T 020 7240 1191

E london@mbp-uk.com

www.mbp-uk.com

25 OAKHILL AVENUE, LONDON, NW3 7RD

Structural Engineer's Calculations for Planning

March 2023

Revision P2- Planning

Revision	Issued For	Date	Author
P1	PLANNING	20.10.2021	AZ
P2	PLANNING	29.03.2023	AZ

CONTENTS:

1	INIT	ΓRO	וח	CT	
1	114	ınu	$\boldsymbol{\nu}$ u		UIV

- 2 RELEVANT DOCUMENTS
- 3 MBP STRUCTURAL DRAWINGS
- 4 SECOND FLOOR STRUCTURE
- 5 FIRST FLOOR STRUCTURE
- 6 GROUND FLOOR SLAB STRUCTURE
- 7 BASEMENT RETAINING WALLS

1. INTRODUCTION:

This project covers the design of the refurbishment and the new basement extension at No 25 Oakhill Avenue. The current calculation includes the design of a reinforced concrete basement slab, underpinning of party walls, design of lining walls and new concrete slab above basement to accommodate new Ground Floor layouts as well as the structural elements for the upper floors.

2. RELEVANT DOCUMENTS:

- Site geological investigation carried out by GEA Geotechnical Engineers.
- MBP's Construction Method Statement
- MBP's Specification for the works
- MBP's Structural Drawings for the works

3. STRUCTURAL DRAWINGS:

- MBP-8536-100- PROPOSED BASEMENT GENERAL ARRANGEMENT
- MBP-8536-101- PROPOSED GROUND FLOOR GENERAL ARRANGEMENT
- MBP-8536-102- PROPOSED FIRST FLOOR GENERAL ARRANGEMENT
- MBP-8536-103- PROPOSED SECOND FLOOR GENERAL ARRANGEMENT
- MBP-8536-104- PROPOSED THIRD FLOOR GENERAL ARRANGEMENT
- MBP-8536-103- PROPOSED ROOF GENERAL ARRANGEMENT
- MBP-8536-200- PROPOSED SECTION 1-1 GENERAL ARRANGEMENT
- MBP-8236-210- PROPOSED SECTION A-A GENERAL ARRANGEMENT
- MBP-8236-211- PROPOSED SECTION B-B GENERAL ARRANGEMENT

4. SECOND FLOOR STRCUTURE

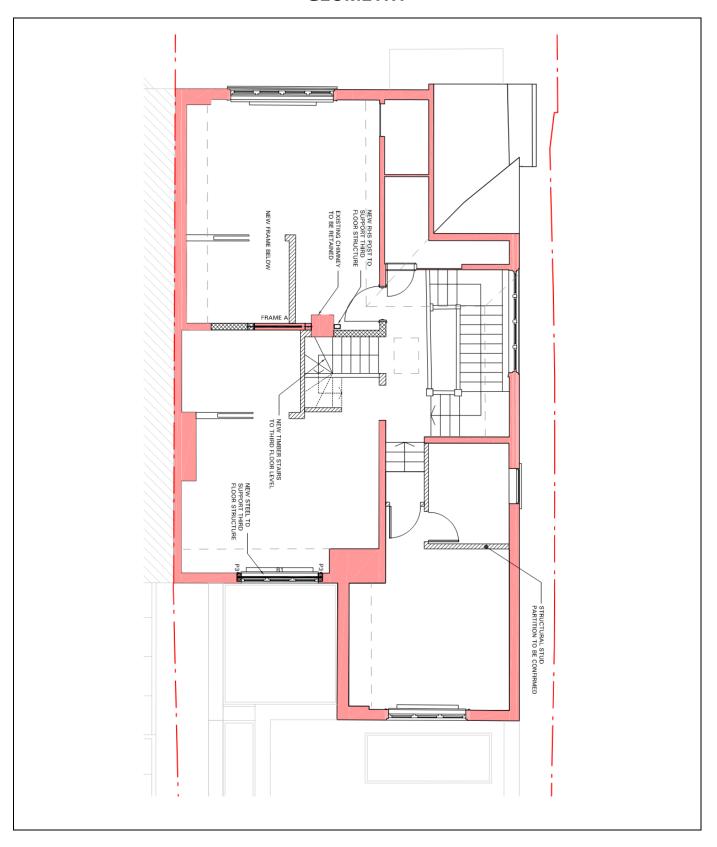
The analysis and design of steel and timber elements has been carried out using TEDDS. The steel beams and timber joists has been designed to carry out the domestic loads. Results can be found in Section 4.

5. FIRST FLOOR STRUCTURE

The analysis and design of the Flat Roof steel elements has been carried out using TEDDS. The steel beams have been designed to support existing walls above and new flat roof structure with rooflights. Results can be found in Section 5.

6. GROUND FLOOR SLAB STRUCTURE

The ground floor will be reinforced concrete spanning between liner walls and internal loadbering elements, the maximum span for the slab to be 6.0m the verification has been carried out using TEDDS. Results can be found in Section 6.


7. BASEMENT RETAINING WALLS

The analysis and design of the RC liner walls, has been carried out using TEDDS. The liner walls have been designed to support ground floor load. Results can be found in Section 8.

MBP	Michael Barclay Partnership			
	consulting engineers			
	1 Lancaster Place WC2E 7ED			
	T 020 7240 1191 F 020 7240 2241			
	E london@mbp-uk.com			

Job Title 25 OAKHILL AVENUE, LONDON	Job Number 8536	Sheet Number 4.1	Revision P1
Calculation/sketch Title	Date	Author	Checked
SECTION 4	MAR 2023	AZ	TH
SECOND FLOOR STRUCTURE			

GEOMETRY

SECOND FLOOR PLAN

МВР	Michael Barclay Partnership
	consulting engineers
	1 Lancaster Place WC2E 7ED
	T 020 7240 1191 F 020 7240 2241

E london@mbp-uk.com

Job Title	Job Number	Sheet Number	Revision
25 OAKHILL AVENUE, LONDON	8536	4.2	P1
Calculation/sketch Title	ID-4-	I A tla a	Checked
Calculation/sketch little	Date	Author	Спескей
SECTION 4	MAR 2023	Δ7	тн
3LCTION 4		A2	
SECOND FLOOR STRUCTURE			

	DEAD LOAD				
Floor finishes	0.50				
Boarding	0.15				
Timber joists	0.25				
Ceiling and services	0.25				
тот	. 1.15 kN/m²				
Solid brick wall	4.30 kN/m ²				
IMPOSED LOAD					
Imposed Load (Including Partition	2.50 kN/m²				

MBP	Michael Barclay Partnership
	consulting engineers
	1 Lancaster Place WC2E 7ED
	T 020 7240 1191 F 020 7240 2241

E london@mbp-uk.com

Job Title	Job Number	Sheet Number	Revision
25 OAKHILL AVENUE, LONDON	8536	4.3	P1
Calculation/sketch Title	Date	Author	Checked
		•	'
SECTION 4	MAR 2023	ΑZ	TH
SECOND FLOOR STRUCTURE			

FRAME A

Max. span 1.4m

Load attracted from 11m/2 = 5.05m

Hight of the wall - 2.6m

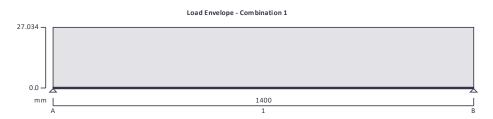
Loading on top memeber

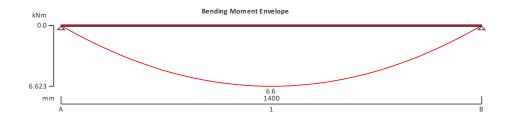
Dead load Imposed load

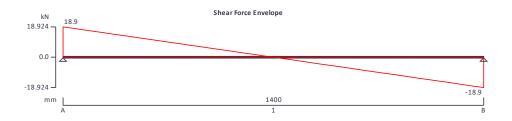
Floor Loading $1.15 \times 5.05 = 3.74 \text{ kN/m}$ $2.50 \times 0.5 = 8.12 \text{ kN/m}$

Wall $4.30 \times 2.60 = 6.90 \text{ kN/m}$

Total 10.64 kN/m 8.12 kN/m




Project 25 OAKHILL A'	VENUE	Job Ref. 8536			
				Sheet no./rev.	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023


STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.14

Support conditions

Support A Vertically restrained Rotationally free

Support B Vertically restrained Rotationally free

Applied loading

Beam loads Permanent self weight of beam \times 1 Permanent full UDL 10.64 kN/m Variable full UDL 8.12 kN/m

Load combinations

Load combination 1 Support A Permanent \times 1.35 Variable \times 1.50

Permanent × 1.35

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
				Sheet no./rev. 4. 5	
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Variable \times 1.50

Support B Permanent × 1.35

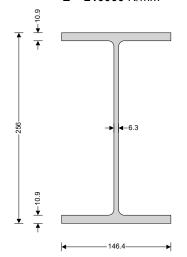
Variable \times 1.50

Analysis results

Unfactored permanent load reaction at support A $R_{A_Permanent} = 7.7 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 5.7 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 18.9 \text{ kN}$ $R_{B_min} = 18.9 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 7.7 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 5.7 \text{ kN}$


Section details

Section type UB 254x146x37 (BS4-1)

Steel grade \$275

EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element $t = max(t_f, t_w) = 10.9 \text{ mm}$ Nominal yield strength $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$

Partial factors - Section 6.1

Resistance of cross-sections γ_{M0} = 1.00 Resistance of members to instability γ_{M1} = 1.00 Resistance of tensile members to fracture γ_{M2} = 1.10

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis $K_y = 1.000$

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
			Sheet no./rev. 4. 6		
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Effective length factor in minor axis K_z = **1.000** Effective length factor for torsion $K_{LT.A}$ = **1.000** $K_{LT.B}$ = **1.000**

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.92$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 219 mm

c / t_w = 37.6 × ϵ <= 72 × ϵ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 62.5 \text{ mm}$

c / t_f = 6.2 × ϵ <= 9 × ϵ Class 1

Section is class 1

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 234.2 \text{ mm}$

Shear area factor $\eta = 1.000$

 h_w / t_w < 72 $\times \epsilon$ / η

Shear buckling resistance can be ignored

Design shear force $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 18.9 \text{ kN}$

Shear area - cl 6.2.6(3) $A_v = \max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \ \eta \times h_w \times t_w) = 1759 \text{ mm}^2$

Design shear resistance - cl 6.2.6(2) $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{3}) / \gamma_{M0} = 279.3 \text{ kN}$

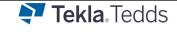
PASS - Design shear resistance exceeds design shear force

Check bending moment major (y-y) axis - Section 6.2.5

Design bending moment $M_{Ed} = max(abs(M_{s1_min})) = 6.6 \text{ kNm}$

Design bending resistance moment - eq 6.13 $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 132.9 \text{ kNm}$

PASS - Design bending resistance moment exceeds design bending moment

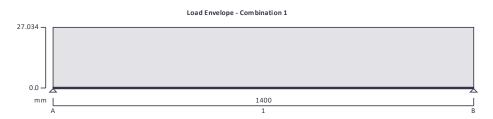

Check vertical deflection - Section 7.2.1

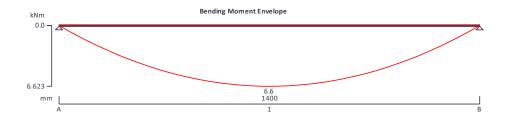
Consider deflection due to variable loads

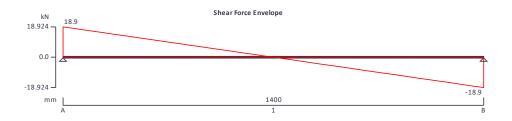
Limiting deflection $\delta_{\text{lim}} = L_{s1} / 360 = 3.9 \text{ mm}$

Maximum deflection span 1 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.035 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit




Project 25 OAKHILL A	VENUE	Job Ref. 8536			
				Sheet no./rev. 4. 14	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023


STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.14

Rotationally free

Support conditions

Support A Vertically restrained Rotationally free
Support B Vertically restrained

Applied loading

Beam loads $\begin{array}{ccc} \text{Permanent self weight of beam} \times 1 \\ \text{Permanent full UDL 10.64 kN/m} \\ \text{Variable full UDL 8.12 kN/m} \\ \end{array}$

Load combinations

Load combination 1 Support A Permanent \times 1.35 Variable \times 1.50

Permanent × 1.35

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
				Sheet no./rev. 4. 15	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Variable × 1.50

Support B Permanent × 1.35

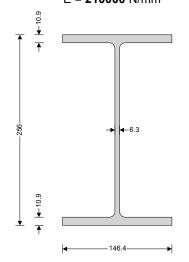
Variable × 1.50

Analysis results

Unfactored permanent load reaction at support A $R_{A_Permanent} = 7.7 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 5.7 \text{ kN}$

Maximum reaction at support B $R_{B_max} = 18.9 \text{ kN}$ $R_{B_min} = 18.9 \text{ kN}$

Unfactored permanent load reaction at support B $R_{B_Permanent} = 7.7 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 5.7 \text{ kN}$


Section details

Section type UB 254x146x37 (BS4-1)

Steel grade \$275

EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element $t = max(t_f, t_w) = 10.9 \text{ mm}$ Nominal yield strength $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 410 \text{ N/mm}^2$ Modulus of elasticity $E = 210000 \text{ N/mm}^2$

Partial factors - Section 6.1

Resistance of cross-sections γ_{M0} = 1.00 Resistance of members to instability γ_{M1} = 1.00 Resistance of tensile members to fracture γ_{M2} = 1.10

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis $K_y = 1.000$

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
				Sheet no./rev. 4. 16	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Effective length factor in minor axis K_z = **1.000** Effective length factor for torsion $K_{LT.A}$ = **1.000** $K_{LT.B}$ = **1.000**

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = \mathbf{0.92}$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 219 mm

c / t_w = 37.6 × ϵ <= 72 × ϵ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 62.5 \text{ mm}$

c / t_f = 6.2 × ϵ <= 9 × ϵ Class 1

Section is class 1

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 234.2 \text{ mm}$

Shear area factor $\eta = 1.000$

 $h_w / t_w < 72 \times \varepsilon / \eta$

Shear buckling resistance can be ignored

Design shear force $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 18.9 \text{ kN}$

Shear area - cl 6.2.6(3) $A_v = \max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \ \eta \times h_w \times t_w) = 1759 \text{ mm}^2$

Design shear resistance - cl 6.2.6(2) $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_v / \sqrt{3}) / \gamma_{M0} = 279.3 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment major (y-y) axis - Section 6.2.5

Design bending moment $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 6.6 \text{ kNm}$

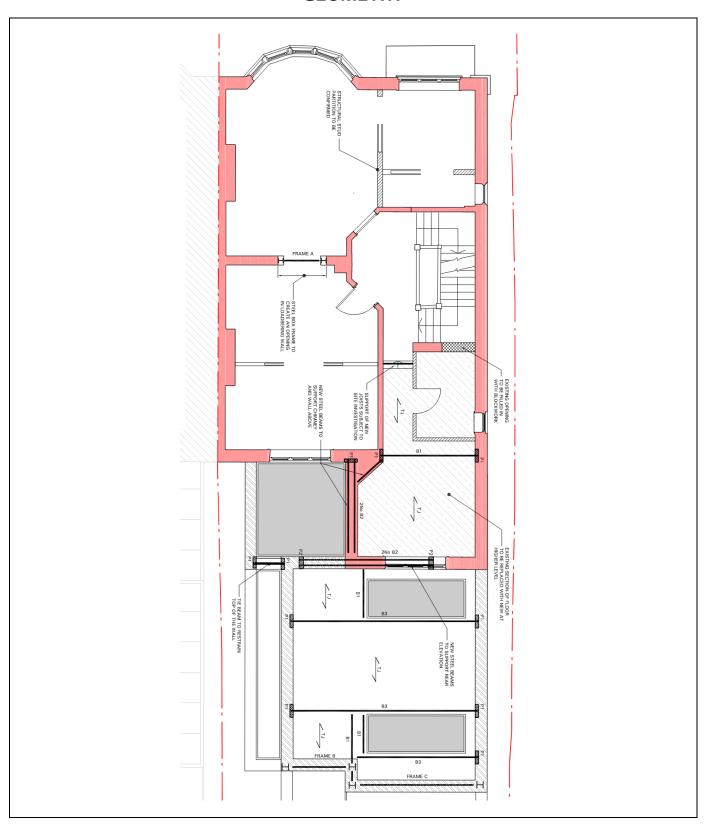
Design bending resistance moment - eq 6.13 $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 132.9 \text{ kNm}$

PASS - Design bending resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1 Consider deflection due to variable loads

Limiting deflection $\delta_{lim} = L_{s1} / 360 = 3.9 \text{ mm}$

Maximum deflection span 1 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.035 \text{ mm}$


PASS - Maximum deflection does not exceed deflection limit

MBP	Michael Barclay Partnership				
	consulting engineers				
	1 Lancaster Place WC2E 7ED				
	T 020 7240 1191 F 020 7240 2241				

E london@mbp-uk.com

Job Title 25 OAKHILL AVENUE, LONDON	Job Number 8536	Sheet Number 5.1	Revision P1
Calculation/sketch Title	Date	Author	Checked
SECTION 5	MAR 2023	ΑZ	TH
FIRST FLOOR STRUCTURE			

GEOMETRY

FIRST FLOOR PLAN

MBP	Michael Barclay Partnership				
	consulting engineers				
	1 Lancaster Place WC2E 7ED				
	T 020 7240 1191 F 020 7240 2241				

Job Title	Job Number	Sheet Number	Revision D 1
25 OAKHILL AVENUE, LONDON	8536	5.2	P1
Calculation/sketch Title	Date	Author	Checked
SECTION 5	MAR 2023	AZ	TH
FIRST FLOOR STRUCTURE			

E london@mbp-uk.com	FIRST F

			DEAD L
FLAT ROOF			
Flat roof finishes		0.50	
Waterproofing		0.20	
Insulation		0.10	
Timber joists		0.25	
Ceiling and services		0.25	
	TOTAL	1.30	kN/m²
FIRST FLOOR			
Floor finishes		0.25	
Boarding		0.15	
Timber joists		0.25	
Ceiling and services		0.25	
	TOTAL	0.90	kN/m²
Solid brick wall		4.30	kN/m²
		IM	IPOSED
Imposed Load		2.50	kN/m²

MBP	Michael Barclay Partnership				
consulting engineers					
	1 Lancaster Place WC2E 7ED				
	T 020 7240 1191 F 020 7240 2241 E london@mbp-uk.com				

Job Title	Job Number	Sheet Number	Revision	
25 OAKHILL AVENUE, LONDON	8536	5.4	P1	
Calculation/sketch Title	Date	Author	Checked	
SECTION 5	MAR 2023	ΑZ	TH	
FIRST FLOOR STRUCTURE				

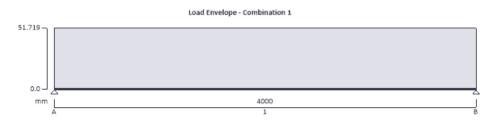
2No STEEL BEAM B2

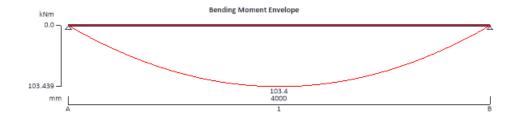
Max. span 4.0m

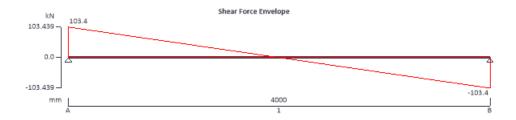
Load attracted from timber floor 3.2m/2 = 1.6mLoad attracted from Flat Roof 1.9m/2 = 0.8m

	TOTAL	2.64 kN/m	6.25 kN/m
Flat Roof	$1.3 \times 0.9 = 7$	1.20 kN/m	$2.50 \times 0.9 = 2.25 \text{ kN/m}$
First Floor	$0.9 \times 1.6 = 0.0$	1.44 kN/m	$2.50 \times 1.6 = 4.00 \text{ kN/m}$
	Dead load		Imposed load

Solid brick wall $4.30 \times 6.5 \text{m} = 28.00 \text{ kN/m}$




Project 25 OAKHILL A	VENUE	Job Ref. 8536				
				Sheet no./rev. 5. 5		
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023	


STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.14

Support conditions

Support A Vertically restrained

Rotationally free

Support B Vertically restrained

Rotationally free

Applied loading

Beam loads Permanent self weight of beam × 1

Permanent full UDL 30.64 kN/m Variable full UDL 6.25 kN/m

Load combinations

Load combination 1 Support A Permanent × 1.35

 $Variable \times 1.50$ $Permanent \times 1.35$

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
			Sheet no./rev. 5. 6		
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Variable × 1.50

Support B Permanent × 1.35

Variable × 1.50

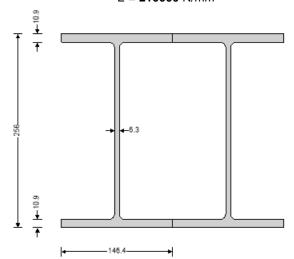
Analysis results

Unfactored permanent load reaction at support A $R_{A_Permanent} = 62.7 \text{ kN}$ Unfactored variable load reaction at support A $R_{A_Variable} = 12.5 \text{ kN}$

Maximum reaction at support B R_{B_max} = **103.4** kN R_{B_min} = **103.4** kN

Unfactored permanent load reaction at support B $R_{B_Permanent} = 62.7 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 12.5 \text{ kN}$

Section details


Section type 2 x UB 254x146x37 (BS4-1)

Steel grade S275

EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element $t = max(t_{f}, t_{w}) = \textbf{10.9} \text{ mm}$

Nominal yield strength $f_y = \textbf{275 N/mm}^2$ Nominal ultimate tensile strength $f_u = \textbf{410 N/mm}^2$ Modulus of elasticity $E = \textbf{210000 N/mm}^2$

Partial factors - Section 6.1

Resistance of cross-sections $\gamma_{M0} = 1.00$ Resistance of members to instability $\gamma_{M1} = 1.00$ Resistance of tensile members to fracture $\gamma_{M2} = 1.10$

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis $K_y = 1.000$

Project		Job Ref.			
25 OAKHILL A	VENUE	8536			
			Sheet no./rev. 5. 7		
Calc. by Date		Chk'd by	Date	App'd by	Date
AZ	28/03/2023			TH	28/03/2023

Effective length factor in minor axis $K_z = 1.000$ Effective length factor for torsion $K_{LT.A} = 1.000$ $K_{LT.B} = 1.000$

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = \mathbf{0.92}$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 219 mm

 $c / t_w = 37.6 \times \epsilon \le 72 \times \epsilon$ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 62.5 \text{ mm}$

 $c / t_f = 6.2 \times \varepsilon \le 9 \times \varepsilon$ Class 1

Section is class 1

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 234.2 \text{ mm}$

Shear area factor $\eta = 1.000$

 $h_w / t_w < 72 \times \varepsilon / \eta$

Shear buckling resistance can be ignored

Design shear force $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 103.4 \text{ kN}$

Shear area - cl 6.2.6(3) $A_{V} = \max(A - 2 \times b \times t_{f} + (t_{W} + 2 \times r) \times t_{f}, \ \eta \times h_{W} \times t_{W}) = 1759 \ \text{mm}^{2}$

Design shear resistance - cl 6.2.6(2) $V_{c,Rd} = V_{pl,Rd} = N \times A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 558.7 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment major (y-y) axis - Section 6.2.5

Design bending moment $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 103.4 \text{ kNm}$ Design bending resistance moment - eq 6.13 $M_{c,Rd} = M_{pl,Rd} = N \times W_{pl,y} \times f_y / \gamma_{M0} = 265.8 \text{ kNm}$

PASS - Design bending resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1 Consider deflection due to variable loads

Limiting deflection $\delta_{lim} = L_{s1} / 360 = 11.1 \text{ mm}$

Maximum deflection span 1 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.896 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

MBP	Michael Barclay Partnership				
	consulting engineers				
	1 Lancaster Place WC2E 7ED				
	T 020 7240 1191 F 020 7240 2241				
	E london@mbp-uk.com				

Job Title 25 OAKHILL AVENUE, LONDON	Job Number 8536	Sheet Number 5.8	Revision P1	
Calculation/sketch Title	Date	Author	Checked	
SECTION 5	MAR 2023	AZ	тн	
FIRST FLOOR STRUCTURE				

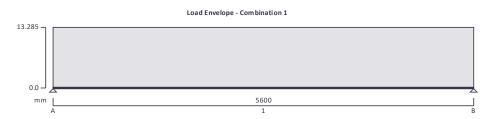
TYPICAL STEEL BEAM B3

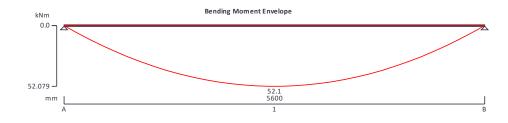
Max. span 5.6m

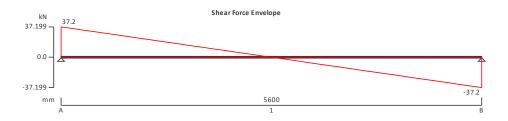
Load attracted from 4.6m/2 = 2.3m

Dead load Imposed load

Loading $1.30 \times 2.30 = 3.00 \text{ kN/m}$ $2.50 \times 2.30 = 5.75 \text{ kN/m}$




Project 25 OAKHILL A	VENUE	Job Ref. 8536			
Section FIRST FLOOR STRUCTURE				Sheet no./rev. 5. 9	
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by	Date 28/03/2023


STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

TEDDS calculation version 3.0.14

Support conditions

Support A Vertically restrained Rotationally free
Support B Vertically restrained

Support B Vertically restrained Rotationally free

Applied loading

Variable full UDL 5.75 kN/m

Load combinations

Load combination 1 Support A Permanent × 1.35

 $Variable \times 1.50$ $Permanent \times 1.35$

Project 25 OAKHILL A	VENUE	Job Ref. 8536				
Section FIRST FLOOR STRUCTURE				Sheet no./rev. 5. 10		
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023	

 $Variable \times 1.50$ Support B Permanent \times 1.35

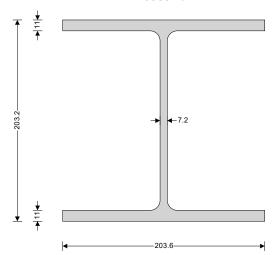
Variable × 1.50

Analysis results

Maximum reaction at support B R_{B_max} = **37.2** kN R_{B_min} = **37.2** kN

Unfactored permanent load reaction at support B $R_{B_Permanent} = 9.7 \text{ kN}$ Unfactored variable load reaction at support B $R_{B_Variable} = 16.1 \text{ kN}$

Section details


Section type UC 203x203x46 (BS4-1)

Steel grade \$275

EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element $t = max(t_f, t_w) = 11.0 \text{ mm}$ Nominal yield strength $f_y = 275 \text{ N/mm}^2$ Nominal ultimate tensile strength $f_u = 410 \text{ N/mm}^2$

Modulus of elasticity E = **210000** N/mm²

Partial factors - Section 6.1

Resistance of cross-sections γ_{M0} = 1.00 Resistance of members to instability γ_{M1} = 1.00 Resistance of tensile members to fracture γ_{M2} = 1.10

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis $K_y = 1.000$

Project 25 OAKHILL A	VENUE	Job Ref. 8536				
Section FIRST FLOOR					Sheet no./rev. 5. 11	
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023	

Effective length factor in minor axis K_z = **1.000** Effective length factor for torsion $K_{LT.A}$ = **1.000** $K_{LT.B}$ = **1.000**

Classification of cross sections - Section 5.5

 $\varepsilon = \sqrt{[235 \text{ N/mm}^2 / f_y]} = 0.92$

Internal compression parts subject to bending - Table 5.2 (sheet 1 of 3)

Width of section c = d = 160.8 mm

c / t_w = 24.2 × ϵ <= 72 × ϵ Class 1

Outstand flanges - Table 5.2 (sheet 2 of 3)

Width of section $c = (b - t_w - 2 \times r) / 2 = 88 \text{ mm}$

c / $t_f = 8.7 \times \varepsilon \le 9 \times \varepsilon$ Class 1

Section is class 1

Check shear - Section 6.2.6

Height of web $h_w = h - 2 \times t_f = 181.2 \text{ mm}$

Shear area factor $\eta = 1.000$

 $h_w / t_w < 72 \times \varepsilon / \eta$

Shear buckling resistance can be ignored

Design shear force $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 37.2 \text{ kN}$

Shear area - cl 6.2.6(3) $A_v = \max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \ \eta \times h_w \times t_w) = 1698 \text{ mm}^2$

Design shear resistance - cl 6.2.6(2) $V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 269.5 \text{ kN}$

PASS - Design shear resistance exceeds design shear force

Check bending moment major (y-y) axis - Section 6.2.5

Design bending moment $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 52.1 \text{ kNm}$

Design bending resistance moment - eq 6.13 $M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} = 136.8 \text{ kNm}$

PASS - Design bending resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to variable loads

Limiting deflection $\delta_{lim} = L_{s1} / 360 = 15.6 \text{ mm}$

Maximum deflection span 1 $\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 7.676 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

MBP	Michael Barclay Partnership				
consulting engineers					
1 Lancaster Place WC2E 7ED					
	T 020 7240 1191 F 020 7240 2241				
	E london@mbp-uk com				

Job Title	Job Number	Sheet Number	Revision
25 OAKHILL AVENUE, LONDON	8536	8536 5.12	
0.1.1.1.1.7.1.	10.	IA (I	Lou I I
Calculation/sketch Title	Date	Author	Checked
SECTION 5	MAR 2023	AZ	TH
FIRST FLOOR STRUCTURE			

TYPICAL TIMBER JOISTS

Max. span 3.3m

Dead load (excluding self weight) Imposed load

Loading 0.9 kN/m^2 2.5 kN/m^2

Project 25 Oakhill Aver	nue			Job Ref. 8536			
Section SECTION 5				Sheet no./rev. 5.12			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023		

TIMBER JOIST ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex

Tedds calculation version 1.0.05

Joist details

Description 47 x 200 C18 timber joists

Joist spacing s_{Joist} = **350** mm

----3300-

Forces input on Joist

 $\begin{tabular}{lll} Vertical permanent load on joist & F_{G_Joist} = {\bf 0.90} \ kN/m^2 \\ Vertical imposed load on joist & F_{Q_Joist} = {\bf 2.50} \ kN/m^2 \\ \end{tabular}$

Joist loading details

Distributed loads

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

ANALYSIS

Tedds calculation version 1.0.36

Loading

Self weight included (Permanent x 1)

Load combination factors

Load combination		pəsodwı	Snow	Wind
1.35G + 1.50Q (Strength)	1.35	1.50	0.00	0.00
1.00G + 1.00Q (Service)		1.00	0.00	0.00

Member Loads

Member	Load case	Load Type	Orientation	Description
Member	Permanent	UDL	GlobalZ	0.32 kN/m at 0 m to 3.3 m
Member	Imposed	UDL	GlobalZ	0.88 kN/m at 0 m to 3.3 m

Results

Total deflection

1.35G + 1.50Q (Strength) - Total deflection

Project 25 Oakhill Aver	nue	Job Ref. 8536			
Section SECTION 5		Sheet no./rev. 5.13			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

1.00G + 1.00Q (Service) - Total deflection

Node deflections

Load combination: 1.35G + 1.50Q (Strength)

Node	Defle	Deflection		Co-ordinate system
	X	Z		
	(mm)	(mm)	(°)	
1	0	0	0.54079	
2	0	0	-0.54079	

Load combination: 1.00G + 1.00Q (Service)

Node	Deflection		Rotation	Co-ordinate system
	X	Z		
	(mm)	(mm)	(°)	
1	0	0	0.37101	
2	0	0	-0.37101	

Total base reactions

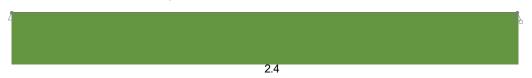
Load case/combination	Force	
	FX	FZ
	(kN)	(kN)
1.35G + 1.50Q (Strength)	0	5.9
1.00G + 1.00Q (Service)	0	4

Element end forces

Load combination: 1.35G + 1.50Q (Strength)

Element	Length (m)	Nodes Start/End	Axial force (kN)	Shear force (kN)	Moment (kNm)
1	3.3	1	0	-2.9	0
		2	0	-2.9	0

Load combination: 1.00G + 1.00Q (Service)


Element	Length (m)	Nodes Start/End	Axial force (kN)	Shear force (kN)	Moment (kNm)
1	3.3	1	0	-2	0
		2	0	-2	0

Project 25 Oakhill Avei	nue	Job Ref. 8536			
Section SECTION 5		Sheet no./rev. 5.14			
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Strength combinations - Moment envelope (kNm)

Strength combinations - Shear envelope (kN)

Member results

Envelope - Strength combinations

Member	Position	Shear force		Moment		
	(m)	(kN)		(kNm)		
Member	0	2.9 (max abs)		0 (min)		
	1.65	0		2.4 (max)		
	3.3	-2.9		0 (min)		

Tedds calculation version 2.2.11

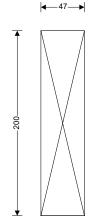
Member - Span 1

Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3 $\gamma_M = 1.300$

Member details

Load duration - cl.2.3.1.2 Medium-term


Service class - cl.2.3.1.3

Timber section details

Timber strength class - EN 338:2016 Table 1 C18

Project 25 Oakhill Aver	nue	Job Ref. 8536			
Section SECTION 5		Sheet no./rev. 5.15			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

47x200 timber section

Cross-sectional area, A, 9400 mm² Section modulus, W_y , 313333.3 mm³ Section modulus, W_z , 73633 mm³ Second moment of area, I_y , 31333333 mm⁴ Second moment of area, I_z , 1730383 mm⁴ Radius of gyration, I_z , 57.7 mm Radius of gyration, I_z , 13.6 mm Timber strendth class C18

Characteristic bending strength, f_{m.k}, 18 N/mm²
Characteristic shear strength, f_{v.k}, 3.4 N/mm²

Characteristic compression strength parallel to grain, $f_{c,0,k}$, 18 N/mm² Characteristic compression strength perpendicular to grain, $f_{c,0,k}$, 2.2 N/mm² Characteristic tension strength parallel to grain, $f_{c,0,k}$, 10 N/mm²

Mean modulus of elasticity, E_{0.mean}, 9000 N/mm²
Fifth percentile modulus of elasticity, E_{0.05}, 6000 N/mm²
Shear modulus of elasticity, G_{mean}, 560 N/mm²

Characteristic density, $\rho_k,\,320~kg/m^3$ Mean density, $\rho_{mean},\,380~kg/m^3$

Span details

Bearing length

L_b = **100** mm

Member results summary	Unit	Capacity	Maximum	Utilisation	Result
Bearing stress	N/mm ²	1.5	0.6	0.419	PASS
Bending stress	N/mm ²	12.2	7.7	0.634	PASS
Shear stress	N/mm²	2.3	0.7	0.304	PASS
Deflection	mm	13.2	12.7	0.962	PASS

Consider Combination 1 - 1.35G + 1.50Q (Strength)

Modification factors

Duration of load and moisture content - Table 3.1 $k_{mod} = 0.8$ Deformation factor - Table 3.2 $k_{def} = 0.8$ Bending stress re-distribution factor - cl.6.1.6(2) $k_{m} = 0.7$ Crack factor for shear resistance - cl.6.1.7(2) $k_{cr} = 0.67$ System strength factor - cl.6.6 $k_{sys} = 1.1$

Check design at start of span

Check compression perpendicular to the grain - cl.6.1.5

Design perpendicular compression - major axis $F_{c,y,90,d}$ = **2.933** kN Effective contact length $L_{b,ef}$ = L_b = **100** mm

Design perpendicular compressive stress - exp.6.4 $\sigma_{c,y,90,d}$ = $F_{c,y,90,d}$ / (b × $L_{b,ef}$) = **0.624** N/mm² Design perpendicular compressive strength $f_{c,y,90,d}$ = $k_{mod} \times k_{sys} \times f_{c,90,k}$ / γ_{M} = **1.489** N/mm²

 $\sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.419$

PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

Check shear force - Section 6.1.7

Design shear force $F_{y,d} = 2.933 \text{ kN}$

Design shear stress - exp.6.60 $\tau_{y,d} = 1.5 \times F_{y,d} / (k_{cr} \times b \times h) = \textbf{0.699 N/mm}^2$ Design shear strength $f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v,k} / \gamma_M = \textbf{2.302 N/mm}^2$

Project 25 Oakhill Aver	nue	Job Ref. 8536			
Section SECTION 5		Sheet no./rev. 5.16			
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

 $\tau_{y,d}$ / $f_{v,y,d}$ = $\boldsymbol{0.304}$

PASS - Design shear strength exceeds design shear stress

Check design 1650 mm along span

Check bending moment - Section 6.1.6

Design bending moment $M_{y,d} = 2.42 \text{ kNm}$

Design bending stress $\sigma_{m,y,d} = M_{y,d} / W_y = 7.723 \text{ N/mm}^2$

Design bending strength $f_{m,y,d} = k_{mod} \times k_{sys} \times f_{m.k} / \gamma_M = 12.185 \text{ N/mm}^2$

 $\sigma_{m,y,d}$ / $f_{m,y,d}$ = 0.634

PASS - Design bending strength exceeds design bending stress

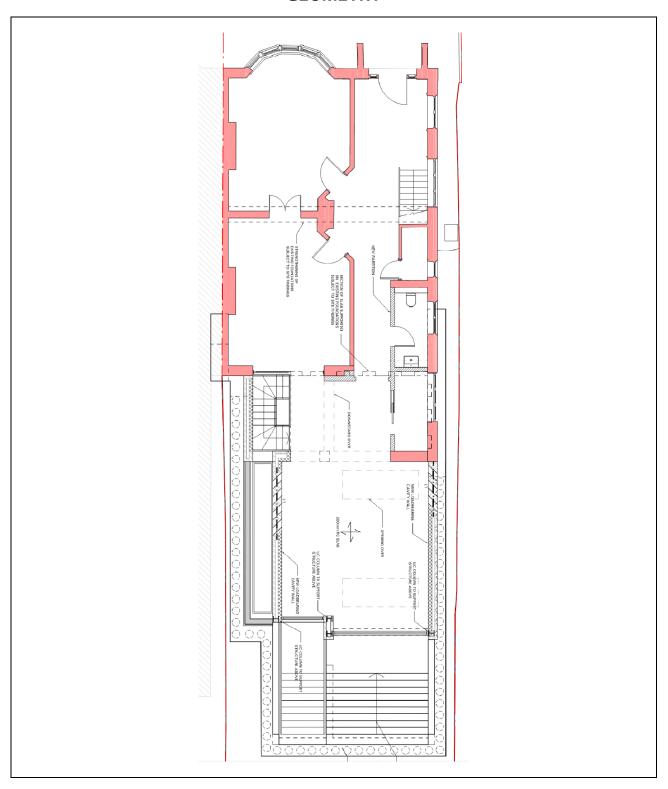
Consider Combination 2 - 1.00G + 1.00Q (Service)

Check design 1650 mm along span

Check y-y axis deflection - Section 7.2

Instantaneous deflection $\delta_y = \textbf{7.1} \text{ mm}$ Quasi-permanent variable load factor $\psi_2 = \textbf{0.3}$

Final deflection with creep $\delta_{y,\text{Final}} = \delta_y \times (1 + k_{def}) = \textbf{12.7} \text{ mm}$ Allowable deflection $\delta_{y,\text{Allowable}} = L_{m1_s1} / 250 = \textbf{13.2} \text{ mm}$


 $\delta_{y,Final}$ / $\delta_{y,Allowable}$ = **0.962**

PASS - Allowable deflection exceeds final deflection

MBP	Michael Barclay Partnership
	consulting engineers
	1 Lancaster Place WC2E 7ED
	T 020 7240 1191 F 020 7240 2241
	E london@mbp-uk.com

Job Title	Job Number	Sheet Number	Revision
25 OAKHILL AVENUE, LONDON	8536	6.1	P1
Calculation/sketch Title	Date	Author	Checked
SECTION 6	MAR 2023	ΑZ	TH
GROUND FLOOR SLAB STRUCTUR	RE		

GEOMETRY

MBP	Michael Barclay Partnership
	consulting engineers
	1 Lancaster Place WC2E 7ED
	T 020 7240 1191 F 020 7240 2241

25 OAKHILL AVENUE, LONDON	8536	6.2	P1
Calculation/sketch Title	Date	Author	Checked
SECTION 6	MAR 2023	ΑZ	TH
GROUND FLOOR SLAB STRUCTURE			

Job Number

Sheet Number

E london@mbp-uk.com	
----------------------------	--

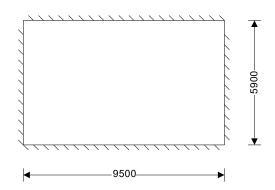
			EAD L
Floor finishes		0.50	
100mm Screed		2.20	
250mm RC Slab		6.00	
Ceiling and services		0.50	
	TOTAL	9.20	kN/m²

New cavity wall 4.88 kN/m²

IMPOSED LOAD

Imposed Load (Including Partitions) 2.50 kN/m²

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
Section GROUND FLO	OR STRUCTUR	Sheet no./rev.			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023


RC SLAB DESIGN

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.21

Design summary

Description	Unit	Provided	Required	Utilisation	Result		
Short span	Short span						
Reinf. at midspan	mm²/m	1005	311	0.309	PASS		
Bar spacing at midspan	mm	200	300	0.667	PASS		
Shear at discont. supp	kN/m	103.9	23.8	0.229	PASS		
Deflection ratio		27.83	39.31	0.708	PASS		
Long span	•				•		
Reinf. at midspan	mm²/m	1005	261	0.260	PASS		
Bar spacing at midspan	mm	200	300	0.667	PASS		
Shear at discont. supp	kN/m	99.0	23.8	0.240	PASS		
Cover							
Min cover bottom	mm	30	26	0.867	PASS		

Slab definition

Slab reference name 250mm RC Slab

Type of slab Two way spanning with restrained edges

Overall slab depth h = 250 mmShorter effective span of panel $I_x = 5900 \text{ mm}$ Longer effective span of panel $I_y = 9500 \text{ mm}$

Support conditions Four edges discontinuous

Bottom outer layer of reinforcement Short span direction

Loading

 $\label{eq:characteristic permanent action} G_k = 3.2 \text{ kN/m}^2$ Characteristic variable action $Q_k = 2.5 \text{ kN/m}^2$ Partial factor for permanent action $\gamma_G = 1.35$ Partial factor for variable action $\gamma_Q = 1.50$ Quasi-permanent value of variable action $\psi_2 = 0.30$

Design ultimate load $q = \gamma_G \times G_k + \gamma_Q \times Q_k = \textbf{8.1 kN/m}^2$ Quasi-permanent load $q_{SLS} = 1.0 \times G_k + \psi_2 \times Q_k = \textbf{4.0 kN/m}^2$

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
Section GROUND FLO	OR STRUCTUR	Sheet no./rev.			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Concrete properties

Concrete strength class C25/30

 $\begin{array}{ll} \text{Characteristic cylinder strength} & \text{f}_{\text{ck}} = 25 \text{ N/mm}^2 \\ \text{Partial factor (Table 2.1N)} & \gamma_{\text{C}} = 1.50 \\ \text{Compressive strength factor (cl. 3.1.6)} & \alpha_{\text{cc}} = 0.85 \\ \text{Design compressive strength (cl. 3.1.6)} & \text{f}_{\text{cd}} = 14.2 \text{ N/mm}^2 \\ \end{array}$

Mean axial tensile strength (Table 3.1) $f_{ctm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.6 \text{ N/mm}^2$

Maximum aggregate size $d_g = 20 \text{ mm}$

Reinforcement properties

Characteristic yield strength $f_{yk} = 500 \text{ N/mm}^2$

Partial factor (Table 2.1N) $\gamma_s = 1.15$

Design yield strength (fig. 3.8) $f_{yd} = f_{yk} / \gamma_S = 434.8 \text{ N/mm}^2$

Concrete cover to reinforcement

Nominal cover to outer bottom reinforcement $c_{nom_b} = 30 \text{ mm}$ Fire resistance period to bottom of slab $R_{btm} = 60 \text{ min}$ Axia distance to bottom reinft (Table 5.8) $a_{f_b} = 15 \text{ mm}$ Min. btm cover requirement with regard to bond $c_{min,b_b} = 16 \text{ mm}$

Reinforcement fabrication Not subject to QA system

Cover allowance for deviation $\Delta c_{dev} = 10 \text{ mm}$ Min. required nominal cover to bottom reinft $c_{nom \ b \ min} = 26.0 \text{ mm}$

PASS - There is sufficient cover to the bottom reinforcement

Reinforcement design at midspan in short span direction (cl.6.1)

Bending moment coefficient $\beta_{sx_p} = 0.0968$

Design bending moment $M_{x_p} = \beta_{sx_p} \times q \times l_x^2 = 27.2 \text{ kNm/m}$ Reinforcement provided 16 mm dia. bars at 200 mm centres

Area provided $A_{sx_p} = 1005 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement $d_{x_p} = h - c_{nom_b} - \varphi_{x_p} / 2 = \textbf{212.0} \text{ mm}$ K factor $K = M_{x_p} / (b \times d_{x_p}^2 \times f_{ck}) = \textbf{0.024}$

Redistribution ratio $\delta = 1.0$

K' factor $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm $z = min(0.95 \times d_{x_p}, d_{x_p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 201.4 \text{ mm}$

Area of reinforcement required for bending $A_{sx_p_m} = M_{x_p} / (f_{yd} \times z) = 311 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required $A_{sx_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{x_p}, 0.0013 \times b \times d_{x_p}) = 283 \text{ mm}^2/\text{m}$

Area of reinforcement required $A_{sx_p_req} = max(A_{sx_p_min}, A_{sx_p_min}) = 311 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress $\sigma_{\text{sx_p}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{sx_p_m}} / A_{\text{sx_p}}), 1.0) \times q_{\text{SLS}} / q = 65.8 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N) $s_{max_x_p} = 300 \text{ mm}$ Actual bar spacing $s_{x p} = 200 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
Section GROUND FLOOR STRUCTURE				Sheet no./rev.	
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Reinforcement design at midspan in long span direction (cl.6.1)

Bending moment coefficient $\beta_{sy_p} = 0.0560$

Design bending moment $M_{y_p} = \beta_{sy_p} \times q \times l_x^2 = 15.7 \text{ kNm/m}$ Reinforcement provided 16 mm dia. bars at 200 mm centres

Area provided $A_{sy_p} = 1005 \text{ mm}^2/\text{m}$

Effective depth to tension reinforcement $d_{y_p} = h - c_{nom_b} - \phi_{x_p} - \phi_{y_p} / 2 = 196.0 \text{ mm}$

K factor $K = M_{y_p} / (b \times d_{y_p}^2 \times f_{ck}) = 0.016$

Redistribution ratio $\delta = 1.0$

K' factor $K' = 0.598 \times \delta - 0.18 \times \delta^2 - 0.21 = 0.208$

K < K' - Compression reinforcement is not required

Lever arm $z = min(0.95 \times d_{y_p}, d_{y_p}/2 \times (1 + \sqrt{(1 - 3.53 \times K))}) = 186.2 \text{ mm}$

Area of reinforcement required for bending $A_{sy_p_m} = M_{y_p} / (f_{yd} \times z) = 194 \text{ mm}^2/\text{m}$

Minimum area of reinforcement required $A_{sy_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{y_p}, \ 0.0013 \times b \times d_{y_p}) = \textbf{261} \ mm^2/m$

Area of reinforcement required $A_{sy_p_req} = max(A_{sy_p_m}, A_{sy_p_min}) = 261 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided exceeds area required

Check reinforcement spacing

Reinforcement service stress $\sigma_{\text{sy p}} = (f_{\text{yk}} / \gamma_{\text{S}}) \times \min((A_{\text{sy p}} \text{ m/A}_{\text{sy p}}), 1.0) \times q_{\text{SLS}} / q = 41.1 \text{ N/mm}^2$

Maximum allowable spacing (Table 7.3N) $s_{max_y_p} = 300 \text{ mm}$ Actual bar spacing $s_{y_p} = 200 \text{ mm}$

PASS - The reinforcement spacing is acceptable

Shear capacity check at short span discontinuous support

Shear force $V_{x_d} = q \times I_x / 2 = 23.8 \text{ kN/m}$

Reinforcement provided 8 mm dia. bars at 200 mm centres

Area provided $A_{sx_d} = 251 \text{ mm}^2/\text{m}$

Effective depth $d_{x_d} = h - c_{nom_b} - \phi_{x_d} / 2 = 216.0 \text{ mm}$ Effective depth factor $k = min(2.0, 1 + (200 \text{ mm / } d_{x_d})^{0.5}) = 1.962$ Reinforcement ratio $\rho_l = min(0.02, A_{sx_d} / (b \times d_{x_d})) = 0.0012$

Minimum shear resistance $V_{Rd,c~min} = 0.035 \text{ N/mm}^2 \times \text{k}^{1.5} \times (\text{f}_{ck} / 1 \text{ N/mm}^2)^{0.5} \times \text{b} \times \text{d}_{x~d}$

 $V_{Rd,c_{min}} = 103.9 \text{ kN/m}$

Shear resistance constant (cl. 6.2.2) $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Shear resistance

 $V_{Rd,c_x_d} = max(V_{Rd,c_min}, C_{Rd,c} \times k \times (100 \times p_i \times (f_{ck}/1 \text{ N/mm}^2))^{0.333} \times b \times d_{x_d}) = 103.9 \text{ kN/m}$

PASS - Shear capacity is adequate (0.229)

Shear capacity check at long span discontinuous support

Shear force $V_{y_d} = q \times I_x / 2 = 23.8 \text{ kN/m}$

Reinforcement provided 8 mm dia. bars at 200 mm centres

Area provided $A_{sy d} = 251 \text{ mm}^2/\text{m}$

Effective depth $d_{y_d} = h - c_{nom_b} - \phi_{x_p} - \phi_{y_d} / 2 = 200.0 \text{ mm}$ Effective depth factor $k = min(2.0, 1 + (200 \text{ mm / } d_{y_d})^{0.5}) = 2.000$ Reinforcement ratio $\rho_l = min(0.02, A_{sy_d} / (b \times d_{y_d})) = 0.0013$

Minimum shear resistance $V_{Rd,c_min} = 0.035 \text{ N/mm}^2 \times \text{k}^{1.5} \times (f_{ck} \text{ / 1 N/mm}^2)^{0.5} \times \text{b} \times \text{d}_{y_d}$

 $V_{Rd,c min} = 99.0 kN/m$

Shear resistance constant (cl. 6.2.2) $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

Project 25 OAKHILL A	VENUE	Job Ref. 8536			
Section GROUND FLO	OR STRUCTUR	Sheet no./rev.			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Shear resistance

$$V_{Rd,c_y_d} = max(V_{Rd,c_min},~C_{Rd,c} \times k \times (100 \times \rho_l \times (f_{ck}/1~N/mm^2))^{0.333} \times b \times d_{y_d}) = \textbf{99.0}~kN/m$$

PASS - Shear capacity is adequate (0.240)

Basic span-to-depth deflection ratio check (cl. 7.4.2)

Reference reinforcement ratio $\rho_0 = (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / 1000 = \textbf{0.0050}$

Required tension reinforcement ratio $\rho = \max(0.0035, A_{sx_p_req} / (b \times d_{x_p})) = 0.0035$

Required compression reinforcement ratio $\rho' = A_{\text{scx p req}} / (b \times d_{\text{x p}}) = 0.0000$

Stuctural system factor (Table 7.4N) $K_{\delta} = 1.0$

Basic limit span-to-depth ratio (Exp. 7.16)

 $ratio_{\text{lim}_x_bas} = K_{\delta} \times [11 + 1.5 \times (f_{ck}/1 \text{ N/mm}^2)^{0.5} \times \rho_0/\rho + 3.2 \times (f_{ck}/1 \text{ N/mm}^2)^{0.5} \times (\rho_0/\rho - 1)^{1.5}] = 26.20$

Mod span-to-depth ratio limit

ratio_{lim_x} = min(40 × K_{δ}, min(1.5, (500 N/mm²/ f_{yk}) × (A_{sx_p} / A_{sx_p_m})) × ratio_{lim_x_bas}) = **39.31**

Actual span-to-eff. depth ratio $ratio_{act_x} = I_x / d_{x_p} = 27.83$

PASS - Actual span-to-effective depth ratio is acceptable

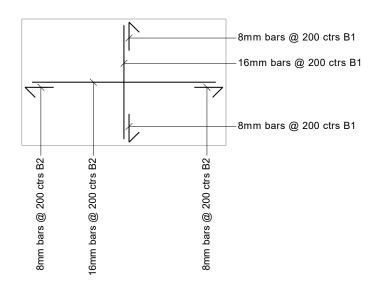
Reinforcement summary

Midspan in short span direction

Midspan in long span direction

Discontinuous support in long span direction

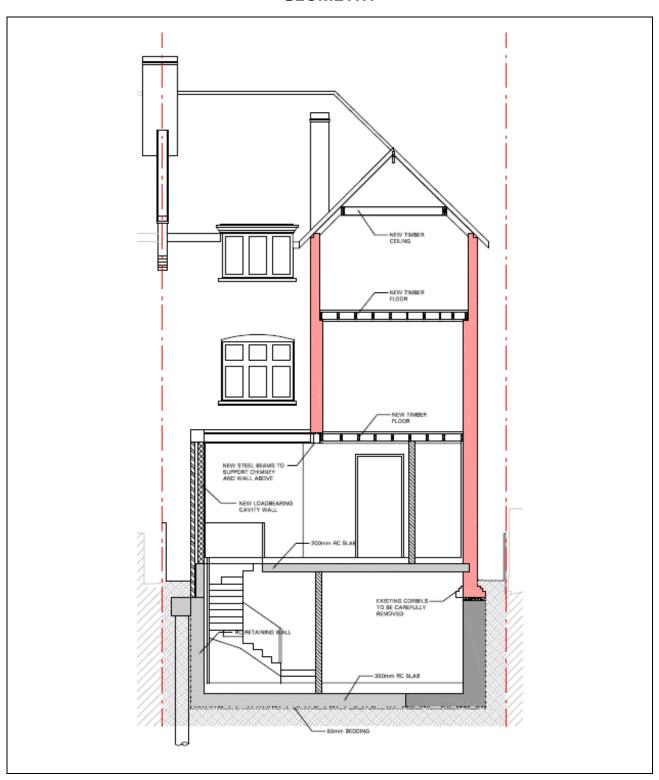
Discontinuous support in long span direction


16 mm dia. bars at 200 mm centres B2

8 mm dia. bars at 200 mm centres B1

8 mm dia. bars at 200 mm centres B2

Reinforcement sketch


The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

MBP	Michael Barclay Partnership					
	consulting engineers					
	1 Lancaster Place WC2E 7ED					
	T 020 7240 1191 F 020 7240 2241					
	E london@mbp-uk.com					

Job Title	Job Number	Sheet Number	Revision
25 OAKHILL AVENUE, LONDON	8536	7.1	P1
Calculation/sketch Title	Date	Author	Checked
SECTION 7	MAR 2023	ΑZ	TH
RETAINING WALL CALCULATION			

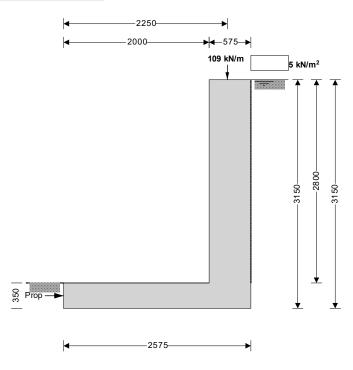
GEOMETRY

MBP	Michael Barclay Partnership		
	consulting engineers		
	1 Lancaster Place WC2E 7ED		
	T 020 7240 1191 F 020 7240 2241		
	E london@mbp-uk.com		

Job Title 25 OAKHILL AVENUE, LONDON	Job Number 8536	Sheet Number 7.2	Revision P1
Calculation/sketch Title	Date	Author	Checked
SECTION 7	MAR 2023	AZ	TH
RETAINING WALL CALCULATION			

575mm THICK RETAINING WALL

DEAD LOAD VERTICAL LOAD: Roof $1.05 \text{ kN/m}^2 \text{ x } 1.1\text{m} = 2.15 \text{ kN/m}$ Second Floor $0.90 \text{ kN/m}^2 \text{ x } 1.9\text{m} = 1.71 \text{ kN/m}$ Flat Roof 1.30 $kN/m^2 \times 1.9m = 2.50 kN/m$ Ground Floor $6.80 \text{ kN/m}^2 \text{ x } 3.4\text{m} = 23.12 \text{ kN/m}$ 29.50 kN/m TOTAL: Existing Wall $6.31 \text{ kN/m}^2 \text{ x } 10\text{m} = 63.10 \text{ kN/m}$ GROUND FORCE: (trapeziondal force) height 4.4m, $\gamma = 18.5 \text{ kN/m}^3$ **IMPOSED LOAD VERTICAL LOAD:** Roof $0.6 \text{ kN/m}^2 \text{ x } 1.1 \text{m} = 0.66 \text{ kN/m}$ Second Floor $2.5 \text{ kN/m}^2 \text{ x } 1.9 \text{m} = 4.75 \text{ kN/m}$ Flat Roof 1.5 $kN/m^2 \times 1.9m = 2.85 kN/m$ Ground Floor $2.5 \text{ kN/m}^2 \times 3.4 \text{m} = 8.50 \text{ kN/m}$ TOTAL: 16.76 kN/m SURCHARGE: 5 kN/m² WATER: Full high water level 3.0m above slab


575 mm thick Lining wall to be propped at the bottom by RC slab.

,				Job Ref. 8415	
				Sheet no./rev. 7. 3	
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type

Height of retaining wall stem

Thickness of wall stem

Length of toe

Length of heel

Overall length of base

Thickness of base

Depth of downstand

Position of downstand

Thickness of downstand

Height of retaining wall

rieignit or retaining wair

Depth of cover in front of wall

Depth of unplanned excavation

Height of ground water behind wall

Height of saturated fill above base

Density of wall construction

Density of base construction

Angle of rear face of wall

Angle of soil surface behind wall

Effective height at virtual back of wall

Cantilever propped at base

 h_{stem} = 2800 mm

 $t_{wall} = 575 \text{ mm}$

 I_{toe} = 2000 mm

I_{heel} = 0 mm

 $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 2575 \text{ mm}$

t_{base} = **350** mm

 $d_{ds} = 0 \text{ mm}$

I_{ds} = **500** mm

 $t_{ds} = 350 \text{ mm}$

 $h_{\text{wall}} = h_{\text{stem}} + t_{\text{base}} + d_{\text{ds}} = 3150 \text{ mm}$

 $d_{cover} = 0 \text{ mm}$

 $d_{exc} = 0 \text{ mm}$

h_{water} = **3150** mm

 $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 2800 mm$

 γ_{wall} = **24.0** kN/m³

 γ_{base} = 24.0 kN/m³

 α = **90.0** deg

 β = **0.0** deg

 $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3150 \text{ mm}$

1 '				Job Ref. 8415	
				Sheet no./rev. 7. 4	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Retained material details

Mobilisation factor M = 1.5

Moist density of retained material $\gamma_m = 18.5 \text{ kN/m}^3$ Saturated density of retained material $\gamma_s = 21.5 \text{ kN/m}^3$ Design shear strength $\phi' = 34.0 \text{ deg}$ Angle of wall friction $\delta = 0.7 \text{ deg}$

Base material details

Stiff clay

 $\begin{array}{ll} \mbox{Moist density} & \gamma_{\mbox{\scriptsize mb}} = 18.5 \ \mbox{kN/m}^{3} \\ \mbox{Design shear strength} & \phi'_{\mbox{\scriptsize b}} = 34.0 \ \mbox{deg} \\ \mbox{Design base friction} & \delta_{\mbox{\scriptsize b}} = 0.7 \ \mbox{deg} \\ \end{array}$

Allowable bearing pressure $P_{bearing} = 300 \text{ kN/m}^2$

Using Coulomb theory

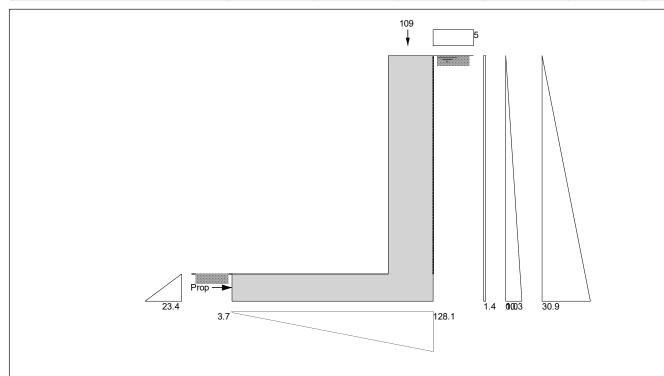
Active pressure coefficient for retained material

 $K_a = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi' + \delta) \times \sin(\phi' - \beta) / (\sin(\alpha - \delta) \times \sin(\alpha + \beta)))}]^2) = \textbf{0.281}$

Passive pressure coefficient for base material

 $K_p = \sin(90 - \phi_b^*)^2 / (\sin(90 - \delta_b) \times [1 - \sqrt{(\sin(\phi_b^* + \delta_b) \times \sin(\phi_b^*) / (\sin(90 + \delta_b)))}]^2) = 3.620$

At-rest pressure


At-rest pressure for retained material $K_0 = 1 - \sin(\phi') = 0.441$

Loading details

Surcharge load on plan Surcharge = 5.0 kN/m^2 Applied vertical dead load on wall W_{dead} = 92.6 kN/m Applied vertical live load on wall W_{live} = 16.8 kN/m Position of applied vertical load on wall I_{load} = 2250 mm Applied horizontal dead load on wall F_{dead} = 0.0 kN/m Applied horizontal live load on wall F_{live} = 0.0 kN/m Height of applied horizontal load on wall h_{load} = 0 mm

'				Job Ref. 8415	
Section RETAINING W	ALL	Sheet no./rev. 7. 5			
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Loads shown in kN/m, pressures shown in kN/m²

Vertical forces on wall

Wall stem $w_{\text{wall}} = h_{\text{stem}} \times t_{\text{wall}} \times \gamma_{\text{wall}} = \textbf{38.6 kN/m}$ Wall base $w_{\text{base}} = l_{\text{base}} \times t_{\text{base}} \times \gamma_{\text{base}} = \textbf{21.6 kN/m}$ Applied vertical load $w_{\text{v}} = w_{\text{dead}} + w_{\text{live}} = \textbf{109.4 kN/m}$ Total vertical load $w_{\text{total}} = w_{\text{wall}} + w_{\text{base}} + w_{\text{v}} = \textbf{169.6 kN/m}$

Horizontal forces on wall

 $\begin{aligned} &\text{Surcharge} & &F_{\text{sur}} = \text{K}_{\text{a}} \times \cos(90 - \alpha + \delta) \times \text{Surcharge} \times \text{h}_{\text{eff}} = \textbf{4.4} \text{ kN/m} \\ &\text{Moist backfill below water table} & &F_{\text{m_b}} = \text{K}_{\text{a}} \times \cos(90 - \alpha + \delta) \times \gamma_{\text{m}} \times (\text{h}_{\text{eff}} - \text{h}_{\text{water}}) \times \text{h}_{\text{water}} = \textbf{0} \text{ kN/m} \\ &\text{Saturated backfill} & &F_{\text{s}} = 0.5 \times \text{K}_{\text{a}} \times \cos(90 - \alpha + \delta) \times (\gamma_{\text{s}} - \gamma_{\text{water}}) \times \text{h}_{\text{water}}^2 = \textbf{16.3} \text{ kN/m} \end{aligned}$

Water $F_{\text{water}} = 0.5 \times h_{\text{water}}^2 \times \gamma_{\text{water}} = \textbf{48.7 kN/m}$ $\text{Total horizontal load} \qquad F_{\text{total}} = F_{\text{sur}} + F_{\text{m}_b} + F_{\text{s}} + F_{\text{water}} = \textbf{69.4 kN/m}$

Calculate propping force

Passive resistance of soil in front of wall $F_p = 0.5 \times K_p \times cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = \textbf{4.1 kN/m}$

Propping force $F_{prop} = max(F_{total} - F_p - (W_{total} - W_{live}) \times tan(\delta_b), 0 \text{ kN/m})$

 $F_{prop} = 63.4 \text{ kN/m}$

Overturning moments

Restoring moments

Wall stem $M_{\text{wall}} = W_{\text{wall}} \times (I_{\text{toe}} + t_{\text{wall}} / 2) = 88.4 \text{ kNm/m}$

,				Job Ref. 8415	
				Sheet no./rev. 7. 6	
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Wall base $M_{base} = w_{base} \times l_{base} / 2 = 27.8 \text{ kNm/m}$ Design vertical dead load $M_{dead} = W_{dead} \times l_{load} = 208.4 \text{ kNm/m}$

Total restoring moment $M_{rest} = M_{wall} + M_{base} + M_{dead} = 324.6 \text{ kNm/m}$

Check bearing pressure

Design vertical live load $M_{live} = W_{live} \times I_{load} = 37.7 \text{ kNm/m}$

Total moment for bearing $M_{total} = M_{rest} - M_{ot} + M_{live} = 287.1 \text{ kNm/m}$

Total vertical reaction $R = W_{total} = 169.6 \text{ kN/m}$ Distance to reaction $x_{bar} = M_{total} / R = 1693 \text{ mm}$

Eccentricity of reaction $e = abs((l_{base} / 2) - x_{bar}) = 405 \text{ mm}$

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = (R / l_{base}) - (6 \times R \times e / l_{base}^2) = 3.7 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = (R / l_{base}) + (6 \times R \times e / l_{base}^2) = 128.1 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Project 25 OAK HILL R	OAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 7			
Calc. by	Date	Chk'd by	Date	App'd by	Date
AZ	28/03/2023			TH	28/03/2023

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.08

Ultimate limit state load factors

Dead load factor γ_{f_d} = 1.4 Live load factor γ_{f_l} = 1.6 Earth and water pressure factor γ_{f_e} = 1.4

Factored vertical forces on wall

 $\begin{aligned} \text{Wall stem} & \text{Wwall_f} = \gamma_{f_d} \times h_{\text{stem}} \times t_{\text{wall}} \times \gamma_{\text{wall}} = \textbf{54.1 kN/m} \\ \text{Wall base} & \text{Wbase_f} = \gamma_{f_d} \times l_{\text{base}} \times t_{\text{base}} \times \gamma_{\text{base}} = \textbf{30.3 kN/m} \\ \text{Applied vertical load} & \text{W}_{v_f} = \gamma_{f_d} \times \text{W}_{\text{dead}} + \gamma_{f_l} \times \text{W}_{\text{live}} = \textbf{156.5 kN/m} \\ \text{Total vertical load} & \text{W}_{\text{total_f}} = w_{\text{wall_f}} + w_{\text{base_f}} + W_{v_f} = \textbf{240.8 kN/m} \\ \end{aligned}$

Factored horizontal at-rest forces on wall

 $\begin{aligned} & \text{Surcharge} & \text{F}_{\text{sur_f}} = \gamma_{f_l} \times K_0 \times \text{Surcharge} \times h_{\text{eff}} = \textbf{11.1} \text{ kN/m} \\ & \text{Moist backfill below water table} & \text{F}_{m_b_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{\text{eff}} - h_{\text{water}}) \times h_{\text{water}} = \textbf{0} \text{ kN/m} \\ & \text{Saturated backfill} & \text{F}_{s_f} = \gamma_{f_e} \times 0.5 \times K_0 \times (\gamma_{s^-} \gamma_{\text{water}}) \times h_{\text{water}^2} = \textbf{35.8} \text{ kN/m} \\ & \text{Water} & \text{F}_{\text{water_f}} = \gamma_{f_e} \times 0.5 \times h_{\text{water}^2} \times \gamma_{\text{water}} = \textbf{68.1} \text{ kN/m} \\ & \text{Total horizontal load} & \text{F}_{\text{total_f}} = \text{F}_{\text{sur_f}} + \text{F}_{m_b_f} + \text{F}_{s_f} + \text{F}_{\text{water_f}} = \textbf{115} \text{ kN/m} \\ \end{aligned}$

Calculate propping force

 $\text{Passive resistance of soil in front of wall } \\ F_{p_f} = \gamma_{f_e} \times 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} \\ = \textbf{5.7 kN/m}$

Propping force $F_{prop \ f} = max(F_{total \ f} - F_{p \ f} - (W_{total \ f} - \gamma_{f \ l} \times W_{live}) \times tan(\delta_b), \ 0 \ kN/m)$

 $F_{prop_f} = 106.7 \text{ kN/m}$

Factored overturning moments

 $\begin{aligned} & \text{Surcharge} & \text{M}_{\text{sur_f}} = F_{\text{sur_f}} \times \left(h_{\text{eff}} - 2 \times d_{\text{ds}} \right) / 2 = \textbf{17.5 kNm/m} \\ & \text{Moist backfill below water table} & \text{M}_{\text{m_b_f}} = F_{\text{m_b_f}} \times \left(h_{\text{water}} - 2 \times d_{\text{ds}} \right) / 2 = \textbf{0 kNm/m} \\ & \text{Saturated backfill} & \text{M}_{\text{s_f}} = F_{\text{s_f}} \times \left(h_{\text{water}} - 3 \times d_{\text{ds}} \right) / 3 = \textbf{37.6 kNm/m} \\ & \text{Water} & \text{M}_{\text{water_f}} = F_{\text{water_f}} \times \left(h_{\text{water}} - 3 \times d_{\text{ds}} \right) / 3 = \textbf{71.5 kNm/m} \\ & \text{Total overturning moment} & \text{M}_{\text{ot_f}} = M_{\text{sur_f}} + M_{\text{m_b_f}} + M_{\text{s_f}} + M_{\text{water_f}} = \textbf{126.6 kNm/m} \\ \end{aligned}$

Restoring moments

 $\label{eq:mail_f} Wall \ stem \\ M_{wall_f} = w_{wall_f} \times \left(I_{toe} + t_{wall} \ / \ 2\right) = \textbf{123.7} \ kNm/m$

Wall base $M_{base_f} = W_{base_f} \times I_{base_f} \times I_{base_f} \times 2 = 39 \text{ kNm/m}$

Design vertical load $M_{v_f} = W_{v_f} \times I_{load} = 352 \text{ kNm/m}$

Total restoring moment $M_{rest f} = M_{wall f} + M_{base f} + M_{v f} = 514.8 \text{ kNm/m}$

Factored bearing pressure

Total moment for bearing $M_{\text{total } f} = M_{\text{rest } f} - M_{\text{ot } f} = 388.1 \text{ kNm/m}$

Total vertical reaction $R_f = W_{total_f} = 240.8 \text{ kN/m}$ Distance to reaction $x_{bar_f} = M_{total_f} / R_f = 1612 \text{ mm}$ Eccentricity of reaction $e_f = abs((I_{base} / 2) - x_{bar_f}) = 324 \text{ mm}$

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe_f} = (R_f / I_{base}) - (6 \times R_f \times e_f / I_{base}^2) = 22.9 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel_f} = (R_f / I_{base}) + (6 \times R_f \times e_f / I_{base}^2) = 164.2 \text{ kN/m}^2$

Rate of change of base reaction rate = $(p_{toe f} - p_{heel f}) / l_{base} = -54.87 kN/m^2/m$

,					Job Ref. 8415	
					Sheet no./rev. 7. 8	
	Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

 $p_{\text{stem_toe_f}} = \text{max}(p_{\text{heel_f}} + (\text{rate} \times (I_{\text{heel}} + t_{\text{wall}})), 0 \text{ kN/m}^2) = 132.6 \text{ kN/m}^2$ Bearing pressure at stem / toe $p_{stem\ mid\ f} = max(p_{heel\ f} + (rate \times (I_{heel} + t_{wall} / 2)), 0 \text{ kN/m}^2) = 148.4 \text{ kN/m}^2$ Bearing pressure at mid stem

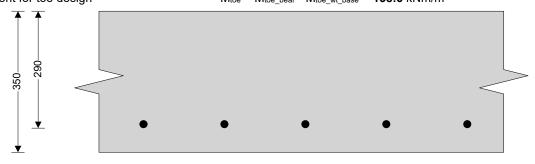
 $p_{\text{stem heel f}} = \max(p_{\text{heel f}} + (\text{rate} \times I_{\text{heel}}), 0 \text{ kN/m}^2) = 164.2 \text{ kN/m}^2$ Bearing pressure at stem / heel

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Base details


Minimum area of reinforcement k = 0.13 %Cover to reinforcement in toe $c_{toe} = 50 \text{ mm}$

Calculate shear for toe design

 $V_{\text{toe bear}} = (p_{\text{toe f}} + p_{\text{stem toe f}}) \times I_{\text{toe}} / 2 = 155.5 \text{ kN/m}$ Shear from bearing pressure Shear from weight of base $V_{toe\ wt\ base} = \gamma_{f\ d} \times \gamma_{base} \times I_{toe} \times t_{base} = 23.5\ kN/m$ $V_{toe} = V_{toe_bear} - V_{toe_wt_base} = 132 \text{ kN/m}$ Total shear for toe design

Calculate moment for toe design

Moment from bearing pressure $M_{toe_bear} = (2 \times p_{toe_f} + p_{stem_mid_f}) \times (I_{toe} + t_{wall} / 2)^2 / 6 = 169.3 \text{ kNm/m}$ $M_{toe_wt_base} = (\gamma_{f_d} \times \gamma_{base} \times t_{base} \times (I_{toe} + t_{wall} / 2)^2 / 2) = 30.8 \text{ kNm/m}$ Moment from weight of base Total moment for toe design M_{toe} = M_{toe bear} - M_{toe wt base} = 138.6 kNm/m

Check toe in bending

Minimum area of tension reinforcement

b = 1000 mm/mWidth of toe

Depth of reinforcement $d_{toe} = t_{base} - c_{toe} - (\phi_{toe} / 2) = 290.0 \text{ mm}$ $K_{toe} = M_{toe} / (b \times d_{toe}^2 \times f_{cu}) = 0.047$ Constant

Compression reinforcement is not required

 $z_{\text{toe}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{toe}}, 0.225) / 0.9)), 0.95)} \times d_{\text{toe}}$ Lever arm

 $z_{toe} = 274 \text{ mm}$

Area of tension reinforcement required $A_{s \text{ toe des}} = M_{toe} / (0.87 \times f_{y} \times z_{toe}) = 1163 \text{ mm}^{2}/\text{m}$

 $A_{s \text{ toe min}} = k \times b \times t_{base} = 455 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{s_toe_req} = Max(A_{s_toe_des}, A_{s_toe_min}) = 1163 \text{ mm}^2/\text{m}$

20 mm dia.bars @ 200 mm centres Reinforcement provided

Area of reinforcement provided $A_{s \text{ toe prov}} = 1571 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

,				Job Ref. 8415	
				Sheet no./rev. 7. 9	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Check shear resistance at toe

Design shear stress $v_{toe} = V_{toe} / (b \times d_{toe}) = 0.455 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.733 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress v_c toe = **0.625** N/mm²

 $v_{toe} < v_{c toe}$ - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Factored horizontal at-rest forces on stem

Surcharge $F_{s_sur_f} = \gamma_{f_l} \times K_0 \times Surcharge \times (h_{eff} - t_{base} - d_{ds}) = 9.9 \text{ kN/m}$

Moist backfill below water table $F_{s_m_b_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat}) \times h_{sat} = \mathbf{0} \text{ kN/m}$

Saturated backfill $F_{s_s_f} = 0.5 \times \gamma_{f_e} \times K_0 \times (\gamma_{s-} \gamma_{water}) \times h_{sat}^2 = 28.3 \text{ kN/m}$

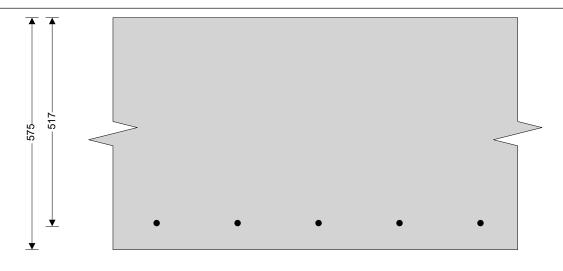
Water $F_{\underline{s}_water_f} = 0.5 \times \gamma_{\underline{f}_e} \times \gamma_{water} \times h_{sat}^2 = 53.8 \text{ kN/m}$

Calculate shear for stem design

Shear at base of stem $V_{\text{stem}} = F_{\text{s sur f}} + F_{\text{s m b f}} + F_{\text{s s f}} + F_{\text{s water f}} - F_{\text{prop f}} = -14.7 \text{ kN/m}$

Calculate moment for stem design

Surcharge $M_{s_sur} = F_{s_sur_f} \times (h_{stem} + t_{base}) / 2 = 15.6 \text{ kNm/m}$


Moist backfill below water table $M_{s_m_b} = F_{s_m_b_f} \times h_{sat} / 2 = 0 \text{ kNm/m}$ Saturated backfill $M_{s_s} = F_{s_s_f} \times h_{sat} / 3 = 26.4 \text{ kNm/m}$

Water M_s water = F_s water $f \times h_{sat} / 3 = 50.2$ kNm/m

Total moment for stem design $M_{stem} = M_{s_sur} + M_{s_m_b} + M_{s_s} + M_{s_water} = 92.2 \text{ kNm/m}$

Project 25 OAK HILL ROAD, LONDON				Job Ref. 8415	
				Sheet no./rev. 7. 10	
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

← 200 →

Check wall stem in bending

Width of wall stem b = **1000** mm/m

Depth of reinforcement $d_{\text{stem}} = t_{\text{wall}} - c_{\text{stem}} - (\phi_{\text{stem}} / 2) = 517.0 \text{ mm}$

Constant $K_{\text{stem}} = M_{\text{stem}} / (b \times d_{\text{stem}}^2 \times f_{\text{cu}}) = 0.010$

Compression reinforcement is not required

Lever arm $z_{\text{stem}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{stem}}, 0.225) / 0.9)), 0.95)} \times d_{\text{stem}}$

z_{stem} = **491** mm

Area of tension reinforcement required $A_{s_stem_des} = M_{stem} / (0.87 \times f_y \times z_{stem}) = 432 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement A_s stem min = $k \times b \times t_{wall}$ = **748** mm²/m

Area of tension reinforcement required A_s stem req = $Max(A_s$ stem des, A_s stem min) = **748** mm²/m

Reinforcement provided 16 mm dia.bars @ 200 mm centres

Area of reinforcement provided $A_{s \text{ stem prov}} = 1005 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress $v_{stem} = V_{stem} / (b \times d_{stem}) = -0.028 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.733 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress $v_{c stem} = 0.410 \text{ N/mm}^2$

v_{stem} < v_c stem - No shear reinforcement required

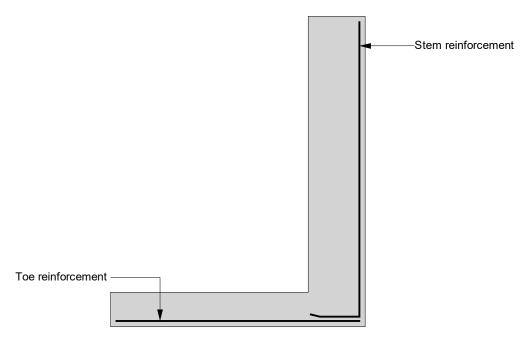
Check retaining wall deflection

Basic span/effective depth ratio ratio_{bas} = **7**

Design service stress $f_s = 2 \times f_y \times A_{s_stem_prov} / (3 \times A_{s_stem_prov}) = 247.9 \text{ N/mm}^2$

Modification factor factor factor $factor_{tens} = min(0.55 + (477 \text{ N/mm}^2 - f_s)/(120 \times (0.9 \text{ N/mm}^2 + (M_{stem}/(b \times d_{stem}^2)))),2) = 2.00$

Maximum span/effective depth ratio $ratio_{max} = ratio_{bas} \times factor_{tens} = 14.00$


Actual span/effective depth ratio $ratio_{act} = h_{stem} / d_{stem} = 5.42$

PASS - Span to depth ratio is acceptable

,				Job Ref. 8415	
				Sheet no./rev. 7. 11	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Indicative retaining wall reinforcement diagram

Toe bars - 20 mm dia.@ 200 mm centres - $(1571 \text{ mm}^2/\text{m})$ Stem bars - 16 mm dia.@ 200 mm centres - $(1005 \text{ mm}^2/\text{m})$

МВР	MBP Michael Barclay Partnership consulting engineers						
	1 Lancaster Place WC2E 7ED						
	T 020 7240 1191 F 020 7240 2241						

E london@mbp-uk.com

Job Title 25 OAKHILL AVENUE, LONDON	Job Number 8536	Sheet Number 7.12	Revision P1
Calculation/sketch Title	Date	Author	Checked
SECTION 7	MAR 2023	AZ	тн
RETAINING WALL CALCULATION			

250mm THICK RETAINING WALL

DEAD LOAD

VERTICAL LOAD:

Flat Roof $1.30 \text{ kN/m}^2 \times 1.6 \text{m} = 2.10 \text{ kN/m}$ Ground Floor $6.80 \text{ kN/m}^2 \times 3.4 \text{m} = 23.12 \text{ kN/m}$ TOTAL: 25.22 kN/m

New Cavity Wall $4.04 \text{ kN/m}^2 \times 4.3 \text{m} = 8.34 \text{ kN/m}$

GROUND FORCE: (trapeziondal force) height 4.4m, $\gamma = 18.5 \text{ kN/m}^3$

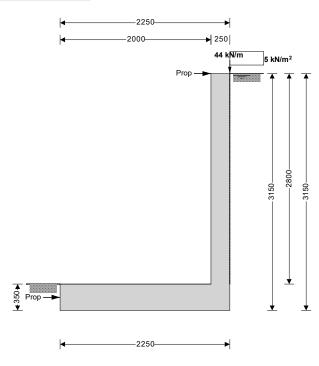
IMPOSED LOAD

VERTICAL LOAD:

Flat Roof $1.5 \text{ kN/m}^2 \times 1.6 \text{m} = 2.40 \text{ kN/m}$ Ground Floor $2.5 \text{ kN/m}^2 \times 3.4 \text{m} = 8.50 \text{ kN/m}$ TOTAL: 10.90 kN/m

SURCHARGE: 5 kN/m²


WATER: Full high water level 3.0m above slab


250mm linning wall to be propped at the top and at the bottom by RC slab.

1 '				Job Ref. 8415	
				Sheet no./rev. 7. 14	
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type

Height of retaining wall stem

Thickness of wall stem

Length of toe

Length of heel

Overall length of base

Thickness of base

Depth of downstand

Position of downstand

Thickness of downstand

Height of retaining wall

Depth of cover in front of wall

Depth of unplanned excavation

Height of ground water behind wall

Height of saturated fill above base

Density of wall construction

Density of base construction

Angle of rear face of wall

Angle of soil surface behind wall

Effective height at virtual back of wall

Retained material details

Mobilisation factor M = 1.5

Cantilever propped at both

h_{stem} = **2800** mm

 $t_{wall} = 250 \text{ mm}$

I_{toe} = **2000** mm

I_{heel} = 0 mm

 $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 2250 \text{ mm}$

t_{base} = **350** mm

 $d_{ds} = 0 \text{ mm}$

 $I_{ds} = 500 \text{ mm}$

 $t_{ds} = 350 \text{ mm}$

 $h_{\text{wall}} = h_{\text{stem}} + t_{\text{base}} + d_{\text{ds}} = 3150 \text{ mm}$

 $d_{cover} = 0 \text{ mm}$

 $d_{exc} = 0 \text{ mm}$

h_{water} = **3150** mm

 $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 2800 mm$

 $\gamma_{\text{wall}} = 24.0 \text{ kN/m}^3$

 $\gamma_{base} = 24.0 \text{ kN/m}^3$

 α = **90.0** deg

 β = **0.0** deg

 $h_{eff} = h_{wall} + I_{heel} \times tan(\beta) = 3150 \text{ mm}$

Project 25 OAK HILL F	ROAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 15			
Calc. by Date Chk'd by AZ 28/03/2023		Chk'd by	Date	App'd by TH	Date 28/03/2023

 $\label{eq:mass_model} \begin{tabular}{ll} Moist density of retained material & $\gamma_m = 18.5 \ kN/m^3$ \\ Saturated density of retained material & $\gamma_s = 21.5 \ kN/m^3$ \\ Design shear strength & $\phi' = 34.0 \ deg$ \\ Angle of wall friction & $\delta = 0.7 \ deg$ \\ \end{tabular}$

Base material details

Stiff clay

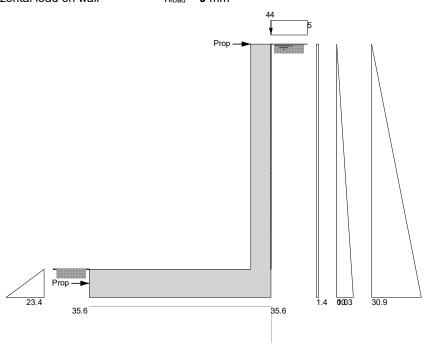
Moist density $\gamma_{mb} = \textbf{18.5 kN/m}^3$ Design shear strength $\phi'_b = \textbf{34.0 deg}$ Design base friction $\delta_b = \textbf{0.7 deg}$ Allowable bearing pressure $P_{bearing} = \textbf{300 kN/m}^2$

Using Coulomb theory

Active pressure coefficient for retained material

 $K_a = \sin(\alpha + \phi')^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta) \times [1 + \sqrt{(\sin(\phi' + \delta) \times \sin(\phi' - \beta) / (\sin(\alpha - \delta) \times \sin(\alpha + \beta)))}]^2) = \mathbf{0.281}$

Passive pressure coefficient for base material


 $K_p = \sin(90 - \phi_b)^2 / (\sin(90 - \delta_b) \times [1 - \sqrt{(\sin(\phi_b + \delta_b) \times \sin(\phi_b) / (\sin(90 + \delta_b)))}]^2) = 3.620$

At-rest pressure

At-rest pressure for retained material $K_0 = 1 - \sin(\phi') = 0.441$

Loading details

Surcharge load on plan Surcharge = 5.0 kN/m^2 Applied vertical dead load on wall W_{dead} = 33.6 kN/m Applied vertical live load on wall W_{live} = 10.9 kN/m Position of applied vertical load on wall I_{load} = 2250 mm Applied horizontal dead load on wall F_{dead} = 0.0 kN/m Applied horizontal live load on wall F_{live} = 0.0 kN/m Height of applied horizontal load on wall h_{load} = 0 mm

Project 25 OAK HILL F	OAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 16			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Loads shown in kN/m, pressures shown in kN/m²

Vertical forces on wall

Horizontal forces on wall

Surcharge $F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = 4.4 \text{ kN/m}$

Moist backfill below water table $F_{m_b} = K_a \times \cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = \mathbf{0} \text{ kN/m}$ Saturated backfill $F_s = 0.5 \times K_a \times \cos(90 - \alpha + \delta) \times (\gamma_{s^-} \gamma_{water}) \times h_{water}^2 = \mathbf{16.3} \text{ kN/m}$

Water $F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 48.7 \text{ kN/m}$ Total horizontal load $F_{total} = F_{sur} + F_{m b} + F_{s} + F_{water} = 69.4 \text{ kN/m}$

Calculate total propping force

Passive resistance of soil in front of wall $F_p = 0.5 \times K_p \times \cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = \textbf{4.1 kN/m}$

Propping force $F_{prop} = max(F_{total} - F_p - (W_{total} - W_{live}) \times tan(\delta_b), 0 \text{ kN/m})$

 $F_{prop} = 64.4 \text{ kN/m}$

Overturning moments

Surcharge $\begin{aligned} &M_{sur} = F_{sur} \times \left(h_{eff} - 2 \times d_{ds}\right) / \ 2 = 7 \ kNm/m \\ &Moist \ backfill \ below \ water \ table \\ &M_{m_b} = F_{m_b} \times \left(h_{water} - 2 \times d_{ds}\right) / \ 2 = 0 \ kNm/m \\ &Saturated \ backfill \\ &M_s = F_s \times \left(h_{water} - 3 \times d_{ds}\right) / \ 3 = 17.1 \ kNm/m \\ &Water \\ &M_{water} = F_{water} \times \left(h_{water} - 3 \times d_{ds}\right) / \ 3 = 51.1 \ kNm/m \\ &Total \ overturning \ moment \\ &M_{ot} = M_{sur} + M_{m_b} + M_s + M_{water} = 75.2 \ kNm/m \end{aligned}$

Restoring moments

Wall stem $M_{\text{wall}} = w_{\text{wall}} \times (I_{\text{toe}} + t_{\text{wall}} / 2) = 35.7 \text{ kNm/m}$ Wall base $M_{\text{base}} = w_{\text{base}} \times I_{\text{base}} / 2 = 21.3 \text{ kNm/m}$ Design vertical dead load $M_{\text{dead}} = W_{\text{dead}} \times I_{\text{load}} = 75.5 \text{ kNm/m}$

Total restoring moment M_{rest} = M_{wall} + M_{base} + M_{dead} = **132.5** kNm/m

Check bearing pressure

Total vertical reaction $R = W_{total} = \textbf{80.2 kN/m}$ Distance to reaction $x_{bar} = I_{base} / 2 = \textbf{1125 mm}$ Eccentricity of reaction $e = abs((I_{base} / 2) - x_{bar}) = \textbf{0 mm}$

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 35.6 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel} = (R / I_{base}) + (6 \times R \times e / I_{base}^2) = 35.6 \text{ kN/m}^2$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

Propping force to top of wall

 $F_{prop_top} = (M_{ot} - M_{rest} + R \times I_{base} / 2 - F_{prop} \times t_{base} / 2) / (h_{stem} + t_{base} / 2) = 7.263 \text{ kN/m}$

Propping force to base of wall $F_{prop_base} = F_{prop_top} - F_{prop_top} = 57.174 \text{ kN/m}$

Project 25 OAK HILL F	ROAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 17			
Calc. by	Date	Chk'd by	Date	App'd by	Date
AZ	28/03/2023			TH	28/03/2023

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.08

Ultimate limit state load factors

 $\begin{array}{ll} \mbox{Dead load factor} & \gamma_{\mbox{\tiny I_}d} = 1.4 \\ \mbox{Live load factor} & \gamma_{\mbox{\tiny I_}l} = 1.6 \\ \mbox{Earth and water pressure factor} & \gamma_{\mbox{\tiny I_}e} = 1.4 \end{array}$

Factored vertical forces on wall

 $\begin{aligned} \text{Wall stem} & \text{w}_{\text{wall_f}} = \gamma_{f_d} \times h_{\text{stem}} \times t_{\text{wall}} \times \gamma_{\text{wall}} = \textbf{23.5 kN/m} \\ \text{Wall base} & \text{w}_{\text{base}} = \gamma_{f_d} \times l_{\text{base}} \times t_{\text{base}} \times \gamma_{\text{base}} = \textbf{26.5 kN/m} \\ \text{Applied vertical load} & \text{W}_{v_f} = \gamma_{f_d} \times W_{\text{dead}} + \gamma_{f_l} \times W_{\text{live}} = \textbf{64.4 kN/m} \\ \text{Total vertical load} & \text{W}_{\text{total_f}} = w_{\text{wall_f}} + w_{\text{base_f}} + W_{v_f} = \textbf{114.4 kN/m} \end{aligned}$

Factored horizontal at-rest forces on wall

 $\begin{aligned} & \text{Surcharge} & \text{F}_{\text{sur_f}} = \gamma_{f_l} \times \text{K}_0 \times \text{Surcharge} \times \text{h}_{\text{eff}} = \textbf{11.1} \text{ kN/m} \\ & \text{Moist backfill below water table} & \text{F}_{\text{m_b_f}} = \gamma_{f_e} \times \text{K}_0 \times \gamma_{\text{m}} \times (\text{h}_{\text{eff}} - \text{h}_{\text{water}}) \times \text{h}_{\text{water}} = \textbf{0} \text{ kN/m} \\ & \text{Saturated backfill} & \text{F}_{s_f} = \gamma_{f_e} \times 0.5 \times \text{K}_0 \times (\gamma_{s^-} \gamma_{\text{water}}) \times \text{h}_{\text{water}^2} = \textbf{35.8} \text{ kN/m} \\ & \text{Water} & \text{F}_{\text{water_f}} = \gamma_{f_e} \times 0.5 \times \text{h}_{\text{water}^2} \times \gamma_{\text{water}} = \textbf{68.1} \text{ kN/m} \\ & \text{Total horizontal load} & \text{F}_{\text{total_f}} = \text{F}_{\text{sur_f}} + \text{F}_{\text{m_b_f}} + \text{F}_{\text{s_f}} + \text{F}_{\text{water_f}} = \textbf{115} \text{ kN/m} \\ \end{aligned}$

Calculate total propping force

Passive resistance of soil in front of wall $F_{p_f} = \gamma_{f_e} \times 0.5 \times K_p \times cos(\delta_b) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^2 \times \gamma_{mb} = \textbf{5.7 kN/m}$

Propping force $F_{prop \ f} = max(F_{total \ f} - F_{p \ f} - (W_{total \ f} - \gamma_{f \ l} \times W_{live}) \times tan(\delta_b), \ 0 \ kN/m)$

 $F_{prop_f} = 108.1 \text{ kN/m}$

Factored overturning moments

 $\begin{aligned} & \text{Surcharge} & \text{M}_{\text{sur_f}} = F_{\text{sur_f}} \times \left(h_{\text{eff}} - 2 \times d_{\text{ds}} \right) / 2 = \textbf{17.5 kNm/m} \\ & \text{Moist backfill below water table} & \text{M}_{\text{m_b_f}} = F_{\text{m_b_f}} \times \left(h_{\text{water}} - 2 \times d_{\text{ds}} \right) / 2 = \textbf{0 kNm/m} \\ & \text{Saturated backfill} & \text{M}_{\text{s_f}} = F_{\text{s_f}} \times \left(h_{\text{water}} - 3 \times d_{\text{ds}} \right) / 3 = \textbf{37.6 kNm/m} \\ & \text{Water} & \text{M}_{\text{water_f}} = F_{\text{water_f}} \times \left(h_{\text{water}} - 3 \times d_{\text{ds}} \right) / 3 = \textbf{71.5 kNm/m} \\ & \text{Total overturning moment} & \text{M}_{\text{ot_f}} = M_{\text{sur_f}} + M_{\text{m_b_f}} + M_{\text{s_f}} + M_{\text{water_f}} = \textbf{126.6 kNm/m} \\ \end{aligned}$

Restoring moments

Wall stem $M_{\text{wall_f}} = w_{\text{wall_f}} \times (l_{\text{toe}} + t_{\text{wall}} / 2) = \textbf{50 kNm/m}$ Wall base $M_{\text{base_f}} = w_{\text{base_f}} \times l_{\text{base}} / 2 = \textbf{29.8 kNm/m}$

Design vertical load $M_{v f} = W_{v f} \times I_{load} = 145 \text{ kNm/m}$

Total restoring moment $M_{rest f} = M_{wall f} + M_{base f} + M_{v f} = 224.7 \text{ kNm/m}$

Factored bearing pressure

Total vertical reaction $R_f = W_{total_f} = 114.4 \text{ kN/m}$ Distance to reaction $x_{bar_f} = I_{base} / 2 = 1125 \text{ mm}$ Eccentricity of reaction $e_f = abs((I_{base} / 2) - x_{bar_f}) = 0 \text{ mm}$

Reaction acts within middle third of base

Bearing pressure at toe $p_{toe_f} = (R_f / I_{base}) - (6 \times R_f \times e_f / I_{base}^2) = 50.8 \text{ kN/m}^2$ Bearing pressure at heel $p_{heel_f} = (R_f / I_{base}) + (6 \times R_f \times e_f / I_{base}^2) = 50.8 \text{ kN/m}^2$

Rate of change of base reaction $rate = (p_{toe_f} - p_{hee_f}) / l_{base} =$ **0.00**kN/m²/m

Bearing pressure at stem / toe $p_{\text{stem toe f}} = max(p_{\text{toe f}} - (rate \times I_{\text{toe}}), 0 \text{ kN/m}^2) = 50.8 \text{ kN/m}^2$

Project 25 OAK HILL F	ROAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 18			
Calc. by	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Bearing pressure at mid stem $p_{\text{stem_mid_f}} = \max(p_{\text{toe_f}} - (\text{rate} \times (I_{\text{toe}} + t_{\text{wall}} / 2)), \ 0 \ \text{kN/m}^2) = \textbf{50.8} \ \text{kN/m}^2$ Bearing pressure at stem / heel $p_{\text{stem_heel_f}} = \max(p_{\text{toe_f}} - (\text{rate} \times (I_{\text{toe}} + t_{\text{wall}})), \ 0 \ \text{kN/m}^2) = \textbf{50.8} \ \text{kN/m}^2$

Calculate propping forces to top and base of wall

Propping force to top of wall

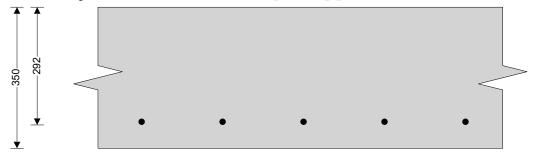
 $F_{prop_top_f} = (M_{ot_f} - M_{rest_f} + R_f \times I_{base} / 2 - F_{prop_f} \times t_{base} / 2) / (h_{stem} + t_{base} / 2) = 3.934 \text{ kN/m}$

Propping force to base of wall $F_{prop_base_f} = F_{prop_top_f} = 104.177 \text{ kN/m}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$


Base details

Calculate shear for toe design

Shear from bearing pressure $V_{toe_bear} = (p_{toe_f} + p_{stem_toe_f}) \times I_{toe} / 2 = \textbf{101.7 kN/m}$ Shear from weight of base $V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = \textbf{23.5 kN/m}$ Total shear for toe design $V_{toe} = V_{toe_bear} - V_{toe_wt_base} = \textbf{78.2 kN/m}$

Calculate moment for toe design

Total moment for toe design $M_{toe} = M_{toe_bear} - M_{toe_wt_base} = 88.2 \text{ kNm/m}$

Check toe in bending

Width of toe b = 1000 mm/m

Depth of reinforcement $d_{toe} = t_{base} - c_{toe} - (\phi_{toe} / 2) = \textbf{292.0} \text{ mm}$ Constant $K_{toe} = M_{toe} / (b \times d_{toe}^2 \times f_{cu}) = \textbf{0.030}$

Compression reinforcement is not required

Lever arm $z_{\text{toe}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{toe}}, 0.225) / 0.9)), 0.95)} \times d_{\text{toe}}$

 $z_{toe} = 277 \text{ mm}$

Area of tension reinforcement required $A_{s \text{ toe des}} = M_{toe} / (0.87 \times f_{V} \times z_{toe}) = 731 \text{ mm}^2/\text{m}$

Minimum area of tension reinforcement $A_{s \text{ toe min}} = k \times b \times t_{base} = 455 \text{ mm}^2/\text{m}$

Area of tension reinforcement required $A_{\underline{s}_toe_req} = Max(A_{\underline{s}_toe_des}, A_{\underline{s}_toe_min}) = 731 \text{ mm}^2/\text{m}$

Project 25 OAK HILL F	ROAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 19			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Reinforcement provided 16 mm dia.bars @ 200 mm centres

Area of reinforcement provided $A_{s_toe_prov} = 1005 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress $v_{toe} = V_{toe} / (b \times d_{toe}) = 0.268 \text{ N/mm}^2$

Allowable shear stress $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.733 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress v_c toe = **0.536** N/mm²

 $v_{toe} < v_{c_{toe}}$ - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Characteristic strength of concrete $f_{cu} = 35 \text{ N/mm}^2$ Characteristic strength of reinforcement $f_y = 500 \text{ N/mm}^2$

Wall details

Factored horizontal at-rest forces on stem

Surcharge $F_{s_sur_f} = \gamma_{f_l} \times K_0 \times Surcharge \times (h_{eff} - t_{base} - d_{ds}) = \textbf{9.9 kN/m}$ Moist backfill below water table $F_{s_m_b_f} = \gamma_{f_e} \times K_0 \times \gamma_m \times (h_{eff} - t_{base} - d_{ds} - h_{sat}) \times h_{sat} = \textbf{0 kN/m}$

Saturated backfill $F_{s s f} = 0.5 \times \gamma_{f e} \times K_0 \times (\gamma_{s} - \gamma_{water}) \times h_{sat}^2 = 28.3 \text{ kN/m}$

Water Fs water f = $0.5 \times \gamma_{\text{f e}} \times \gamma_{\text{water}} \times h_{\text{sat}}^2 = 53.8 \text{ kN/m}$

Calculate shear for stem design

Surcharge $V_{s sur f} = 5 \times F_{s sur f} / 8 = 6.2 \text{ kN/m}$

Moist backfill below water table $V_{s m b f} = F_{s m b f} \times (8 - (n^2 \times (4 - n))) / 8 = 0 \text{ kN/m}$

Saturated backfill $V_{s_s_f} = F_{s_s_f} \times (1 - (a_l^2 \times ((5 \times L) - a_l) / (20 \times L^3))) = 22.6 \text{ kN/m}$

Water $V_{s_water_f} = F_{s_water_f} \times (1 - (a^2 \times ((5 \times L) - a_1) / (20 \times L^3))) = 43.1 \text{ kN/m}$

Total shear for stem design $V_{stem} = V_{s_st_f} + V_{s_m_b_f} + V_{s_s_f} + V_{s_water_f} = 71.9 \text{ kN/m}$

Calculate moment for stem design

Surcharge $M_{s_sur} = F_{s_sur_f} \times L / 8 = 3.7 \text{ kNm/m}$

Moist backfill below water table $M_{s_m_b} = F_{s_m_b_f} \times a_l \times (2 - n)^2 / 8 = 0 \text{ kNm/m}$

Saturated backfill $M_{s_s} = F_{s_s_f} \times a \times ((3 \times a|^2) - (15 \times a| \times L) + (20 \times L^2))/(60 \times L^2) = \mathbf{11.2} \text{ kNm/m}$

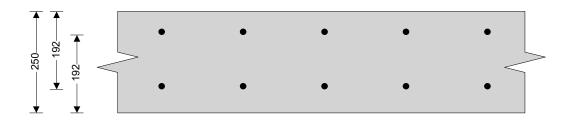
Water $M_{s_water} = F_{s_water_f} \times a_i \times ((3 \times a_i^2) - (15 \times a_i \times L) + (20 \times L^2))/(60 \times L^2) = 21.4 \text{ kNm/m}$

Total moment for stem design $M_{stem} = M_{s_sur} + M_{s_m_b} + M_{s_s} + M_{s_water} = 36.2 \text{ kNm/m}$

Calculate moment for wall design

Surcharge $M_{w_sur} = 9 \times F_{s_sur_f} \times L / 128 = 2.1 \text{ kNm/m}$

Moist backfill below water table $M_{w_-m_-b} = F_{s_-m_-b_-f} \times a_1 \times [((8-n^2\times(4-n))^2/16)-4+n\times(4-n)]/8 = \mathbf{0} \text{ kNm/m}$ Saturated backfill $M_{w_-s} = F_{s_-s_-f} \times [a_1^2\times x\times((5\times L)-a_1)/(20\times L^3)-(x-b_1)^3/(3\times a_1^2)] = \mathbf{5} \text{ kNm/m}$


Water $M_{\text{w water}} = F_{\text{s water}} f \times [a|^2 \times x \times ((5 \times L) - a_1)/(20 \times L^3) - (x - b_1)^3/(3 \times a_1^2)] = 9.6 \text{ kNm/m}$

Total moment for wall design $M_{wall} = M_{w_sur} + M_{w_m_b} + M_{w_s} + M_{w_water} = 16.6 \text{ kNm/m}$

Project 25 OAK HILL R	OAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 20			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Check wall stem in bending

Width of wall stem

Depth of reinforcement

Constant

Lever arm

Area of tension reinforcement required Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided

Area of reinforcement provided

Check shear resistance at wall stem

Design shear stress
Allowable shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress

Check mid height of wall in bending

Depth of reinforcement

Constant

Lever arm

Area of tension reinforcement required Minimum area of tension reinforcement Area of tension reinforcement required b = **1000** mm/m

 $d_{\text{stem}} = t_{\text{wall}} - c_{\text{stem}} - (\phi_{\text{stem}} / 2) = \textbf{192.0} \text{ mm}$

 $K_{\text{stem}} = M_{\text{stem}} / (b \times d_{\text{stem}}^2 \times f_{\text{cu}}) = 0.028$

Compression reinforcement is not required

 $z_{\text{stem}} = \min(0.5 + \sqrt{(0.25 - (\min(K_{\text{stem}}, 0.225) / 0.9)), 0.95)} \times d_{\text{stem}}$

z_{stem} = **182** mm

 $A_{s_stem_des} = M_{stem} / (0.87 \times f_y \times z_{stem}) = 457 \text{ mm}^2/\text{m}$

 $A_{s_stem_min} = k \times b \times t_{wall} = 325 \text{ mm}^2/\text{m}$

 $A_{s_stem_req} = Max(A_{s_stem_des}, A_{s_stem_min}) = 457 \text{ mm}^2/\text{m}$

16 mm dia.bars @ 200 mm centres

 $A_{s_stem_prov} = 1005 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

 $v_{stem} = V_{stem} / (b \times d_{stem}) =$ **0.374** N/mm²

 $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 \text{ N/mm}^2)}, 5) \times 1 \text{ N/mm}^2 = 4.733 \text{ N/mm}^2$

PASS - Design shear stress is less than maximum shear stress

 $v_{c_stem} = 0.685 \text{ N/mm}^2$

 $v_{stem} < v_{c stem}$ - No shear reinforcement required

 $d_{\text{wall}} = t_{\text{wall}} - c_{\text{wall}} - (\phi_{\text{wall}} / 2) = 192.0 \text{ mm}$

 $K_{\text{wall}} = M_{\text{wall}} / (b \times d_{\text{wall}}^2 \times f_{\text{cu}}) = \mathbf{0.013}$

Compression reinforcement is not required

 $z_{\text{wall}} = \text{Min}(0.5 + \sqrt{(0.25 - (\text{min}(K_{\text{wall}}, 0.225) / 0.9)), 0.95)} \times d_{\text{wall}}$

 $z_{wall} = 182 \text{ mm}$

 $A_{s \text{ wall des}} = M_{wall} / (0.87 \times f_{y} \times z_{wall}) = 210 \text{ mm}^{2}/\text{m}$

 $A_{s \text{ wall min}} = k \times b \times t_{wall} = 325 \text{ mm}^2/\text{m}$

 $A_{s_wall_req} = Max(A_{s_wall_des}, A_{s_wall_min}) = 325 \text{ mm}^2/\text{m}$

Tekla Tedds	1 '				Job Ref. 8415	
Мbр	Section RETAINING WALL				Sheet no./rev. 7. 21	
	Calc. by	Date	Chk'd by	Date	App'd by	Date

Reinforcement provided 16 mm dia.bars @ 200 mm centres

Area of reinforcement provided $A_{s_wall_prov} = 1005 \text{ mm}^2/\text{m}$

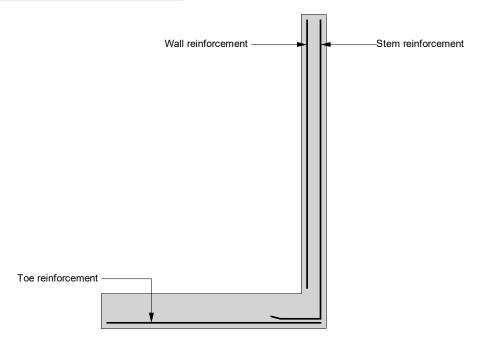
PASS - Reinforcement provided to the retaining wall at mid height is adequate

Check retaining wall deflection

Basic span/effective depth ratio ratio_{bas} = **20**

Design service stress $f_s = 2 \times f_y \times A_{s_stem_req} / (3 \times A_{s_stem_prov}) = 151.5 \text{ N/mm}^2$

Maximum span/effective depth ratio $ratio_{max} = ratio_{bas} \times factor_{tens} = 39.81$


Actual span/effective depth ratio ratio_{act} = h_{stem} / d_{stem} = **14.58**

PASS - Span to depth ratio is acceptable

Project 25 OAK HILL F	ROAD, LONDON	Job Ref. 8415			
Section RETAINING W	ALL	Sheet no./rev. 7. 22			
Calc. by AZ	Date 28/03/2023	Chk'd by	Date	App'd by TH	Date 28/03/2023

Indicative retaining wall reinforcement diagram

Toe bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Wall bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Stem bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Calculations Prepared by:

Calculations Approved by:

Name (Engineer) Agnieszka Zajac MSc Eng

For Michael Barclay Partnership LLP

Name (Principal)

Tony Hayes BSc (Hons) CEng MIStructE

Date 28/03/2023