm • = 96 mm	

ROJECT						PROJEC 81	T NI .49	2	SHEE C	T 3	DATE May-	·23
	JACK STRAW'S C	ASTL	E			ENGINE R	E R R			LO	ADING	
			R	ЭΤ	ΑΤΙΟΙ	N CHEC	К					
	Favorable Load	ls (fa	ctored)									
	S _{Wup1(f)}	=	0.9	х	SW	up1	=	45.67	kN/m	l		
	S _{Wup2(f)}	=	0.9	х	SW	up2	=	5.60	kN/m	l		
	S _{DL-JSC(f)}	=	0.9	х	S _{DL-JS}	SC	=	111.43	kN/m	l		
	S _{IMP-JSC(f)}	=	0.0	х	S _{IMP-}	JSC	=	0.00	kN/m	l		
	Unfavorable Lo	bads	(factored))								
	S _{soil(f)}	=	1.1	х	S_{soil}		=	126.49	kN/m	l		
	S _{water(f)}	=	1.1	х	S _{wate}	r	=	27.17	kN/m	l		
	S _{DL-JSC-Bas(f)}	=	1.1	х	S _{DL-KS}	SC-Bas	=	10.02	kN/m	l		
	$S_{IMP-JSC-Bas(f)}$	=	1.5	х	S _{IMP-}	KSC-Bas	=	5.81	kN/m	l		
	Resistent Morr	ent	(R-rotatio	n p	oint)							
	M _{SWup(f)1}	=	S _{Wup(f)1}		x	[(a/2) +	(b-a)]	=	32.29	kNm	
	M _{SWup(f)2}	=	S _{Wup(f)2}		x	[(b-a)/2)]		=	1.17	kNm	
	M _{SDL-JSC(f)}	=	S _{DL-JSC(f)}		x	[((a/2)-0	e) + ((b-a)]	=	68.08	kNm	
	M _{SIMP-JSC(f)}	=	S _{IMP-JSC(f)}		X	[((a/2)-6	5) +	(b-a)] M_R	=	0.00 101.54	kNm kNm	
	Moment (R-rot	tatio	n point)									
	M _{Ssoil(f)}	=	S _{soil(f)}		x	h/3			= 2	208.70	kNm	
	M _{Swater(f)}	=	S _{water(f)}		x	h _{water} /2			=	33.55	kNm	
	M _{SDL-JSC-Bas} (f)	=	S _{DL-KSC-Bas}	f)	x	h/2			=	24.81	kNm	
	M _{SIMP-JSC-Bas(f)}	=	S _{IMP-KSC-Bas}	s(f)	x	h/2			=	14.37	kNm	
								Μ	= 2	281.44	kNm	
	M / M _R	=	2.772	>	1	(not	t veri	ified)				
	important note	: we	have to pr	rov	ide a	tempoi	rary	propping	g syste	em.		

F

PROJECT	HORWITZ ASSOCIATES135-137 New Londor Chelmsford Essex CM2 0QTCivil & Structural Consulting EngineersEssex CM2 0QTChelmsford Essex CM2 0QTJACK STRAW'S CASTLEPROJECT NR 8149SHEET CDATE May-23Image: Structural Consulting EngineersENGINEER RRImage: Colspan="2">Image: Colspan="2" Image: Colspan="2" Im	n Rd
	SLIDING CHECK	
	Favorable Loads (factored)	
	$S_{Wup1(f)} = 0 \times SVV_{up1} = 0.00 \text{ kN/m}$	
	$S_{Wup2(f)} = U \times SW_{up2} = 0.00 \text{ kN/m}$	
	$S_{DL-JSC(f)}$ = 1 x S_{DL-JSC} = 111.43 kN/m	
	$S_{IMP-JSC(f)} = 0 \times S_{IMP-JSC} = 0.00 \text{ kN/m}$	
	$S_{tot} = 111.43 \text{ kNm}$	
	S _R = S _{tot} x tan(φ') = 36.92 kN	
	Unavorable Loads (factored)	
	$S_{soil(f)}$ = 1 x S_{soil} = 114.99 kN/m	
	$S_{water(f)}$ = 1 x S_{water} = 24.7 kN/m	
	$S_{DL-ISC-Bas}(f) = 1 \times S_{DL-KSC-Bas} = 9.11 \text{ kN/m}$	
	$S_{IMP-ISC-Bas}(f) = 1 \times S_{IMP-KSC-Bas} = 3.87 \text{ kN/m}$	
	$S_{\rm B} = 152.67 \text{ kNm}$	
	S / S _R = 4.135 > 1 (not verified)	
	important note: we have to provide a temporary support at the bottom of the underpinning.	

PROJECT J	HORWITZ A Civil & Structural C	SHEET C 6	135-137 New London Rd Chelmsford Essex CM2 0QT DATE May-23 ADING	
				MAXIMUM BEARING PRESSURE