

REF: Heals/SM

08.03.2023

Colliers The Harlequin Building 65 Southwark Street London SE1 OHR

FAO – Leigh Rowley

Dear Leigh

Heals Staircase – Existing Structure Review

As part of the existing structure review associated with the installation of a new staircase within an existing stair void, we have undertaken a site visit to review the existing structural configuration locally to the proposed works. Alongside the site visit and in order to assess the implications of the proposal on the existing structure, we have reviewed the available drawings indicating the existing building layout and the design submittals by Alpine Group, comprising of design drawing, 3D model and structural calculations.

During the initial site visit the existing structure was exposed, allowing a clear view of the structural configuration and framing around the existing void. From what could be seen it appeared that the existing reinforced concrete waffle slab previously extended into or fully over the existing void. Evidence of the formation of the void being a post original slab construction modification could be seen in the general construction of the edges of the void. In these areas it appears that the original waffle slab has been cut back with a reinforced concrete edge perimeter cast around the void. This is evidenced by the general visible form and surface quality of the edge concrete at the joints. The existing stair removed from the area is supported on one edge of the void and from the concrete floor slab below. Full details of the ground floor slab have not been confirmed, however, from what could be seen it appears to be a reinforced concrete ground bearing slab.

The proposed stair details as presented by Alpine Group and appended to this summary consist of a steel framed stair structure primarily supported by the existing ground bearing slab. Some additional support to the landing areas, upper flights and surrounding fins is taken from the reinforced concrete suspended floor slab, however, as noted, the main stair loads area transferred directly to ground. Structural calculations completed by Thetis Engineering Ltd have been provided as part of the design package and these confirm details of locations where the new stair will be supported from the base and suspended slab elements and the corresponding loadings for each of these points.

The provided calculations as appended to this summary suggest a maximum ULS leg load to the slab from the primary CHS posts of 26.5kN supported from 300x300x10 thick steel baseplates. The maximum ULS load to the secondary SHS members is calculated to be 15.0kN supported from 200x50x10 thick steel baseplates. In addition to these loads, the flat plate balusters also provide supplementary support with a maximum load of 2.5kN transferred from these to the base slab.

Full details of the base slab haven't been confirmed, however as part of the installation it will need to be confirmed that the slab is a minimum of 150mm thick reinforced concrete. This stipulation is part of the anchor design for the stair; however, on the basis that the slab is founded on firm consolidated ground, it will also ensure stair loads can be effectively transferred to the bearing strata.

As previously noted, the majority of the stair loads are transferred to the ground bearing slab, however there are areas to the perimeter where the flat plate fins/balusters fix into the existing reinforced slab, providing partial support to landing areas and the upper flights. The worst case ULS load through the fixings in these areas is noted as 4.5kN, however due to the number of fixing points the general applied load through the slab fixings would be significantly less than this. As previously commented, it is believed the area where the stair void is situated was previously infilled as a continuous part of the reinforced concrete waffle slab. Then at some point, presumably when the original stair was installed, the concrete was removed and trimmed back as can currently be seen in the exposed site condition. The design floor loading for the retained waffle slab would have been high due to its retail usage. This in combination with the overall reduction in loading due to the extent of removed concrete and the relatively low stair loads applied to the suspended slab would mean that by inspection, subject to the structure being in good condition, the existing suspended slab would be suitable for the applied loads from the stair installation.

As described above, based on the completed site inspection and a review of the provided design details, subject to final confirmation of the existing configuration and condition, the existing structure would be suitable to accommodate the applied loads from the proposed stair installation.

Yours sincerely For Furness Partnership

Sebastian Maudling Director

	Contract No.	2220323	Sheet No.	1	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

Contents

1.0	Introduction	page	2
2.0	CDM Regulations	page	2
3.0	Design Standards	page	3
4.0	Structural Loading Schedule	page	4
5.0	Stair Geometry	page	5
6.0	Model Geometry	page	6
7.0	Model Loading	page	9
8.0	Analysis model graphical output	page	16
9.0	Support Reactions	page	24
10.0	Stringer Design Check	page	25
11.0	Tread Design	page	27
12.0	Balustrade Design	page	29
13.0	Connection Design	page	33

	Contract No.	2220323	Sheet No.	2	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

1.0 Introduction

Thetis Engineering Ltd has been engaged by Alpine Group to design a stair for Heals, Tottenham Court. The staircase comprises a four flights of stairs joined at hal landing with flat stringers between central column supports and folded plate treads propped by balustrade stanchions.

These calculations justify the principle structural elements that comprise the staircase and balustrade system as well as the connection to the existing structure. The design of the frame elements upon which the stair is to take support is outside of the scope of this document. Reaction loads have been provided.

2.0 CDM Regulations

Under the Construction (Design and Management) Regulations 2015 we have responsibilities as designers to ensure that on notifiable projects (i.e. projects lasting longer than 30 days or involve more than 500 person days of work) the client understands their own duties required by the regulations. For notifiable projects the client must ensure that a principle designer is appointed as soon as practicable in the design phase of the project.

As designers we are required by the CDM regulations to, where we can, eliminate hazards and risks. There appears to be no special risks associated with the erection and eventual demolition of this building so far as we can assess in our capacity as designers.

The contractor is responsible for ensuring the stability of the structure at all times and that the works are carried out in accordance with the Construction, Design and Management Regulations and in strict compliance with all relevant Codes of Practice, Building Regulations and good building practice. All site works should follow good working practice in the construction industry. The Contractor should follow the HSE Guidelines with regards to manual handling.

	Contract No.	2220323	Sheet No.	3	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	SIO
	Description					

3.0 Design Standards

Design Codes

Eurocode 1: BE EN 1991-1-1:2002	Actions on structures – Part 1-1: General actions – Densities, self-weight, imposed loads for buildings
Eurocode 3: BS EN 1993-1-1:2005	Design of steel structures – Part 1-1: General rules and rules for buildings

	Contract No.	2220323	Sheet No.	4	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

4.0 Structural Loadings Schedule

Treads:

Dea	ıd:	
	Tread self weight accounted for in model Finishes	0.50 kN/m ²
	Load acting on 260mm wide tread	0.15 kN/m
Imp	oosed:	
	Class C35	4.00 kN/m² Or 4.00kN PL
	Load acting on 260mm wide tread	1.04 kN/m
Balustrades:		
Dea	ıd:	
	Self weight	0.75 kN/m
Imp	oosed:	
	Horizontal	1.50 kN/m
	Vertical	0.60 kN/m
		Or
		1.0 kN PL

	Contract No.	2220323	Sheet No.	5	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

5.0 Stair Geometry

See Alpine Group drawings for full details.

	Contract No.	2220323	Sheet No.	6	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

6.0 Model Geometry

	Contract No.	2220323	Sheet No.	7	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

Section sizes

	Contract No.	2220323	Sheet No.	8	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

Connection fixity

	Contract No.	2220323	Sheet No.	9	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

7.0 Model Loading

Superimposed Dead Load (Treads and landings):

	Contract No.	2220323	Sheet No.	10	Rev.	P1
AlpıneGroup®	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
Strong in steel since 1974	Description					

Superimposed Dead Load (Balustrades):

	Contract No.	2220323	Sheet No.	11	Rev.	P1		
	Project	Heals Stair	Heals Stair					
	Design by	DKH	Date	11/01/23	Chkd.	OJS		
	Description							

Vertical Live Load (treads and landings):

	Contract No.	2220323	Sheet No.	12	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

Vertical Live Load (Balustrade):

	Contract No.	2220323	Sheet No.	13	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	SIO
	Description					

Imposed Load (outer balustrade push):

Torsional moment in stringers from horizontal balustrade loads has been accounted for by modelling the vertical reaction in the adjacent stringer resulting from the moment transfer through the tread:

Balustrade height = 1.0m on stair (1.2m on landing) Horizontal load = 1.5 kN/m BM = 1.0*1.5 = 1.5 kNm/m (1.2x1.5 = 1.8 kNm/m on landing) Tread width = 1.43m Vertical reaction on opposite stringer = 1.5/1.43 = 1.05 kN/m (1.8/1.43 = 1.26kN/m on landing) Horizontal load on balustrade from a 'push' or 'pull' action creates an equal and opposite force at the base that cancels out the force in the macro design of the system. The horizontal force has been considered in the local design of the balustrade.

	Contract No.	2220323	Sheet No.	14	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	SIO
	Description					

Imposed Load (outer balustrade pull):

Torsional moment in stringers from horizontal balustrade loads has been accounted for by modelling the vertical reaction in the adjacent stringer resulting from the moment transfer through the tread:

Balustrade height = 1.0m on stair (1.2m on landing) Horizontal load = 1.5 kN/m BM = 1.0*1.5 = 1.5 kNm/m (1.2x1.5 = 1.8 kNm/m on landing) Tread width = 1.43m Vertical reaction on opposite stringer = 1.5/1.43 = 1.05 kN/m (1.8/1.43 = 1.26kN/m on landing) Horizontal load on balustrade from a 'push' or 'pull' action creates an equal and opposite force at the base that cancels out the force in the macro design of the system. The horizontal force has been considered in the local design of the balustrade.

	Contract No.	2220323	Sheet No.	15	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

Loadcases:

#	Loadcase Title	Туре		Calc Automatically	Include in Generator	Imposed Load Reductions	Pattern Load	Pattern Ecc. Moments for Precast Columns
1	Self weight - excluding slabs	SelfWeight	\sim	 	~			
2	Slab self weight	Slab Dry	\sim					
3	SID Treads	Dead	\sim					
4	SID Balustrade	Dead	\sim					
5	Vert Live Treads	Imposed	\sim					
6	Vert Live Balustrade	Imposed	\sim					
7	Outer Balustrade Push	Imposed	~					
8	Outer Balustrade Pull	Imposed	\sim		Image: A start and a start			
9	Inner Balustrade Push	Imposed	~					
10	Inner Balustrade Pull	Imposed	\sim		\sim		0	

Load Combinations:

#	Design Combination Title	Camber	Class		Active	Strength	Service
1	Dead + Vert Live		Gravity	\sim	~	~	 Image: A second s
2	Dead + Vert Live + Outer Push + Inner Push		Gravity	\sim	Image: A start of the start		
3	Dead + Vert Live + Outer Push + Inner Pull		Gravity	\sim			
4	Dead + Vert Live + Outer Pull + Inner Push		Gravity	\sim			
5	Dead + Vert Live + Outer Pull + Inner Pull		Gravity	\sim			
6	Vert Live + Outer Push + Inner Push		Gravity	\sim			
7	Vert Live + Outer Push + Inner Pull		Gravity	\sim			
8	Vert Live + Outer Pull + Inner Push		Gravity	\sim			
9	Vert Live + Outer Pull + Inner Pull		Gravity	\sim			
10	All Dead Loads		Gravity	\sim			

	Contract No.	2220323	Sheet No.	16	Rev.	P1
AlpineGroup®	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
Strong in steel since 1974	Description					

8.0 Analysis Model Graphical Output

	Contract No.	2220323	Sheet No.	17	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	SIO
	Description					

	Contract No.	2220323	Sheet No.	18	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

First-order linear - 1 Envelope Member Moment Major : [-1.8/5.2kNm]

	Contract No.	2220323	Sheet No.	19	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

First-order linear - 1 Envelope Member Moment Minor : [-0.1/0.1kNm]

	Contract No.	2220323	Sheet No.	20	Rev.	P1
	Project	Heals Stair				
Alpine Group	Design by	DKH	Date	11/01/23	Chkd.	OJS
Strong in steel since 1974	Description					

First-order linear - 1 Envelope Member Shear Major : [-7.8/7.8kN]

		Contract No.	2220323	Sheet No.	21	Rev.	P1
	Project	Heals Stair					
	Alpine Group	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Strong in steel since 1974	Description					

First-order linear - 1 Envelope Member Shear Minor : [-0.2/0.3kN]

	Contract No.	2220323	Sheet No.	22	Rev.	P1
Alpine Group [@]	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
Strong in steel since 1974	Description					

First-order linear - 1 Envelope Member Axial Force : [-4.8/26.4kN]

	Co		2220323	Sheet No.	23	Rev.	P1
	Project	Heals Stair					
1	Alpine Group [®]	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Strong in steel since 1974	Description					

First-order linear - 1 Envelope Member Torsion : [-0.05/0.00kNm]

	Contract No.	2220323	Sheet No.	24	Rev.	P1
Alpine Group [@]	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
Strong in steel since 1974	Description					

9.0 Support Reactions

Support	Combination	Reaction	Reactions								
		F _z [kN]	F _X [kN]	F _Y [kN]	M _x [kNm]	M _Y [kNm]	M _z [kNm]				
Α	Maximum	4.5	0	0	0	0	0				
	Minimum	0.0	0	0	0	0	0				
В	Maximum	2.5	0	0	0	0	0				
	Minimum	0.0	0	0	0	0	0				
C	Maximum	15.0	0.5	0.5	0	0	0				
	Minimum	0.0	-0.5	-0.5	0	0	0				
D	Maximum	26.5	0.5	0.5	0.5	0.5	0.5				
	Minimum	6.0	-0.5	-0.5	-0.5	-0.5	-0.5				

	Contract No.	2220323	Sheet No.	25	Rev.	P1
AlpineGroup [©]	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
Strong in steel since 1974	Description					

10.0 Steel Stringer Design

Section size		300	mm deep	x	10	mm thick
Steel grade			Grade	[\$275]
Design strength			ру	= [275	N/mm ²
Youngs modulus			Е	=	205	kN/mm ²
Going				=[288	mm
Stringer slope				=	30	degrees
Tread spacing along stringer	= 288 / Cos 30			=	333	mm
Effective length between fixings				=	333	mm
Properties						
Area = d.t	= 300 x 10 / 100			=	30.0	cm ²
Ixx = $t.d^3/12$	= (10 x 300 ³)/(12 x 10000)			=	2250.0	cm ⁴
$Iyy = d.t^3 / 12$	= (300 x 10^3)/(12 x 10000)			=	2.5	cm ⁴
$Zxx = t.d^2/6$	= (10 x 300^2)/(6 x 1000)			=	150.00	cm ³
$Z_{yy} = d_t^2 / 6$	= (300 x 10 ²)/(6 x 1000)			=	5.00	cm ³
$Sxx = t.d^2/4$	= (10 x 300 ²)/(4 x 1000)			=	225.00	cm ³
Syy = $dt^2/4$	= (300 x 10 ²)/(4 x 1000)			=	7.50	cm ³
$fxx = (Ixx / A)^{0.5}$	= (2250/30)^0.5			=	8.67	cm
$ryy = (Ivv / A)^{0.5}$	= (2.5/30)^0.5			=	0.29	cm
Plastic moment capacity $M_{\rm C}$	= py 1.2 Z			=	49.5	kNm (ULS)
Bending strength B\$5950-1:2	000 : Annex I : B.2.7					
λ_{LT}	= 2.8 (Bw Led / t ²) ^{0.5}					
Classification				=	Semi-con	npac AD 310
βw				=	0.67	
L _E				=	333	mm
λ_{LT}	= $2.8 \text{ x sqrt} (0.67 \text{ x } 333 \text{ x } 300 / 10^2)$			=	72.5	
PE	= $(\pi^2 E / \lambda_{i\tau}^2)$			=	385.0	N/mm ²
λ_{LO}	= 0.4 ($\pi^2 E / p_v$) ^{0.5}			=	34.4	
ά _{ι.τ}				=	7.0	
ή _{ι.τ}	= $\dot{\alpha}_{LT} \left(\lambda_{LT}, \lambda_{LO} \right) / 1000$			=	0.267	
ÓLT	= 0.5 [$p_v + (\hat{\eta}_{LT} + 1) p_E$]			=	381.4	N/mm ²
Pb	= p _E p _Y			=	182.5	N/mm ²
	$(\hat{Q}_{LT} + (\hat{Q}_{LT}^2 - \mathbf{p}_E \mathbf{p}_Y)^{0.5})$					
Moment capacity	= pb 1.2 Z			=	32.9	kNm (ULS)

	Contract No.	2220323	Sheet No.	26	Rev.	P1
	Project	Heals Stair				
Alpine Group®	Design by	DKH	Date	11/01/23	Chkd.	OIS
Strong in steel since 1974	Description					

Stair span		=	2.304	m on plan (maximum)
		=	2.661	m on slope
Stair width		=	1.430	m
Stringer selfweight		=	0.33	kN/m ²
Selfweight of treads and infill		=	1.93	kN/m ²
Selfweight of balustrading		=	0.8	kN/m per side
Total dead load		=	3.31	kN/m ²
Live load		=	4.0	kN/m ²
Load factors : Dead load		=	1.4]
: Live load		=	1.6]
Total load	= (1.4 x 3.31) + (1.6 x 4)	=	11.1	kN/m ² (ULS)
	= (0.5 x 1.43 x 2.304) x 11.1	=	18.3	kN (ULS)
Applied bending moment	= (0.5 x 1.43 x 2.304) x 11.1 x 2.661/8	=	6.1	kNm (ULS)
Unity factor	= 6.1/32.9	=	0.186	
Deflection				
Live load only	= (0.5 x 1.43 x 2.304) x 4	=	6.6	kN / stringer
Ixx		=	2250.0	cm ⁴
Deflection	= (5 x 6.6 x 10^5 x 2.661^3)/(384 x 205 x 2250)	=	0.4	mm = span / 6653
End reactions				
Dead load	= (0.25 x 1.43 x 2.304) x 3.31	=	2.7	kN (Unfactored)
Live load	= (0.25 x 1.43 x 2.304) x 4	=	3.3	kN (Unfactored)
Total		=	9.2	kN (ULS)

Provide 300x10 mild steel flat plate stringer.

Forces from Tekla model @ ULS:

Shear major	=	7.8 kN
Shear minor	=	0.0 kN
Moment major	=	5.2 kNm
Moment minor	=	0 kNm
Torsion	=	0 kNm
Axial	=	5.5 kN

Stringer major axis plastic section modulus = $10*300^2/4 = 225,000$ mm³

Stringer minor axis plastic section modulus = $300*10^2/4 = 7,500$ mm³

Major axis bending stress	=	5,200,000/225,000	=	23.11 N/mm ²
Shear stress	=	(7,800)/(300*10)	=	2.6 N/mm ²
Axial stress	=	5,500/(300*10)	=	1.9 N/mm ²

Total stress < 275 N/mm² THEREFORE OK

	Contract No.	2220323	Sheet No.	27	Rev.	P1				
Alpine Group	Project	Heals Stair	leals Stair							
	Design by	DKH	Date	11/01/23	Chkd.	OIS				
	Description									

11.0 Tread Design

Loading	Live load : UDL	= 4.0 kN/m ² on plan
	: Point load	= 4.0 kN
	Dead load : Swt steel	= 7850 _{kg/m³}
	: Tread infill weight	= 2500 kg/m ³
	: Tread in fill depth	= 50 mm
Tread 6	0 NA xx in) 260 overall	60 NA ,, (max) overall
	Thickness	= 6 mm
	Span	= 1.233 m
	Swt + tread infill	= 0.61 kN (unfactored) = 1.91 kN/m ² (Unfactored)
	Live load / tread (i) UDL	= 1.28 kN (unfactored)
	(ii) CPL	= 4.00 kN (unfactored)
	Total load (i) UDL	= 2.91 kN (ULS) : Dead + Live
	(ii) UDL	= 0.86 kN (ULS) : Dead
	CPL	= 6.40 kN (ULS) : Live
	End connection to stringer	= Pinned
	BM (i)	= 0.45 kNm (ULS) : UDL Live check
	(ii)	= 2.11 kNm (ULS) : CPL Live check : Critical
	Distance to NAyy from underside	= 11.9 mm
	Distance to NAxx from left hand sid	ie = 130.0 mm
	I _{NA yy}	= 574208 mm ⁴
	I _{NA xx}	$= 1.9E+07 mm^4$
	Zyy (min)	= 11938 mm ³
	Area	$= 2208 \text{ mm}^2$
	r _{yy}	= 16.2 mm
	f _{xx}	= 93.4 mm
	p _y	= 275 N/mm ²
	B\$5950-1:2000 : Clause 4.3.7 & Tat	ble 2 [,]
	L _E /r	= 76.2
	β.,	= 1.0

	Contract No.	2220323	Sheet No.	28	Rev.	P1			
Alpine Group Strong in steel since 1974	Project	Heals Stair							
	Design by	DKH	Date	11/01/23	Chkd.	OJS			
	Description								

Tread (cont.)	$(\beta w)^{0.5} L_E / r$	$(\beta w)^{0.5} L_E / r$		77		
	D/T		=	44		
	pb		=	201	N/mm ²	
	Bending capacit	Bending capacity to be based on pb Zy			Enter pb obtained f	rom sheet "Table 20"
	MR = pb 2	ly .	≈	2.40	kNm (ULS)	
	UF	(i)	=	0.19	: UDL Live check	PASS
		(ii)	=	0.88	: CPL Live check	PASS

Deflection checks						IGNORING STRINGER ROTATION
	End connection to stringer	=	Pinned			
	Youngs modulus	=	205000	N/mm ²	2	
	(i) Live : UDL load	= 5	5 WL3/3	384 EI		
	Dead	=	0.13	mm		
	Live	=	0.27	mm		
	Total	=	0.4	mm	:	Span / 3083
	(ii) Live : Point load	= 1	PL ³ /4	8 EI		
	Dead	=	0.13	mm		Maximum = 1.46 : Span / 845
	Live	=	1.33	mm		
	Total	=	1.46	mm	:	Span / 845

Worst case bending moment from analysis model = 2.0 kNm @ ULS < 2.40 kNm THEREFORE OK

ADOPT 6mm TK S275 FOLDED PLATE TREADS

	Contract No.	2220323	Sheet No.	29	Rev.	P1			
	Project	Heals Stair							
	Design by	DKH	Date	11/01/23	Chkd.	OIS			
	Description								

12.0 Balustrade Design

Balustrade Post design

Section siz	2e		1	number	50	mm deep	x	12	mm thick
Steel grade						Grade]	275]
Design stren	gth					PY	=	275	N/mm ²
Modulus of e	lasticity					E	=	205	kN/mm ²
Loading o	n handrailing								
Horizontal							=	1.5	kN/m
Vertical	(i)						=	0.6	kN/m
	(ii)					or		1.0	kN
Post spacing							=	0.130	m (max)
Post height f	rom fixing point to handrail						=	1.1	m
Horizontal di	stance between post centreline and co	onnect	ion				=	0.035	m
Design load f	factor						=	1.5]
Handrail loa	ds								
Horizontal			= (1.5	×1.5)×0.13			=	0.3	kN (uls) / per span
Vertical	(i)		= (0.6	×1.5)×0.13			=	0.12	kN (uls) / per span
	(ii)		= (1x)	1.5)			=	1.5	kN (uls) / per span
BM due to ho	prizontal load		= 0.3 x	1.1/1			=	0.33	kNm (ULS) / plate
BM due to ve	rtical load		= 1.5 x	0.035/1			=	0.06	kNm (ULS) / plate
BM total			= 0.33	+0.06			=	0.39	kNm (ULS) / plate
Axial load du	e to vertical loads						=	1.50	kN (ULS) / plate
Section prop	erties per plate					A	=	600	mm ²
						lxx	=	125000	mm ⁴
						lyy	=	7200	mm ⁴
						rxx	=	14.44	mm
						гуу	=	3.47	mm
						Zxx	=	5000	mm ³
						Sxx	=	7500	mm ³
Plastic mom	ent capacity per plate	M _P	= py 1.	2 Z			=	1.65	kNm (ULS)
Bending stre	ss per plate		= 0.39	× 10^6 / (1.2	2 × 5000)		=	65.0	N/mm ²
Axial stress p	perplate		= 1.5 x	10^3/600			=	2.5	N/mm ²

	Contract No.	2220323	Sheet No.	30	Rev.	P1			
	Project	Heals Stair	leals Stair						
	Design by	DKH	Date	11/01/23	Chkd.	OJS			
	Description								

Bending strength	B\$5950-1 : 2000 : Annex B							
B.2.7	λ_{cT}		-	$2.8(\beta w \text{Led}/t^2)$	0.5			
	Effective length factor					= [1.0	
	Le		=	1 × 1.1 × 1000		=	1100	m
	d/t			= 50/12		=	4.2	PLASTIC
	βw					=	1.00	
	λ_{sT}			= 2.8 x sqrt (1 x 11	00 × 50 / 12^2)	=	54.8	
	PE			= $(\pi^2 E / \lambda_{LT}^2)$		=	673.8	N/mm ²
	λιο			= $0.4 (\pi^2 E/p_r)^{0.5}$		=	34.4	
	άιτ					=	7.0	
	ή _{ιτ}			$=\dot{\alpha}_{LT}(\lambda_{LT},\lambda_{LO})/100$	00	=	0.143	
	ÓLT			= 0.5 [p _v +(ή _{iT} +1)	ρ _ε]	=	522.6	N/mm ²
	Pb			= P _ε P _Y		=	226.3	N/mm ²
				$\dot{Q}_{LT} + (\dot{Q}_{LT}^2 - p_E p_E)$	Ay) ^{0.5}			
Moment capacity	per plate	МЬ	1 i	= pb1.2Z		=	1.36	kNm (ULS)
Unity factor per plate				d 65/226.3		=	0.288	
Deflection						=	3.4	mm = Height/324
Connection loads					Horizontal load	=	0.30	kN (uls)
					Vertical load	=	1.50	kN (uls)
					Bending momen	=	0.39	kNm (uls)

Provide 50mm deep x 12mm thick plate post at 0.13m centres

	Contract No.	2220323	Sheet No.	31	Rev.	P1		
Alpine Group	Project	eals Stair						
	Design by	DKH	Date	11/01/23	Chkd.	SLO		
	Description							

<u>Handrail design</u>									
Section size				50 m	m deep	x	12	mm thick	
Steel grade					Grade	= [\$275]	
Design strength					PY	= [275	N/mm ²	
Modulus of elasticity					E	= [205	kN/mm ²	
Loading on handrailing									
Horizontal						=	1.5	kN/m	
Vertical	(i)					=	0.6	kN/m	
	(ii)				or	[1.0	kN	
Post spacing						=	0.130	m (max)	
Design load factor						=	1.5]	
Handrail loads									
Horizontal		=	(1.5×1.5)×0.13	3		=	0.3	kN (uls) / pe	rspan
BM		=	0.3×0.13/8			=	0.01	kNm (uls)	
Vertical (i)		=	(0.6×1.5)×0.13	1		=	0.12	kN (uls) / pe	rspan
(ii)		=	(1×1.5)			=	1.5	kN (uls) / per	rspan
BM (i)		=	0.12×0.13/8			=	0.01	kNm (uls)	
(ii)		=	1.5 × 0.13 / 4			=	0.05	kNm (uls)	Critical
Section properties					Zxx	=	5000	mm ³	
					Sxx	=	7500	mm ³	
					Zyy	=	1200	mm ³	
					Syy	=	1800	mm ³	
Plastic moment capacity	γ M _P	=	py 1.2 Z			=	1.65	kNm (UL	5)
ру Хуу		=	275 x 1200 / 10^	6		=	0.33	kNm (UL	5)
Bending stress due to ho	orizontal loads	=	0.01 × 10^6 / (1.	2 × 5000)		=	1.7	N/mm ²	
Bending stress due to ve	ertical loads	=	0.05 × 10^6 / (1.3	2 x 1200)		=	34.8	N/mm ²	
Bending strength BS5	950-1 : 2000 : Annex B								
B.2.7 λ _{ιτ}		=	2.8 (β w Le d / t ²)	0.5					
Effectiv	e length factor					[1.0]	
Le		=	1 × 0.13 × 1000			=	130	m	
d/t		=	50/12			=	4.2	PLASTIC	
βw						=	1.00		
λ_{cT}		=	2.8 x sqrt (1 x 13	0×50/12^2)	=	18.9		

	Contract No.	22	220323	Sheet No.	32	Rev.	P1
	Project	He	als Stair				
Alpine Group®	Design by	DK	Ή	Date	11/01/23	Chkd.	OJS
Strong in steel since 1974	Description					1	1
Pé			$= (\pi^2 E / \lambda_{cr}^2)$	= 56	564.1 N/mm ²		
λ_{LO}			= $0.4 (\pi^2 E/p_Y)^{0.5}$	= 3	34.4		
ά _{ιτ}				=	7.0		
ή.τ			$= \dot{\alpha}_{cT}(\lambda_{cT},\lambda_{cO})/1000$	= 0	.000		
Ó,r			= $0.5[p_{v}+(\dot{\eta}_{LT}+1)p_{E}]$	= 29	969.6 N/mm ²		
Pb			= p _i p _y	= 2	75.0 N/mm ²		
			$(\dot{\phi}_{LT} + (\dot{\phi}_{LT}^2 - p_E p_Y)^{0.5})$				
Moment capacity		Mb	= pb 1.2 Z	= 1	1.65 kNm (ULS)		
Unity factor			d 0.01/1.65+0.05/0.33	= 0	.158		
Loads to posts			Horizontal	= 0	1.30 kN (uls)		
			Vertical	= 1	.50 kN (uls)		

Solid mild steel 50mm x 12mm handrail is adequate.

	Contract No.	2220323	Sheet No.	33	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

13.0 Connection Design

Tread Connection to Stringer:

Connection comprises 10mm thk 200x60mm S275 horizontal plate welded with 6FW to tread. 2 No. countersunk M12 grd. 8.8 bolts to 300x10mm thk stringer

Forces from Tekla model @ ULS:

Shear major	=	1.4 kN
Shear minor	=	0 kN
Moment major	=	0 kNm
Moment minor	=	0 kNm
Torsion	=	0 kNm
Axial	=	0 kN

Bolts: M12 grade 8.8, by inspection OK

By inspection welds OK

ADOPT CONNECTION AS DETAILED

	Contract No.	2220323	Sheet No.	34	Rev.	P1
	Project	Heals Stair				
Alpine Group	Design by	DKH	Date	11/01/23	Chkd.	OJS
Strong in steel since 1974	Description					

Tread Connection to hangers:

Weld length L = 5x(60-2x6) = 240mm

 F_{Rd} = 0.94 x 240 = 225.6 kN

Each tread support takes

Forces from Tekla model @ ULS:

Shear major	=	1.4 kN
Shear minor	=	0 kN
Moment major	=	0 kNm
Moment minor	=	0 kNm
Torsion	=	0 kNm
Axial	=	0 kN

Bolts: 2No M12 grade 8.8, by inspection OK

By inspection welds OK

ADOPT CONNECTION AS DETAILED

	Contract No.	2220323	Sheet No.	35	Rev.	P1
	Project	Heals Stair				
Alpine Group®	Design by	DKH	Date	11/01/23	Chkd.	SIO
Strong in steel since 1974	Description					

Check Typical Stringer Top and bottom Connection to column:

Connection is nominally pinned, comprising 350x200x10mm endplate welded to one side of stringer with 8mm FW both sides with 4 No. M16 grd. 8.8 bolts.

Worst case forces on connection @ ULS (rounded up to nearest 0.5kN):

Shear major	=	8.0 kN
Shear minor	=	0.0 kN
Moment major	=	0.0 kNm
Moment minor	=	0 kNm
Torsion	=	0 kNm
Axial	=	5.5 kN

Check endplate in bending from axial tension:

Horizontal bolt cross centres = 100mm Vertical bolt crossc entres = 250mm Moment in plate = 5.5/2*0.10= 0.28 kNm Plate elastic section modulus = 200*10²/6 = 3,333 mm³ Bending stress = 280,000/3,333 = 82.5N/mm² < 275 N/mm² THEREFORE OK

Check stub weld:

Weld length L = 3.14x194 - 2x8 = 593mmF_{Rd} = 593x1.25 = 741.45 kN

By inspection welds OK

	Contract No.	2220323	Sheet No.	36	Rev.	P1
	Project	Heals Stair				
Alpine Group	Design by	DKH	Date	11/01/23	Chkd.	OIS
Strong in steel since 1974	Description					

Check pinned landing frame connection:

V $_{\rm Rd}$ = 3.5kN < 27.5kN single shear resistanc eof M12 gr 8.8 bolt t=6mm > 4.3mm min thickness for punching shear

Adopt connection as detailed

Check landing frame connection to SHS column:

Bearing on the 5mm SHS wall will govern

2F_b = 2x11.7 = 23.4 kN > 5.5 kN THEREFORE OK t=5mm > 3.4mm min thickness for punching shear

Adopt connection as detailed

	Contract No.	2220323	Sheet No.	37	Rev.	P1
AlpineGroup®	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	SLO
Strong in steel since 1974	Description					

-1 7

SHS base plate connection to concrete slab

1 Input data

		The second secon
Anchor type and size:	HUS4-H 12 h_nom1	eletetetetetetetetetetetetetetetetetete
Return period (service life in years):	50	
Item number:	2293565 HUS4-H 12x70 10/-/-	
Effective embedment depth:	h_{ef} = 45.9 mm ($h_{ef,ETA}$ = 45.9 mm), h_{nom} = 60.0 mm	
Material:	1.5525	
Approval No.:	ETA-20/0867	
Issued I Valid:	14/07/2022 -	
Proof:	Design Method EN 1992-4, Mechanical	
Stand-off installation:	$e_b = 0.0 \text{ mm}$ (no stand-off); t = 10.0 mm	
Baseplate ^R :	$\rm I_x \ x \ I_y \ x \ t$ = 50.0 mm x 200.0 mm x 10.0 mm; (Recomm	nended plate thickness: not calculated)
Profile:	Square hollow, 50 x 50 x 2; (L x W x T) = 50.0 mm x 5	50.0 mm x 2.0 mm
Base material:	cracked concrete, C20/25, $\rm f_{c,cyl}$ = 20.00 N/mm²; h = 19 factor γ_{c} = 1.500	50.0 mm, User-defined partial material safety
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	No reinforcement or Reinforcement spacing >= 150 m	nm (any Ø) or >= 100 mm (Ø <= 10 mm)
	no longitudinal edge reinforcement	

 $^{\rm R}$ - The anchor calculation is based on a rigid baseplate assumption.

Geometry [mm] & Loading [kN, kNm]

1.1 Load combination

Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
1	Combination 1	N = -15.000; V _x = 0.500; V _y = 0.500;	no	no	3
		$M_{-} = 0.000; M_{-} = 0.000; M_{-} = 0.000;$			

	Contract No.	2220323	Sheet No.	38	Rev.	P1
Alpine Group	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

2 Load case/Resulting anchor forces

Anchor reactions [kN]

Tension force: (+Tension, -Compression)								
Anchor	Tension force	Shear force	Shear force x	Shear force y				
1	0.000	0.354	0.250	0.250				
2	0.000	0.354	0.250	0.250				
max. concrete c max. concrete c	compressive strain: compressive stress:	0.05 1.50	[‰] [N/mm²]					
resulting tension force in $(x/y)=(0.0/0.0)$: resulting compression force in $(x/y)=(0.0/0.0)$:			0 [kN] 00 [kN]					

Anchor forces are calculated based on the assumption of a rigid baseplate.

3 Tension load (EOTA TR 029, Section 5.2.2)

	Load [kN]	Capacity [kN]	Utilization B _N [%]	Status
Steel failure*	N/A	N/A	N/A	N/A
Concrete Breakout failure**	N/A	N/A	N/A	N/A
Splitting failure**	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

4 Shear load (EN 1992-4, Section 7.2.2)

	Load [kN]	Capacity [kN]	Utilization β _v [%]	Status
Steel failure (without lever arm)*	0.354	24.896	2	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout failure**	0.354	14.278	3	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

	Contract No.	2220323	Sheet No.	39	Rev.	P1
	Project	Heals Stair				
Alpine Group	Design by	DKH	Date	11/01/23	Chkd.	OIS
Strong in steel since 1974	Description					

5 Displacements (highest loaded anchor)

Short term loading:

N _{Sk}	=	0.000 [kN]	δ _N	=	0.0000 [mm]
V _{Sk}	=	0.262 [kN]	δ_V	=	0.0189 [mm]
			δ _{NV}	=	0.0189 [mm]
Long te	rm l	oading:			
N _{Sk}	=	0.000 [kN]	δ _N	=	0.0000 [mm]
V _{Sk}	=	0.262 [kN]	δ_V	=	0.0271 [mm]
			δ_{NV}	=	0.0271 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the baseplate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid baseplates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the baseplate are not considered - the baseplate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required baseplate thickness with CBFEM to limit the stress of the baseplate based on the assumptions explained above. The proof if the rigid baseplate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- In general, the conditions given in ETAG 001, Annex C, section 4.2.2.1 and 4.2.2.3 b) are not fulfilled because the diameter of the clearance hole in the fixture acc. to Annex 3, Table 3 is greater than the values given in Annex C, Table 4.1 and AS5126 for the corresponding diameter of the anchor. Therefore the design resistance for anchor groups is limited to twice the steel resistance (of a single anchor) in accordance with the approval.
- · Checking the transfer of loads into the base material is required in accordance with EN 1992-4, Annex A!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 6.1 of EN 1992-4! For larger diameters of the clearance hole see section 6.2.2 of EN 1992-4!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

	Contract No.	2220323	Sheet No.	40	Rev.	P1
	Project	Heals Stair				
Alpine Group	Design by	DKH	Date	11/01/23	Chkd.	OIS
Strong in steel since 1974	Description					

7 Installation data

Baseplate, steel: S 235; E = 210,000.00 N/mm²; f_{yk} = 235.00 N/mm² Profile: Square hollow, 50 x 50 x 2; (L x W x T) = 50.0 mm x 50.0 mm x 2.0 mm

Hole diameter in the fixture: d_f = 16.0 mm

Plate thickness (input): 10.0 mm

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Clean the drill hole. Under the conditions - according to fastener size and drilling direction - given in the ETA and MPII (IFU), the cleaning of the drill hole may be omitted.

Anchor type and size: HUS4-H 12 h_nom1 Item number: 2293565 HUS4-H 12x70 10/-/-

Maximum installation torque: Hilti SIW 22T-A Hole diameter in the base material: 12.0 mm Hole depth in the base material: 70.0 mm Minimum thickness of the base material: 100.0 mm

Hilti HUS screw anchor with 60 mm embedment, 12 h_nom1, Steel galvanized, installation per ETA-20/0867

7.1 Recommended accessories

Drilling	Cleaning	Setting
 Suitable Rotary Hammer Properly sized drill bit 	Manual blow-out pump	Hilti SIW 22T-A impact screw driver
	25.0 ¥ 25.0 25.0 0 9 25.0 0 10 10 10 10 10 10 10 10 10 10 10 10 10	

150.0

25.0

25.0

25.0

100.0

Anchor	x	У	C.,x	C+x	с _{.у}	C+y
1	0.0	-75.0	-		-	
2	0.0	75.0	-	-	-	-

	Contract No.	2220323	Sheet No.	41	Rev.	P1
	Project	Heals Stair				
Alpine Group	Design by	DKH	Date	11/01/23	Chkd.	OJS
Strong in steel since 1974	Description					

CHS column base plate connection ot concrete slab

1 Input data

i input data		
Anchor type and size:	HUS4-H 12 h_nom1	eletetetetetetetetetetetetetetetetetete
Return period (service life in years):	50	
Item number:	2293565 HUS4-H 12x70 10/-/-	
Effective embedment depth:	h_{ef} = 45.9 mm ($h_{ef,ETA}$ = 45.9 mm), h_{nom} = 60.0 mm	
Material:	1.5525	
Approval No.:	ETA-20/0867	
Issued I Valid:	14/07/2022 -	
Proof:	Design Method EN 1992-4, Mechanical	
Stand-off installation:	e_{b} = 0.0 mm (no stand-off); t = 10.0 mm	
Baseplate ^R :	$\mathrm{I_x} \ge \mathrm{I_y} \ge \mathrm{I_y} \ge \mathrm{I_2}$ (Recon	mended plate thickness: not calculated)
Profile:	Pipe, 193,7 x 5,0; (L x W x T) = 193.7 mm x 193.7 mm	m x 5.0 mm
Base material:	cracked concrete, C20/25, $\rm f_{c,cyl}$ = 20.00 N/mm²; h = 12 factor $\gamma_{\rm c}$ = 1.500	50.0 mm, User-defined partial material safety
Installation:	hammer drilled hole, Installation condition: Dry	
Reinforcement:	No reinforcement or Reinforcement spacing >= 150 m	nm (any Ø) or >= 100 mm (Ø <= 10 mm)
	no longitudinal edge reinforcement	

 $^{\mathsf{R}}$ - The anchor calculation is based on a rigid baseplate assumption.

Geometry [mm] & Loading [kN, kNm]

	Contract No.	2220323	Sheet No.	42	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OJS
	Description					

1.1 Load combination

Case	Description	Forces [kN] / Moments [kNm]	Seismic	Fire	Max. Util. Anchor [%]
1	Combination 1	N = -26.500; V _x = 0.500; V _y = 0.500;	no	no	10
		$M_x = 0.500; M_y = 0.500; M_z = 0.500;$			

2 Load case/Resulting anchor forces

Anchor reactions [kN]

Tension force:	(+Tension,	 Compression) 	1
----------------	------------	----------------------------------	---

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	0.000	1.035	0.687	-0.774
2	0.000	1.233	0.687	1.024
3	0.000	0.889	-0.437	-0.774
4	0.000	1.113	-0.437	1.024
max. concrete of max. concrete of resulting tension resulting compr	compressive strain: compressive stress: n force in (x/y)=(0.0 ession force in (x/y)	0.02 [‰] 0.52 [N/mm ²] 0.000 [kN] 26.500 [kN]		

Anchor forces are calculated based on the assumption of a rigid baseplate.

3 Tension load (EN 1992-4, Section 7.2.1)

	Load [kN]	Capacity [kN]	Utilization β _N [%]	Status
Steel failure*	N/A	N/A	N/A	N/A
Concrete Breakout failure**	N/A	N/A	N/A	N/A
Splitting failure**	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

4 Shear load (EN 1992-4, Section 7.2.2)

	Load [kN]	Capacity [kN]	Utilization β _v [%]	Status
Steel failure (without lever arm)*	1.233	24.896	5	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout failure*	1.233	13.619	10	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

	Contract No.	2220323	Sheet No.	43	Rev.	P1
	Project	Heals Stair				
AlpineGroup [®]	Design by	DKH	Date	11/01/23	Chkd.	OIS
Strong in steel since 1974	Description					

5 Displacements (highest loaded anchor)

Short term loading:	Short	term	loading:
---------------------	-------	------	----------

N _{Sk}	=	0.000 [kN]	δ _N	=	0.0000 [mm]
V _{Sk}	=	0.913 [kN]	δ_V	=	0.0658 [mm]
			δ_{NV}	=	0.0658 [mm]
Long te	rm I	oading:			
N _{Sk}	=	0.000 [kN]	δ_N	=	0.0000 [mm]
V _{Sk}	=	0.913 [kN]	δ_V	=	0.0946 [mm]
			δ _{NV}	=	0.0946 [mm]

Comments: Tension displacements are valid with half of the required installation torque moment for uncracked concrete! Shear displacements are valid without friction between the concrete and the baseplate! The gap due to the drilled hole and clearance hole tolerances are not included in this calculation!

The acceptable anchor displacements depend on the fastened construction and must be defined by the designer!

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid baseplates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the baseplate are not considered - the baseplate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required baseplate thickness with CBFEM to limit the stress of the baseplate based on the assumptions explained above. The proof if the rigid baseplate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- In general, the conditions given in ETAG 001, Annex C, section 4.2.2.1 and 4.2.2.3 b) are not fulfilled because the diameter of the clearance hole in the fixture acc. to Annex 3, Table 3 is greater than the values given in Annex C, Table 4.1 and AS5126 for the corresponding diameter of the anchor. Therefore the design resistance for anchor groups is limited to twice the steel resistance (of a single anchor) in accordance with the approval.
- Checking the transfer of loads into the base material is required in accordance with EN 1992-4, Annex A!
- The design is only valid if the clearance hole in the fixture is not larger than the value given in Table 6.1 of EN 1992-4! For larger diameters of the clearance hole see section 6.2.2 of EN 1992-4!
- The accessory list in this report is for the information of the user only. In any case, the instructions for use provided with the product have to be followed to ensure a proper installation.
- · The characteristic bond resistances depend on the return period (service life in years): 50

Fastening meets the design criteria!

	Contract No.	2220323	Sheet No.	44	Rev.	P1
	Project	Heals Stair				
	Design by	DKH	Date	11/01/23	Chkd.	OIS
	Description					

7 Installation data

Baseplate, steel: S 275; E = 210,000.00 N/mm²; f_{yk} = 275.00 N/mm² Profile: Pipe, 193,7 x 5,0; (L x W x T) = 193.7 mm x 193.7 mm x 5.0 mm

Hole diameter in the fixture: $d_f = 16.0 \text{ mm}$

Plate thickness (input): 10.0 mm

Recommended plate thickness: not calculated

Drilling method: Hammer drilled

Cleaning: Clean the drill hole. Under the conditions - according to fastener size and drilling direction - given in the ETA and MPII (IFU), the cleaning of the drill hole may be omitted. Anchor type and size: HUS4-H 12 h_nom1 Item number: 2293565 HUS4-H 12x70 10/-/-Maximum installation torque: Hilti SIW 22T-A Hole diameter in the base material: 12.0 mm Hole depth in the base material: 70.0 mm Minimum thickness of the base material: 100.0 mm

Hilti HUS screw anchor with 60 mm embedment, 12 h_nom1, Steel galvanized, installation per ETA-20/0867

7.1 Recommended accessories

Coordinates Anchor [mm]

Anchor	x	У	C.,x	C+x	с _{-у}	c+y
1	-100.0	-62.5	-	-	-	-
2	100.0	-62.5	-	-	-	-
3	-100.0	62.5	-	-	-	-
4	100.0	62.5	-	-	-	-